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Telomere length is age-dependent and reduced in monocytes of Alzheimer patients
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Telomeres are regions of repetitive DNA at the end of eukaryotic chromosomes, which prevent chromosomal
instability. Telomere shortening is linked to age-related disease including Alzheimer's disease (AD) and has
been reported to be reduced in leukocytes of AD patients. The aim of the present study was to measure
telomere length in monocytes of patients with AD or mild cognitive impairment (MCI) compared to healthy
subjects. Our data show significant shorter telomere length in AD patients (6.6±0.2 kb; p=0.05) compared
to controls (7.3±0.2 kb). Telomere length of MCI patients did not differ compared to healthy subjects
(7.0±0.2 kb). We observe a strong correlation between telomere length and age (p=0.01, r=−0.38), but
no association between telomere length and Mini-Mental State Examination score. In conclusion, the
telomere length is age-dependent in monocytes and decreased in AD patients, which could mean that the
AD pathologymay contribute to telomere length shortening. The high variability of telomere lengths in individ-
uals suggests that it will not be useful as a general biomarker for AD. However, it could become a bio-
marker in personalized long-term monitoring of an individuals’ health.

© 2011 Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative
disorder which is characterised by cognitive impairment, memory
loss and characteristic pathological changes in the brain, like senile
plaques and neurofibrillary tangles (Burns et al., 2002). To complement
diagnosis an intense search is underway to identify disease-specific
biomarkers in the cerebrospinal fluid (CSF), blood plasma, and blood
cells. To date, three biomarkers have been established in CFS: beta-
amyloid1–42 (Aβ), total tau, and phospho-tau-181 (Humpel, 2011). So
far no specific blood biomarkers have been established, despite an
intense research on proteins and genes of blood cells (Humpel, 2011).

Telomeres are short and highly conserved hexanucleotide repeats
(TTAGGG) found at the end of eukaryotic chromosomes, which
prevent end-to-end fusions and other structural and functional cell
abnormalities. During aging 50–150 bp of telomeric DNA is lost with
each proliferation cycle (Allsopp et al., 1992). Shorter telomere length
of leukocytes has been linked to age-related diabetes, cardiovascular
and heart disease and also to an elevated risk of neurodegenerative
disease including dementia (Honig et al., 2006; Panossian et al.,
2003; Tentolouris et al., 2007; von Zglinicki et al., 2000). In particular,
telomere shortening inwhite blood cells and altered immune function
as a possible result has been linked to AD (Honig et al., 2006;
Panossian et al., 2003; Thomas et al., 2008). Immune cells, like
sychiatry, Anichstr. 35, A-6020
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monocytes are further associated with Aβ depositions and are capable
of phagocytosing Aβ (Fiala et al., 2007).

The objective of this study was to investigate, if telomere length in
monocytes is altered in patients with AD or MCI compared to healthy
subjects. If so, these results will provide a basis to further investigate
monocytic involvement in the pathology of AD, which could help to
use telomere length to distinguish between healthy subjects and
MCI, or AD patients.

2. Methods

2.1. Selection of patients

Healthy subjects and patients suffering from AD or MCI were
recruited from theDepartment of Psychiatry in Innsbruck or Klagenfurt,
Austria. All groups were assessed by the same diagnostic procedure.
Psychiatrists clinically examined all subjects, performed a standardized
neurological examination, neuropsychological tests (Mini-Mental State
Examination, MMSE), reviewed medical records, and conferred with
referring physicians for all patients. MCI was diagnosed according to
the Petersen criteria (Petersen et al., 2001). Probable AD was
diagnosed according to the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer's Disease and
Related Disorders Association criteria (McKhann et al., 1984). The geri-
atric depression scale (GDS) was applied to all participants. Magnetic
resonance imaging was performed for all participants. Subjects were
excluded when they suffered from another mental disease, any kind
of metabolic decompensation or had any signs of inflammation. The
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study was approved by the ethical committee of Innsbruck Medical
University.

2.2. Monocyte collection

Monocytes were isolated as described recently in detail
(Hochstrasser et al., 2010). Briefly, EDTA blood (10 ml) was collected
during normal routine clinical assessments and processed within 3 h.
Plasma and peripheral mononuclear cells (PBMCs) were separated
from whole blood on a continuous Biocoll gradient (1.077 g/ml,
Biochrom, Germany) after centrifugation (400×g, 30 min, room
temperature). Two-thirds of the upper plasmaphase and the interphase
with the PBMCs, which is visible as a white stratum between plasma
phase and Biocoll, were carefully removed. Plasma was directly frozen
at−80 °C until use. PBMCs were washed in 50 ml phosphate-buffered
saline (PBS), centrifuged (250×g, 6 min) and the pellet was dissolved
in PBS with 1% bovine serum albumine (BSA). Monoyctes were isolated
by negative magnetic isolation as described by the manufacturer
(Miltenyi Biotech, Germany). Briefly, PBMCs were incubated with a
cocktail of different biotinylated antibodies (CD3, CD7, CD16, CD19,
CD56, CD123, CD235a) for 10 min on ice. Then anti-biotin magnetic
beads were added, incubated for further 15 min on ice, washed and
the cells applied onto MACS MS columns (Miltenyi Biotech, Germany)
on a strong magnet. The non-labelled monocytes were eluted and
collected. Finally, cells were frozen at −80 °C until use.

2.3. Telomere length assay

Telomere length analysis was performed by the TeloTAGGG
telomere length assay kit (Roche, Austria) as described by the
manufacturer. Briefly, genomic DNA was extracted from monocytes
using the QIAamp DNA mini kit (Qiagen, Austria) according to the
manufacturer's instructions. DNA was digested by the restriction
endonucleasesHinfI and RsaI for 2 h at 37 °C. Following DNA digestion,
the DNA fragments were separated by gel electrophoreses (0.8%
agarose gel, 50 V, 3 h). Then, DNA was transferred to a positively
charged nylon membrane (Roche, Austria) by capillary Southern
blotting with 20× saline-sodium citrate (SSC) buffer (overnight,
room temperature). DNA was fixed to the membrane by UV light for
5 min, washed with 2× SSC buffer and air dried. DNA fragments
were hybridized with telomeric specific digoxygenin (DIG)-labeled
hybridization probe (3 h, 42 °C), incubated with anti-DIG-alkaline
phospahatase for 30 min at room temperature and detected with
CDP-Star chemiluminescent substrate. The signals were analyzed
using a CCD imager. Telomere length is given as the average terminal
restriction fragment (TRF) length and the signal intensity is plotted in
function of migrating distance for each sample. Mean TRF length was
quantified by integrating the signal intensity of the TRF bands on the
Fig. 1. Telomere length analysis. (A) A representative Southern Blot shows telomere lengt
cognitive impaired (MCI) patients. A size marker on the left gives the size of DNA fragmen
AD patients. Mean telomere length from AD patients is shorter (*p=0.05) than from contr
blot as a function of its mean molecular weight, which is determined
based on the molecular weight standard (Fig. 1A).

2.4. SearchLight Multiplex ELISA

SearchLight Multiplex ELISAs (Aushon Biosystems) for plasma
pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα),
RANTES, interleukin-1 alpha (IL-1α), and monocyte chemotactic
protein-3 (MCP3) were performed as described by us in detail
(Marksteiner et al., 2011).

2.5. Statistical analysis

Sample size considerations for our study are based on the study of
Panossian et al. (2003)who found a fairly large difference inmonocyte
telomere length between AD patients and healthy controls compared
to the standard deviation (SD) in each of the two groups (mean
difference=0.91 kb, SDb0.5 kb, giving rise to an effect size d>1.8;
d=mean difference/SD). Our sample size of 19 patients with AD,
18 with MCI and 14 healthy controls was chosen such that in a
two sample t-test (AD vs controls, MCI vs. controls) effect sizes
d>1 can be detected with 80% power at a 5% level of significance.
Considerations for ANCOVA are similar (detectable effect size
d≈1.1, 1.2, 1.3 for one, two and three covariates, respectively).

Statistical analysis was performed with analysis of variance
(ANOVA) followed up by post-hoc pairwise comparisons of groups
using Fisher's least significant difference (LSD) method. The ability
of the telomere length to discriminate between diagnostic groups
was tested by analysis of covariance (ANCOVA). ANCOVA was
conducted in order to adjust for age, sex, and GDS. The correlation
of telomere length to age or MMSE was assessed by ANCOVA, where
pb0.05 and was considered as statistically significant.

3. Results

Subjects’ characteristics are presented in Table 1. Healthy controls
did not show a difference in sex, age, and GDS compared to MCI and
AD patients (Table 1). Controls had an MMSE score of 28.4±0.4,
which was significantly different from AD but not from MCI patients
(Table 1). Pro-inflammatory markers were measured by SearchLight
ELISA in plasma, but no significant difference was observed between
controls, MCI and AD patients (Table 2).

The telomere length in monocytes was determined by Southern
blotting and was found to be between 6 and 7 kilobases (Fig. 1A). In
order to measure size differences, the blots were scanned and the
DNA size was blotted against the running distance related to
21.2 kb, which yielded in a formula with a very high regression
coefficient (R2=0.99). The size of the monocyte telomere length
hs (TRF) from monocytes of control subjects (Co), Alzheimer's disease (AD) and mild
ts in kilo bases (kb) (B) Scatter plot shows the telomere length of controls, MCI, and
ols. Value in parenthesis gives the number of samples.



Table 1
Patients characteristics for telomere length.

n m/f Age MMSE GDS

Control 14 6/7 71.9±1.9 28.4±0.4 6.1±1.2
MCI 19 6/13 ns 71.2±1.6 ns 27.4±0.4 ns 9.5±1.4 ns
AD 18 4/14 ns 74.7±1.7 ns 19.6±1.1 *** 10.1±1.4 ns

Monocytes were isolated from healthy controls, mild cognitive impaired (MCI), and
Alzheimer's disease (AD) patients. Values are given as mean±SEM. n gives the
number of samples and the number of respective male/female patients (m/f) is
given. The table gives the age of the patients in years, the Minimental State
Examination (MMSE) and the geriatric depression scale (GDS). Statistical analysis
was performed by one-way ANOVA with a Fisher LSD post-hoc test. *** pb0.001; ns
not significant.
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was calculated accordingly, and the monocyte telomere length was
found to be 7.3±0.2 kb in healthy subjects (n=14; Fig. 1B). For
MCI patients, the telomere length was 7.0±0.2 kb (n=19) and AD
patients had a mean monocyte telomere length of 6.6±0.2 kb
(n=18) (Fig. 1B). When telomere length was adjusted for age, the
analysis of covariance revealed an all over trend towards shorter
telomeres when controls were compared to MCI and AD patients
(p=0.08). Telomere length of MCI patients did not significantly differ
from telomere lengths of healthy controls (p=0.15; Bonferroni-
corrected: p=0.30). AD patients showed a significance towards
shorter telomeres (p=0.03; Bonferroni-corrected: p=0.05) compared
to healthy controls. A significant negative correlationwas seen between
telomere length and age inmonocytes of all groups (Fig. 2A; r=−0.38,
p=0.01), while there was no correlation between telomere length and
MMSE score (Fig. 2B; r=0.21, p=0.13). There was no significant
association between the telomere length and GDS (r=−0.08;
p=0.6), or sex (p=0.34) adjusted for age.
4. Discussion

Our findings indicate a significant reduction in telomere length in
monocytes of AD patients compared to healthy subjects.

Short telomeres have been found as a marker for biological aging
and several studies have shown an association between short
telomeres and age-related disease such as dementia (Honig et al.,
2006; Panossian et al., 2003; Thomas et al., 2008; von Zglinicki et
al., 2000). Telomere shortening was first experimentally demonstrated
in fibroblasts and has been shown to be associated with aging (Baird,
2006). Here, we report that monocytes of AD patients show shorter
telomeres, which are marginally significant when adjusted for age.
MCI patients displayed no difference in monocyte telomere length
compared to control subjects. A correlation between peripheral blood
leukocytes and cerebellum telomere length, a correlation between
leukocyte telomere length and cognitive performance, and increased
telomerase activity and decreased proliferation activity in lymphocytes
has been demonstrated in AD patients (Lukens et al., 2009; Valdes et al.,
2010). We did not observe a correlation between cognitive perfor-
mance (MMSE) and monocyte telomere length, which is in agreement
with others (Valdes et al., 2010). However, they show lower MMSE
scores in T cell telomere length of AD patients compared to controls.
In order to measure the pro-inflammatory status, we analyzed four
Table 2
Inflammatory marker in plasma of controls, MCI, and AD patients.

TNFα [pg/ml] RANTES [ng/ml

Control 8.2±1.1 (7)– 10.5±3.2 (14)
MCI 11.4±2.4 (9) ns 10.4±2.8 (18)
AD 10.7±1.8 (12) ns 12.8±4.0 (18)

Plasma was taken from healthy controls, mild cognitive impaired (MCI), and Alzheimer's dis
necrosis factor-alpha, TNFα; RANTES; interleukin-1 alpha, IL-1α; monocyte chemotactic pro
or ng/ml. The number of analyzed samples is given in parenthesis. Statistical analysis was p
well establishedmarkers in plasma but did not find a change in inflam-
mation in AD and MCI patients.

We observed a significant negative correlation between telomere
length and age, which points to an age-related telomere shortening,
rather than to a disease-specific event. In consistence, cerebellum
telomere length correlates inversely to age in AD patients (Lukens
et al., 2009). It is suggested, that telomere length is not the major
determinant of AD, since individuals would develop AD as soon as
telomeres shorten to a certain size (Lukens et al., 2009). However, it is
still not completely clear if and how telomere shortening contributes
to AD. It cannot be determined whether these changes in telomere
length are the result in response to AD brain pathology, such as tissue
damage, or if reduced telomere length somehow contributes to AD.
We found a correlation between age and telomere length and a
reduced telomere length in AD patients suggesting that age is the
major contributor to telomere shortening. However, AD and other
neurodegenerative diseases, such as vascular dementia and Parkinson's
disease are associatedwith telomere length shortening (von Zglinicki et
al., 2000; Guan et al., 2008). It seems likely that long-term chronic
inflammation and/or oxidative stress contributes to telomere shortening
in monocytes (von Zglinicki et al., 2000; Guan et al., 2008). In addition
telomere length highly correlates to aging, and telomeres might be
more vulnerable in old age and then contribute to AD development.
Further research regarding these findings in large, longitudinal prospec-
tive studies is needed. Interestingly, microglia also display shorter
telomeres in the AD brain, suggesting that these cells undergo early
replicative senescence, which could be induced by the severe amyloid
plaque overload in AD (Flanary et al., 2007).Monocytesmigrate through
the blood-brain barrier in AD and convert intomicroglia cells in the brain
andmicroglial activation has been reported in associationwith amyloid-
plaques in the AD brain (Floris et al., 2002; Hickman and El Khoury,
2010; Malm et al., 2005). Additionally, increased expression of chemo-
kine receptors and cytokines in peripheral blood mononuclear cell of
AD patients has been shown (Reale et al., 2008).

In conclusion, we observed a strong correlation between age and
telomere length and we found a significant shorter telomere length
in monocytes of AD patients. This may suggest that the AD pathology
further enhances telomere shortening. Regardless of how telomere
length is associated to AD, we assume that telomere length of mono-
cytes could serve as a biomarker for AD in a personalized long-term
monitoring of an individuals’ health. However, there are limitations
for a general biomarker, because telomere length is strongly correlated
to age and the variability of the telomere length between individuals is
very high.
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Fig. 2. Correlation of telomere length to age or to cognitive function (MMSE). The telomere length of monocytes is plotted against (A) age in years (r=−0.376, p=0.007, analysis
of covariance), or (B) MMSE score (r=0.213, p=0.134, analysis of covariance). r=correlation coefficient.
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