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Abstract

We prove that the class of all ordered finite metric spaces is a Ramsey class. This solves a problem
of Kechris, Pestov and Todorćevic.
© 2005 Elsevier Ltd. All rights reserved.

1. Ramsey classes

This paper contains one result which is formulated in the title. However the proof is
a complex interplay of various structures and thus it is convenient to formulate the result
more generally.

Let K be a class of objects which is isomorphism closed and endowed with subobjects.

Given two objects A, B ∈ K we denote by
(

B
A

)
the set of all subobjects A′ of B which

are isomorphic to A. (Thus in this notation the rôle of K is suppressed. It should always be
clear from the context.) We say that the class K has the A-Ramsey property if the following
statement holds:

For every positive integer k and for every B ∈ K there exists C ∈ K such that
C −→ (B)A

k . Here the last symbol (the Erdős–Rado partition arrow) has the following
meaning.
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For every partition
(

C
A

)
= A1∪A2∪· · ·∪Ak there exists B′ ∈

(
C
B

)
and an i, 1 ≤ i ≤ k,

such that
(

B′
A

)
⊂ Ai .

In the extremal case where a class K has the A-Ramsey property for all its objects A,
we say that K is a Ramsey class.

These notions crystallized in the early 1970’s; see e.g. [9,19,3]. This formalism and the
natural questions it motivated essentially contributed to establishing Ramsey theory as a
“theory” (as nicely put in the introduction to [4]). The notion of a Ramsey class is highly
structured and in a sense it is the top of the line of the Ramsey notions (“one can partition
everything in any number of classes to get anything homogeneous”). Consequently there
are not many (essentially different) examples of Ramsey classes known. Examples of
Ramsey classes include:

(i) The class of all finite ordered graphs.
(ii) The class of all finite partially ordered sets (with a fixed linear extension).

(iii) The class of all finite vector spaces (over a fixed field F).
(iv) The class of all (labeled) finite partitions.

For these results see [3,4,16,17,12]. We formulate explicitly one of the general results
(for binary relational structures) which is tailored suit our proof below.

Let I be a finite set of positive real numbers. I is called the type (or signature). We
consider objects, ordered binary relational structures, of the form A = (X, (Ri ; i ∈ I ))
where X is a non-empty ordered set and Ri ⊆ X2 is a binary symmetric anti-reflexive
relation for every i ∈ I . (That is, we assume (x, y) ∈ Ri ⇒ (y, x) ∈ Ri while
(x, x) 
∈ Ri for every x ∈ A.) We assume that relations Ri , i ∈ I , are mutually disjoint:
Ri ∩ R j = ∅, i 
= j ∈ I . The ordering of the set X will be denoted by ≤A and called
standard ordering. We also denote the type of A by I (A) = I , the underlying set (vertices)
of A by A = X (sometimes we simply denote the set of vertices as A) and the relations by
Ri (A) = Ri . Thus the type I is just an index set of the system of relations. Later the actual
values of I will play a role.

We denote by Rel the class of all such ordered binary relational structures A of
all possible (finite) types I . The class Rel will be considered with homomorphisms
and embeddings (corresponding to induced substructures): For relational structures A =
(X, (Ri ; i ∈ I )) and A′ = (X ′, (R′

i ′ ; i ′ ∈ I ′)) of types I and I ′ (note that the types I and
I ′ may be different) a mapping f : X −→ X ′ is called a monotone homomorphism of A
into A′ if I ⊂ I ′ and if f is a monotone mapping of (X,≤A) into (X ′,≤A′) satisfying
( f (x1), f (x2)) ∈ R′

i for all (x1, x2) ∈ Ri for all i ∈ I . f is called an embedding of A into
A′ if moreover f is a monotone injection of X into X ′ satisfying ( f (x1), f (x2)) ∈ R′

i if
and only if (x1, x2) ∈ Ri for all i ∈ I .

As usual, an inclusion (resp. bijective) embedding is called a substructure (resp.

isomorphism). Given two ordered relational structures A, B we denote by
(

B
A

)
the class of

all substructures A′ of B which are isomorphic to A. Any such A′ is called a copy of A in
B. One more definition: For real numbers d, D, 0 < d < D, we denote by Rel(d, D) the
subclass of Rel induced by all systems A = (X, (Ri ; i ∈ I )) where I is a subset of the
interval [d, D]. We have the following:
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Theorem 1.1 ([15]). For every choice of reals d, D, 0 < d < D the class Rel(d, D) is a
Ramsey class.

Explicitly: For every choice of a natural number k and of structures A, B ∈ Rel(d, D)

there exists a structure C ∈ Rel(d, D) with the following property: For every partition(
C
A

)
= A1 ∪ A2 ∪ · · · ∪ Ak there exists i, 1 ≤ i ≤ k, and a substructure B′ ∈

(
C
B

)
such

that
(

B′
A

)
⊂ Ai .

In [15,14,12] (and elsewhere) Theorem 1.1 is stated in a more general form as a Ramsey
theorem for classes Rel(Δ) of all ordered relational structures of a fixed type Δ. We shall
make use of Theorem 1.1 in our proof of the following theorem which is the main result of
this paper:

Theorem 1.2. The class of all finite ordered metric spaces is a Ramsey class.

Let us formulate Theorem 1.2 explicitly.
Denote by M the class of all finite ordered metric spaces (i.e. metric spaces where

the set of points is linearly ordered). The ordering is again called standard. M will be
considered with a mapping which is both an isometry and a monotone mapping with
respect to standard orderings.

Theorem 1.2 asserts that M is a Ramsey class: For every choice of ordered metric
spaces (X, ρ), (Y, σ ) (standard orderings are not indicated) and for every k ≥ 2 there
exists a metric space (Z , λ) such that the following statement holds:

For every partition
(

(Z ,λ)
(X,ρ)

)
= A1 ∪ A2 ∪ · · · ∪ Ak there exists (Y ′, σ ′) ∈

(
(Z ,λ)
(Y,σ )

)
and

an i, 1 ≤ i ≤ k such that
(

(Y ′,σ ′)
(X,ρ)

)
⊂ Ai .

This will be again denoted by

(Z , λ) −→ (Y, σ )
(X,ρ)
k .

Theorem 1.2 solves a problem of Kechris et al. see [6]. The paper [6] lists several
consequences of Theorem 1.2 to dynamical systems and topological groups (extremal
amenable groups, minimal flows). This also implies a remarkable property of the Urysohn
space which is defined as a completion of the homogeneous universal rational metric space;
see e.g. [22,23]. (The author, himself a student of Katětov, cannot resist mentioning that
this construction was one of the last results of Urysohn [21] as well as of Katětov [5].)
Theorem 1.2 also generalizes the Ramsey theorem for pairs in metric spaces stated in [14].

In this paper we concentrate solely on Theorem 1.2. The other applications of our proof
will appear in [13]. Theorem 1.2 will be proved as a consequence of a more technical form
stated in Sections 2 and 3. Here is the outline of the proof:

We view any metric space (X, ρ) as a complete graph K X with weight-labelling
w : E(K X ) −→ R where w(x, y) = ρ(x, y). Of course we shall mostly denote the
weight w by ρ. But sometimes we denote the weight of edges by w(x, y) when we want
to stress that we deal with weights which are not known to satisfy the triangle inequality.
Every metric space (X, ρ) and every labelled complete graph K X , w : E(K X ) −→ R may
be viewed as a binary relational system of type I : we put (x, y) ∈ Ri iff ρ(x, y) = i . (Thus
I is the set of all possible distances in (X, ρ), and i ∈ I may be viewed as the weight of



460 J. Nešetřil / European Journal of Combinatorics 28 (2007) 457–468

an edge (x, y) ∈ Ri .) Clearly not every binary relational system corresponds to a metric
space (we need symmetry and the triangle inequality). But every binary relational system
A = (X, (Ri ; i ∈ I )) may be converted to a metric space (X, ρA) by defining ρA(x, y) as
the minimal weight

w(P) = i1 + i2 + · · · + it

of a path P = (x = x0, x1, . . . , xk = y) from x to y in A such that (x j−1, x j ) ∈ Ri j for
j = 1, . . . , t . ρA is the free (path) metric generated by A.

We denote by F(A) the binary relational system corresponding to the metric space
(A, ρA). Clearly it can (only too often) happen that for a binary relational system B there is
an embedding B → A while B 
→ F(A). That may of course happen regardless of whether
B is metric space or not. Thus we shall introduce the notion of �-approximative system. We
then prove by induction on � a Ramsey type theorem for ordered �-approximative systems
(Theorem 2.1). On the other hand, for each (fixed) metric system B there exists � such that
every �-approximative embedding of B into A is an isometry B → F(A). This will be then
used to prove that the Ramsey theorem for �-approximative systems implies Theorem 1.2.

We use the following convention: The length of a path P is the number of edges it
contains (i.e. k above), while w(P) will be called the length of P .

The paper is organized as follows. In Section 2 we state the Theorem 1.2 in a more
technical form and introduce classes Rel(�)(d, D) of �-approximative systems (and a given
range of edge lengths). In Sections 3 and 4 we further refine the classes Rel(�)(d, D) to
classes PartiRel(�)(d, D) and prove the A-Ramsey property by a variant of amalgamation
technique (known also as Partite Construction); see [20,18,17,12]. This then implies
Theorem 1.2. Section 5 contains concluding remarks and some related results.

2. Metric approximation

Let d < D be positive real numbers, � a positive integer. Before defining objects and
morphisms of our classes we take time out for a definition: Given A = (X, (Ri ; i ∈ I ))
we refer to a pair (x, y) as an edge of A if (x, y) ∈ Ri for some i ∈ I . We say that
(x, y) ∈ Ri is an �-metric edge in A = (X, (Ri ; i ∈ I )) if for any path P in A from
x to y in x = x0, x1, . . . , xt , t ≤ �, with weights of edges i1, i2, . . . , it (i.e. we assume
ρ(x j−1, x j ) = i j ) has weight i ≤ i1 + i2 + · · · + it .

We shall define the class Rel(�)(d, D) as follows:
Objects of Rel(�)(d, D) (called �-approximative systems and usually denoted by

A, B, . . .) are those objects A = (X, (Ri ; i ∈ I )) of the class Rel(d, D) which moreover
satisfy the additional property that every edge of A is �-metric.

Thus the objects are binary relational structures where the relations are indexed by a set
I of positive real numbers which we may interpret as weights of edges; these weights are
denoted by ρ: if (x, y) ∈ Ri we also write ρ(x, y) = i .

Embeddings of Rel(�)(d, D) are just embeddings of Rel(d, D).
An edge (x, y) which is �-metric for every � is called a metric edge. If all pairs of

vertices of a system A are edges and they are all metric (and in this case it suffices that they
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are 2-metric), then of course A corresponds to a metric space (A, ρ). In that case we also
say that A is a metric system.

Note that the objects A, A′ of Rel(�)(d, D) need not correspond to metric spaces.
However lengths of edges of an �-approximative systems cannot be “shortened” by paths
of length ≤ �. Thus for larger � we get the better approximation of a metric space and of
an isometry.

Given objects A, B of Rel(�)(d, D) we again denote by
(

B
A

)
the class of all subobjects

of B which are isomorphic to A. Note also that for � = 1 the notion of �-approximative
systems (and their �-approximative embeddings) coincides with the notion of relational
structures (and their embeddings) – we have Rel(1)(d, D) = Rel(d, D). Thus the
following generalizes Theorem 1.1:

Theorem 2.1. Let 0 < d < D be real numbers, � a positive integer. Then for all metric
systems A and B in Rel(d, D) there exists C ∈ Rel(�)(d, D) such that we have (in the
class Rel(�)(d, D))

C −→ (B)A
2 .

We postpone the proof of Theorem 2.1 to Section 4. Here we show that Theorem 2.1
implies Theorem 1.2.

Proof. Let (X, ρ), (Y, σ ) be finite ordered metric spaces. We may assume that (Y, σ )

contains an isometric copy of (X, ρ). Put d = min{σ(x, y)} and D = max{σ(x, y)}. Let
� ≥ D/d . Let A = (X, (Ri ; i ∈ I )) and B = (Y, (Sj ; j ∈ J )) be binary relational systems
corresponding to the metric spaces (X, ρ) and (Y, σ ) (thus both systems are metric). By
Theorem 2.1 there exists a binary relational system C = (Z , (Tk; k ∈ K )) which is Ramsey
for A and B in the class Rel(�)(d, D). Let us write this explicitly:

For every partition
(

C
A

)
= A1 ∪ A2 there exists an �-approximative embedding

g : B −→ C and ι ∈ {1, 2} such that for all �-approximative embeddings f : A −→ B we
have g ◦ f ∈ Aι.

In this situation, consider the metric space (Z , θ) freely generated by the binary
relational system C. Recall: we put θ(x, y) = min{i1 + i2 + · · · + it } where the second
minimum is taken over all paths x = x0, x1, . . . , xt where (xr−1, xr ) ∈ Rir . Finally define
the metric space (Z , ϑ) as ϑ(x, y) = min{D, θ(x, y)}. We note that all the ϑ distances
are in the interval [d, D] and that the corresponding binary system F(Z , ϑ) is metric. As
� ≥ D/d we have that for every edge (x, y) of C it holds that (x, y) ∈ Ri if and only
if ϑ(x, y) = i . It further follows that f : A −→ C is an �-approximative embedding if
and only if f : A −→ F(C) is an embedding, which in turn is equivalent to the fact that
f : (X, ρ) −→ (Z , ϑ) is an isometry.

Similarly, f : B −→ C is an �-approximative embedding iff g : B −→ F(C) is an
embedding iff g : (Y, σ ) −→ (Z , ϑ) is an isometry.

It follows that
(

C
A

)
⊆

(
F(Z ,ϑ)

A

)
while B = F(B) and A = F(A). Combining all this

we get F(C) −→ (B)A
2 (in the class Rel(�)(d, D)) and also (Z , ϑ) −→ (Y, σ )

(X,ρ)
2 . This

proves Theorem 1.2. �
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3. Partite approximative classes

Our proof proceeds by a double induction and towards this end we introduce a version
of Partite Construction (see Introduction).

We define the class PartiRel(�)(d, D) of structures as follows:
An object is a triple (B, A, ι) where:

(i) A, B are ordered binary relational structures B ∈ Rel(�)(d, D), A ∈ Rel(�−1)(d, D).
Put explicitly, A = (X, (Ri ; i ∈ I )), B = (Y, (Sj ; j ∈ J )), I, J are finite set of reals
I, J ⊂ [d, D].

(ii) ι : B → A; ι is a monotone homomorphism. Let us define explicitly the properties of
ι:

(iia) ι : X −→ Y is a monotone mapping with respect to standard ordering of ≤A and ≤B
(note that ι need not be injective);

(iib) if (x, y) ∈ Sj , then (ι(x), ι(y)) ∈ R j (thus J ⊂ I ).

We also call B an A-partite (binary relational) system. This looks like a small change.
But considering partite (“levelled”) systems (sets of the form ι−1(x) are sometimes called
parts of B) allows us to derive more complex Ramsey type statements from simpler ones
and to start the induction procedure in our case. And for this the key is the definition of
morphisms which is as follows:

Let (B, A, ι) and (B′, A′, ι′) be objects of PartiRel(�)(d, D). An embedding
(B, A, ι) −→ (B′, A′, ι′) is a pair ( f, α) with the following properties:

(i) α : A → A′ is an embedding (in the class Rel(�−1)(d, D));
(ii) f : B → B′ is an embedding (in the class Rel(�)(d, D));

(iii) ι′ ◦ f = α ◦ ι.

This means that the mappings f and α commute with ι’s as indicated by the following
diagram.

(Thus an embedding has to preserve parts of B and B′.)
Consider an object (B, A, ι) ∈ PartiRel(�)(d, D), ι : B → A. If ι is an injective

mapping then we say that B is a transversal system. Clearly any B ∈ Rel(�)(d, D) can
be regarded as a transversal system (B, B, 1) ∈ PartiRel(�)(d, D) where 1 : B −→ B is
the identity mapping. This is a functorial correspondence: f : (B, B, 1) −→ (B′, B′, 1)

is an embedding in PartiRel(�)(d, D) iff f : B −→ B′ is an embedding in Rel(�)(d, D).
Thus we may regard Rel(�)(d, D) as a subcategory of PartiRel(�)(d, D).

We shall prove the following technical result:

Theorem 3.1. Let � be a positive integer; let A and B be metric systems in Rel�(d, D)

(considered as transversal systems). Then there exists C ∈ PartiRel(�)(d, D) such that we
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have (in the class PartiRel(�)(d, D))

C −→ (B)A
2 .

We could also prove that the classes Rel(�)(d, D) and PartiRel(�)(d, D) are Ramsey
classes. (We want to keep generalities at the minimum and concentrate on the proof of
Theorem 1.2 only; we shall publish generalizations elsewhere.)

4. Proofs

As stated above, we apply Partite Construction at the heart of which lies the
amalgamation property.

The amalgamation property now takes the following technical form. (To simplify the
notation, the symbol 1 will denote an inclusion embedding or identity mapping between
sets.)

Lemma 4.1 (Amalgamation Lemma). Let C ∈ Rel(�−1)(d, D), and let A be a metric
subsystem of C. Denote by 1 : A −→ C the inclusion map. Let for i = 1, 2
there be given systems (Bi , C, ιi : Bi −→ C) ∈ PartiRel(�)(d, D). Let (B0, A, ι0 :
B0 −→ A) be a system with embeddings ( fi , 1) : (B0, A, ι0) −→ (Bi , C, ιi ), i = 1, 2,
in PartiRel(�)(d, D). Then there exists (B3, C, ι3) ∈ PartiRel(�)(d, D) and embedding
(gi , 1) : (Bi , C, ιi ) −→ (B3, C, ι3) ∈ PartiRel(�)(d, D) such that (gi , 1) is an amalgam of
( fi , 1), i = 1, 2. Explicitly, we have g1 ◦ f1 = g2 ◦ f2 while the embeddings gi commute
with homomorphisms ιi ; see the following scheme.

Proof. Without loss of generality let us assume that the mappings f1 and f2 and 1 are
inclusions. Assume also that the sets B1 \ f1(B0) and B2 \ f2(B0) are disjoint. In this
situation we define B3 simply as the union of systems B1 and B2: B3 = (B1∪B2, (Ri (B1)∪
Ri (B2); i ∈ I )) (this is sometimes called free amalgamation). We define the mapping ι3 as
follows: ι3(x) = ιi (x) for every x ∈ Bi , i = 1, 2. The standard ordering ≤B3 can then be
chosen arbitrarily so that the mapping ι3 is monotone.

Define the mappings gi : Bi −→ B3 by gi(x) = x for x ∈ Bi , i = 1, 2. These mappings
induce embeddings (gi , 1) : (Bi , C, ιi ) −→ (B3, C, ι3).
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It remains to justify the assertion that (B3, C, ι3) belongs to the class PartiRel(�)(d, D).
Let {x, y} be an edge of B3. By definition, B3{x, y} is an edge of either B1 or B2; assume
without loss of generality that {x, y} is an edge of B1. Let P = (x = x0, x1, . . . , xt =
y) be a path in B3 from x to y of length t ≤ �. Recall that the weight w(x, y)

of edge (x, y) of B3 is defined by w(x, y) = i iff (x, y) ∈ Ri (B3). Thus all our
mappings preserve weights. We have to prove that the weight w(x, y) of the edge
{x, y} satisfies w(x, y) ≤ w(P) = ∑t

i=1 w(xi−1, xi ). Towards this end consider the
image ι3(P) = (ι3(x0), ι3(x1), . . . , ι3(xt )). Note that w(xi , xi+1) = w(ι3(xi ), ι3(xi+1))

(as ι3 is a homomorphism of a binary relational system). The sequence ι3(P) =
(ι3(x0), ι3(x1), . . . , ι3(xt )) induces a trail in C and some vertices and edges may be
identified by ι3. However if this really happens then the length w(P) = w(ι3(P)) is
bounded by w(P̄) where P̄ is a path (a subpath of ι(P)) from ι(x) to ι(y) of length ≤ �−1
and thus (as C ∈ Rel(�)(d, D)) we have that w(ι(x), ι(y)) = w(x, y) ≤ w(P̄) is an
�-metric edge. Thus we can assume that ι3 is injective. Consequently ι3(P) is a path of
length t = � in C. We distinguish two cases:

If P is a subset of B1, then w(x, y) ≤ w(P) = ∑t
i=1 w(xi−1, xi ) (as (B1, C, ι1) ∈

PartiRel(�)(d, D)).
Thus assume that there exists x j 
∈ B1. Let r be the smallest index such that all elements

xr+1, . . . x j do not belong to B1; similarly let s be the maximal index such that all elements
x j , x j+1, . . . , xs−1 do not belong to B1. Note that then necessarily xr , xs ∈ A and r + 1 <

s. Let P ′, P ′′, P ′′′ be subpaths of P with vertices (x0, x1, . . . xr ), (xk, xk+1, . . . , xs),
and (xs, xs+1, . . . , xt ). We have w(P ′) = w(ι3(P ′)), w(P ′′) = w(ι3(P ′′)), w(P ′′′) =
w(ι3(P ′′′)) and also w(P) = w(P ′) + w(P ′′) + w(P ′′′). However w(P ′′) = w(ι3(P ′′))
and w(ι3(P ′′)) ≥ w(ι3(xr ), ι3(xs)) as (ι3(xr ), ι3(xs)) is an � − 1-metric edge of C.
Thus w(P) ≥ w(ι3(P ′)) + w(ι3(xr ), ι3(xs)) + w(ι3(P ′′′)). P ′, P ′′′ together with edge
(w(ι3(xr ), ι3(xs))) forms a path in C from ι3(x) to ι3(y) of length ≤�−1 of weight ≤w(P)

and thus w(x, y) ≤ w(P) as (x, y) is an � − 1-metric edge. �

Let us formulate the following as a step towards the construction of Ramsey structures.
We introduce here notation which is tailored for the proof of Theorem 3.1.

Lemma 4.2 (Multiple Amalgamation Lemma). Let R ∈ Rel(�−1)(d, D), and let A be a
metric subsystem of system C (in Rel(�−1)(d, D)). Denote by 1 : A −→ R the inclusion
embedding. Let the system (Bi , R, ιB : Bi −→ R) ∈ PartiRel(�)(d, D) be given. Let
there be given systems (Di , A, ιD : Di −→ A) ∈ PartiRel(�)(d, D) and (Ei , A, ιE :
Ei −→ A) ∈ PartiRel(�)(d, D). Let F = { f1, f2, . . . , ft } be inclusion embeddings
(Di , A, ιD) −→ (Ei , A, ιE), i = 1, . . . , t . Then there exists a system (P, R, ιP : P −→
R) ∈ PartiRel(�)(d, D) such that for every embedding fi there exists an embedding
gi : (Ei , A, ιE) −→ (Pi , R, ιP) such that gi restricted to the set Di coincides with fi

for all i = 1, . . . , t .

Proof. Despite its formal complexity this is easy to prove by induction on t : at each step
we use Lemma 4.1. �

We are now in position to prove Theorem 3.1.
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Proof. We shall proceed by induction on �. As explained above, for � = 1 Theorem 3.1
reduces to Theorem 1.1.

In the induction step (� − 1 ⇒ �) we assume that Theorem 3.1 holds for � − 1. By
the above remark (Rel(�−1)(d, D) is a subcategory of PartiRel(�−1)(d, D)) we know that
Theorem 2.1 holds for � − 1. Let A, B be metric binary systems considered as transversal
systems in PartiRel(�)(d, D). Let R ∈ Rel(�−1)(d, D) be a system satisfying R −→ (B)A

2
in the class Rel(�−1)(d, D). R will be fixed from now on and it will be considered
as a transversal system (in PartiRel(�−1)(d, D)). We shall construct R-partite systems

P0, P1, . . . , Pa where a =
∣∣∣(R

A

)∣∣∣. The system C = Pb will satisfy (as we shall show

below) all the required properties of Theorem 2.1.

Put explicitly,
(

R
A

)
= {A1, A2, . . . , Aa} and also

(
R
B

)
= {B1, B2, . . . , Bb}. (This is

shorthand notation for systems in PartiRel(�)(d, D) but this suffices as both systems A
and B are transversal.) Let the system (P0, R, ι0 : P0 −→ R) be any system in the class
PartiRel(�)(d, D) for which the mapping ι0 satisfies:

For any i = 1, . . . , b the set (ι0)−1(Bi ) contains a subsystem isomorphic to Bi (in
PartiRel(�+1)(d, D)).

The system (P0, R, ι0 : P0 −→ R) is easy to construct: we can take the disjoint union
of b copies of B and define mapping ι0 such that the above condition holds.

In the induction step (i − 1 ⇒ i ) let an R-partite system (Pi−1, R, ιi−1) ∈
PartiRel(�)(d, D) be given. Consider the system A and denote by (Di , A, ιi−1) the
subsystem of (Pi−1, R, ιi−1) induced by the set (ιi−1)−1(Ai ) (we denoted the restriction
of ιi−1 to the subset (ιi−1)−1(Ai ) by the same symbol ιi−1). We have (Di , A, ιi ) ∈
PartiRel(�)(d, D); thus by the induction hypothesis there exits a system (Ei , A, λi : Ei −→
A) such that

Ei −→ (Di )A
k

(in the class PartiRel(�−1)(d, D)).
But in fact we can assume that (Ei , A, λi : Ei −→ A) ∈ PartiRel(�)(d, D). This

needs an explanation: Recall that A is a transversal system and λi : Ei −→ A. Thus we
may assume that λi : Ei −→ A (as the elements of the system Ei which do not map
to A) are irrelevant for Ei −→ (Di )A

k . Thus we may assume (Ei , A, λi : Ei −→ A) ∈
PartiRel(�)−1(d, D). That may be improved: Let (v, y) be an edge of Ei and let P be a
path in Ei from x to y of length �. If λi restricted to P is not injective then we now that the
weight of P is at least the weight of (x, y). But if λi is injective on P then λi (P) is a path
of length � in A and thus w(x, y) = w(λi (x), λi (y)) ≤ w(λi (P)) as A is metric. Thus we
have (Ei , A, λi : Ei −→ A) ∈ PartiRel(�)(d, D).

The assumptions Lemma 4.2 are satisfied; let (Pi , R, ιi ) be a multiple amalgamation of
copies of (Pi−1, R, ιi−1) such that every copy of (Di , A, ιi−1) in (Ei , A, λi ) is extended
to the unique copy of (Pi , R, ιi ). According to Lemma 4.2 we know that (Pi , R, ιi ) ∈
PartiRel(�)(d, D).

Put (C, R, ι) = (Pa, R, ιa) ∈ PartiRel(�)(d, D). We have to show that

C −→ (B)A
2 .



466 J. Nešetřil / European Journal of Combinatorics 28 (2007) 457–468

However this is the underlying idea of the Partite Construction and this follows by

backwards induction for i = a, a − 1, . . . , 1, 0. Let
(

C
A

)
= A1 ∪ · · · ∪ Ak be an arbitrary

partition (coloring). By induction for i = a, a − 1, . . . , 1, 0 we prove that there exists a
subsystem (P̃i , R, ι̃i ) (in PartiRel(�)(d, D)) isomorphic to Pi such that for all j > i all

copies Ã ∈
(

C
A

)
for which ι̃(Ã) = A j get the same color, say c( j).

In the induction step (for i = a the statement clearly holds) we consider a copy P̃i of Pi

with the stated properties. In the set
(

P̃i

A

)
consider those Ã for which ι̃i (Ã) = Ai . These

copies of A all lie in a copy of A-partite system which is isomorphic to Ei and thus by
Ei −→ (Di )A

k we get that there exists a subsystem (P̃i−1, R, ι̃i−1) of (P̃i , R, ι̃i ) which is
isomorphic to (Pi−1, R, ιi−1) with the stated properties.

Finally, we obtain a copy (P̃0, R, ι̃0) of (P0, R, ι0) such that for every Ã ∈
(

P̃0

A

)
its

color depends only on ι̃0(Ã). But this in turn induces a coloring Ã1 ∪ · · · ∪ Ãk of the set(
R
A

)
defined by A j ∈ Ãi iff c( j) = i . Thus there exists B̃ ∈

(
R
B

)
and i(0) such that(

B̃
A

)
⊂ Ãi(0). Consequently by the construction of P0 any B′ ∈

(
P̃0

B

)
with ι̃(B′) = B̃

satisfies
(

B′
A

)
⊂ Ai(0) which we wanted to prove. �

5. Remarks and open problems

1. Theorem 1.2 also implies the following (ordering property of finite metric spaces):

Theorem 5.1. For every metric space (X, ρ) there exists a metric space (Z , δ) such that
for any linear orderings �X and �Z of X and Z there exists a monotone isometry
(X, ρ) −→ (Z , δ).

Proof (Sketch). Given (X, ρ), find an ordered metric space (Y, σ ) (with standard ordering
≤Y ):

1. for every ordering of X there is a monotone isometry of (X, ρ) into (Y, σ );
2. the elements of Y are ordered x1, x2, . . . , xn (in the standard ordering ≤) such that

d = ρ′(xi−1, xi ) for all 1 ≤ i ≤ n for some d > 0.

(We consider the disjoint union of all possible orderings of (X, ρ) and eventually add
some more elements.) Let now (Z , δ) (with the standard ordering ≤Z ) satisfy (Z , δ) −→
(Y, σ )2

2 where we denoted by 2 the metric space with elements {0, 1} and the distance of
0 and 1 equal to d . We claim that (Z , δ) has the desired properties. Towards this end let

�Y ,�Z be an arbitrary ordering of Y and Z . Define a partition
(

(Z ,δ)
(2)

)
= A1 ∪ A2 as

follows:
{x, y} ∈ A1 iff δ(x, y) = d and x ≤Y y and x �Y y.
Let (Y ′, σ ′) be a homogeneous copy of (Y, σ ) in (Z , δ). It is then easy to see that

(Y ′, σ ′) with the ordering �′
Y (which is the restriction of �Z to the set Y ′) is either

monotone isomorphic to (Y, σ ) with the standard ordering or monotone isomorphic to
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(Y, σ ) with the reversed standard ordering. As (Y, σ ) contains all possible orderings of
(X, ρ) the result follows. �

(See [11] for another proof of Theorem 5.1.)
2. One can prove results analogous to Theorem 1.2 for other classes of metric spaces: for

example one can consider metric spaces where the metric attains only rational, or integer
values. One can also consider only those metric spaces which correspond to graphs. All
these classes are again Ramsey. We only have to check that the amalgamation property
holds for these classes. Rational metrics then apply to the Urysohn space.

3. Perhaps in the spirit of [10,11] one could ask for a characterization of all Ramsey
classes of metric spaces. However this seems to be beyond reach as the corresponding
characterization of (ultra)homogeneous metric spaces (and thus equivalently Fraissé
classes) seems not be known; compare [2,7,8,10,11].

4. It would be interesting to investigate the “simple” Ramsey properties (such as the
vertex- and edge-partitions) of the (countable rational) Urysohn space by analogy with
similar results for the random graph [1].

Acknowledgements
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[16] J. Nešetřil, V Rödl, Combinatorial partitions of finite posets and lattices—Ramsey lattices, Algebra
Universalis 19 (1984) 106–119.
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