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the Bohr’s inequality due to Vasić and Kečkić.
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1. Introduction and preliminaries

LetMn denote the C
∗-algebra of n× n complex matrices and letHn be the set of all Hermitian ma-

trices inMn. We denote byHn(J) the set of all Hermitianmatrices inMn whose spectra are contained

in an interval J ⊆ R. By In we denote the identity matrix of Mn. For matrices A, B ∈ Hn the order

relation A � B means that 〈Ax, x〉 � 〈Bx, x〉 for all x ∈ C
n. In particular, if 0 � A, then A is called

positive semidefinite.
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For A ∈ Hn, we shall always denote by λ1(A) � λ2(A) � · · · � λn(A) the eigenvalues of A

arranged in the decreasing order with their multiplicities counted. By s1(A) � s2(A) � · · · � sn(A),
we denote the eigenvalues of |A| = (A∗A)1/2, i.e., the singular values of A. A norm |||·||| onMn is said

to be unitarily invariant if |||UAV ||| = |||A||| for all A ∈ Mn and all unitary matrices U, V ∈ Mn.

The Ky Fan norms, defined as ‖A‖(k) = ∑k
j=1 sj(A) for k = 1, 2, . . . , n, provide a significant family of

unitarily invariant norms. The Ky Fan dominance theorem states that ‖A‖(k) � ‖B‖(k) (1 � k � n)
if and only if |||A||| � |||B||| for all unitarily invariant norms |||·|||. For more information on unitarily

invariant norms the reader is referred to [3].

The classical Bohr’s inequality [4] states that for any z,w ∈ C and for p, q > 1 with
1

p
+ 1

q
= 1,

|z + w|2 � p|z|2 + q|w|2

with equality if and only ifw = (p− 1)z. Several operator generalizations of the Bohr inequality have

been obtained by some authors (see [1,5,6,8,11,14,15]). In [13], Vasić and Kečkić gave an interesting

generalization of the inequality of the following form
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⎛
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1

1−r

j
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⎠r−1

m∑
j=1

pj|zj|r, (1.1)

where zj ∈ C, pj > 0, r > 1. See also [10] for an operator extension of this inequality.

In this paper, we aim to give a weak majorization inequality and apply it to prove eigenvalue and

unitarily invariant norm extensions of (1.1).

2. Generalization of Bohr’s inequality

In this sectionwe shall prove amatrix analogue of the inequality (1.1).We beginwith the definition

of the positive linear map.

A ∗-subspace of Mn containing In is called an operator system. A map � : S ⊆ Mn → T ⊆ Mm

between two operator systems is called positive if �(A) � 0 whenever A � 0, and is called unital if

�(In) = Im. Let [Aij]k, Aij ∈ Mn, 1 � i, j � k, denote a k × k block matrix. Then each map � from S
to T induces a map �k from Mk(S) to Mm(T ) defined by �k

([Aij]k) = [
�(Aij)

]
k
. We say that � is

completely positive if the maps �k are positive for all k = 1, 2, . . ..
To prove our main result we need Lemma 2.4 which is of independent interest. To achieve it, we, in

turn, need some known lemmas.

Lemma2.1 ([12, Theorem4]). Every unital positive linearmap on a commutative C∗-algebra is completely

positive.

Lemma 2.2 ([12, Theorem1]). Let� be a unital completely positive linearmap from a C∗-subalgebraA of

Mn intoMm. Then there exist a Hilbert spaceK, an isometry V : C
m → K and a unital ∗-homomorphism

π from A into the C∗-algebra B(K) of all bounded linear operators such that �(A) = V∗π(A)V.

Lemma 2.3. Let A ∈ Hn(J) and let f be a convex function on J, 0 ∈ J, f (0) � 0. Then for every vector

x ∈ C
n, with ‖x‖ � 1,

f (〈Ax, x〉) � 〈f (A)x, x〉 .

Proof. If x = 0 then the result is trivial. Let us assume that x �= 0. A well-known result [7, Theorem

1.2] states that if f is a convex function on an interval J and A ∈ Hn(J), then f (〈Ay, y〉) � 〈f (A)y, y〉
for all unit vectors y. For ‖x‖ � 1, set y = x/‖x‖. Then
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f (〈Ax, x〉) = f
(
‖x‖2〈Ay, y〉 + (1 − ‖x‖2)0

)
� ‖x‖2f (〈Ay, y〉) + (1 − ‖x‖2)f (0) (by the convexity of f )

� ‖x‖2〈f (A)y, y〉 + (1 − ‖x‖2)f (0) (by [7, Theorem 1.2])

� 〈f (A)x, x〉 . (by f (0) � 0) �

Now we are ready to prove the following result.

Lemma 2.4. Let A ∈ Hn(J) and let f be a convex function defined on J, 0 ∈ J, f (0) � 0. Then for every

vector x ∈ C
m with ‖x‖ � 1 and every positive linear map � from Mn to Mm with 0 < �(In) � Im,

f (〈�(A)x, x〉) � 〈�(f (A))x, x〉.

Proof. Let A be the unital commutative C∗-algebra generated by A and In. Let �(X) = �(In)
− 1

2 �(X)

�(In)
− 1

2 , X ∈ A. Then � is a unital positive linear map from A to Mm. Therefore by Lemma 2.1,

� is completely positive. It follows from Lemma 2.2 that there exist a Hilbert space K, an isometry

V : C
m → K and a unital ∗-homomorphism π : A → B(K) such that �(A) = V∗π(A)V . Since π is

a representation, it commutes with f . For any vector x ∈ C
m with ‖x‖ � 1, ‖V�(In)

1/2x‖ � 1. We

have

f (〈�(A)x, x〉) = f (〈�(In)
1/2�(A)�(In)

1/2x, x〉)
= f (〈�(In)

1/2V∗π(A)V�(In)
1/2x, x〉)

= f (〈π(A)V�(In)
1/2x, V�(In)

1/2x〉)
� 〈f (π(A))V�(In)

1/2x, V�(In)
1/2x〉 (by Lemma 2.3)

= 〈π(f (A))V�(In)
1/2x, V�(In)

1/2x〉
= 〈�(In)

1/2V∗π(f (A))V�(In)
1/2x, x〉

= 〈�(f (A))x, x〉 . �

Remark 2.5. We can remove the condition 0 ∈ J in Lemma 2.4 and assume that ‖x‖ = 1, if we assume

that � is unital. To observe this, one may follow the same argument as in the proof of Lemma 2.4 and

use [7, Theorem 1.2].

Lemma 2.6 ([3, p. 67]). Let A ∈ Hn. Then

k∑
j=1

λj(A) = max

k∑
j=1

〈Axj, xj〉 (1 ≤ k ≤ n),

where the maximum is taken over all choices of orthonormal vectors x1, x2, . . . , xk.

Theorem 2.7. Let f be a convex function on J, 0 ∈ J, f (0) � 0 and A ∈ Hn(J). Then

k∑
j=1

λj

⎛
⎝f

⎛
⎝ �∑

i=1

αi�i(A)

⎞
⎠

⎞
⎠ �

k∑
j=1

λj

⎛
⎝ �∑

i=1

αi�i(f (A))

⎞
⎠ (1 � k � m)

for positive linear maps �i, i = 1, 2, . . . , � from Mn to Mm such that 0 � ∑�
i=1 αi�i(In) � Im and

αi � 0.
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Proof. Letλ1, λ2, . . . , λm be the eigenvalues of
∑�

i=1 αi�i(A)with u1, u2, . . . , um as an orthonormal

system of corresponding eigenvectors arranged such that f (λ1) � f (λ2) � · · · � f (λm). We have
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f
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⎠

�
k∑

j=1

〈⎛
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i=1

αi�i(f (A))

⎞
⎠ uj, uj

〉
(by Lemma 2.4)

�
k∑

j=1

λj

⎛
⎝ �∑

i=1

αi�i(f (A))

⎞
⎠ (by Lemma 2.6)

for 1 � k � m. �

The following result is a generalization of [9, Theorem 1].

Corollary 2.8. Let A1, . . . , A� ∈ Hn and X1, . . . , X� ∈ Mn such that

�∑
i=1

αiX
∗
i Xi � In,

where αi > 0 and let f be a convex function on R, f (0) � 0 and f (uv) � f (u)f (v) for all u, v ∈ R. Then

k∑
j=1

λj

⎛
⎝f

⎛
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i=1

X∗
i AiXi

⎞
⎠

⎞
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k∑
j=1

λj

⎛
⎝ �∑

i=1

αif (α
−1
i )X∗

i f (Ai)Xi

⎞
⎠ (2.1)

for 1 � k � n.

Proof. To prove inequality (2.1), if necessary, by replacing Xi by Xi + εIn, we can assume that the Xi’s

are invertible.

Let A ∈ M�n be partitioned as

⎛
⎜⎜⎜⎜⎝

A11 · · · A1�

...
...

A�1 · · · A��

⎞
⎟⎟⎟⎟⎠ , Aij ∈ Mn, 1 � i, j � �, as an � × � block matrix.

Consider the linear maps �i : M�n −→ Mn, i = 1, . . . , �, defined by �i(A) = X∗
i AiiXi, i =

1, . . . , �. Then �i’s are positive linear maps fromM�n toMn such that

0 �
�∑

i=1

αi�i(I�n) =
�∑

i=1

αiX
∗
i Xi � In .

Using Theorem 2.7 for the diagonal matrix A = diag(A11, . . . , A��), we have

k∑
j=1

λj
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Replacing Aii by α−1
i Ai in the above inequality, we get
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since by an easy application of the functional calculus f (α−1
i Ai) � f (α−1

i )f (Ai). �
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Nowwe obtain the following eigenvalue generalization of inequality (1.1) as promised in the intro-

duction.

Theorem 2.9. Let A1, . . . , A� ∈ Hn and X1, . . . , X� ∈ Mn be such that

�∑
i=1

p
1/1−r

i X∗
i Xi �

�∑
i=1

p
1/(1−r)
i In,

where p1, . . . , p� > 0, r > 1. Then
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Proof. Apply Corollary 2.8 to the function f (t) = |t|r and αi = p
1/1−r

i∑�
i=1 p

1/(1−r)
i

. �

Corollary 2.10. Let A1, . . . , A� ∈ Hn. Then
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for 1 < r � 2, 0 < p1, . . . , p� � 1 with
∑�

i=1 pi = 1.

Proof. Taking Xi = In, 1 � i � � in Theorem 2.9 and using

⎛
⎝ �∑
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p
1
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i

⎞
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�
�∑

i=1

pi = 1, we have
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Now from (2.3) and the Ky Fan Dominance Theorem, it follows that
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Next we show that the inequality (2.2) can be improved when A, B ∈ Mn in the case when r � 2.

Lemma 2.11 [2]. Let f be an increasing convex function on J. Then

λj

⎛
⎝f

⎛
⎝ �∑

i=1

piAi

⎞
⎠

⎞
⎠ � λj

⎛
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pif (Ai)

⎞
⎠ (1 � j � n)

for all A1, . . . , A� ∈ Hn(J) and 0 � p1, . . . , p� � 1 such that

�∑
i=1

pi = 1.
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Proposition 2.12. Let A1, . . . , A� ∈ Mn and r � 2. Then
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for all 0 < p1, . . . , p� � 1 such that

�∑
i=1

pi = 1.

Proof. Clearly

�∑
i,j=1

pipj
(
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)∗
(Ai − Aj) � 0. (2.5)

It follows by a direct calculation that inequality
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is equivalent to (2.5). Therefore (2.6) holds. Due to the function f (t) = tr/2 is an increasing convex

function, we have
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(by Weyl’s monotonicity principal [3, p. 63] applied to (2.6))
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⎠ (by Lemma 2.11)

for 1 � j � n. Now, we replace Ai by Ai/pi to get (2.4). �

Remark 2.13. Corollary 2.10 and Proposition 2.12 are generalizations of [14, Theorem 7].
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