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Let p be prime and Zpn a degree n unramified extension of the
ring of p-adic integers Zp . In this paper we give an overview of
some very fast deterministic algorithms for common operations
in Zpn modulo pN . Combining existing methods with recent work
of Kedlaya and Umans about modular composition of polynomials,
we achieve quasi-linear time algorithms in the parameters n
and N , and quasi-linear or quasi-quadratic time in log p, for most
basic operations on these fields, including Galois conjugation,
Teichmüller lifting and computing minimal polynomials.
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1. Introduction

An important topic in computational number theory and algebraic geometry in recent years is the
design of point counting algorithms. More specifically, let Fpn be the field with pn elements, p prime,
and V a variety over Fpn , then the question is how to count the number of Fpn -rational points on V
in an efficient manner. In 1985 Schoof gave a first general algorithm for elliptic curves (the sea-
algorithm [32]). Afterwards cryptography and other applications stimulated further research in this
direction. In 1999, Satoh [29] proposed the first p-adic algorithm for elliptic curves (for small p � 5),
which was based on the canonical lift. This work was extended and improved by many different
authors, e.g. [6,35,38,26,30,19,25,9]. Kedlaya [18] initiated an approach based on Monsky–Washnitzer
(or rigid) cohomology that works for hyperelliptic curves, and also this line of research turned out to
be fruitful, see [5,4,1,10,7,8,21,22,14,11]. Lauder and Wan [24] and Lauder [23] conceived algorithms
for computing zeta functions of hypersurfaces of arbitrary dimension based on Dwork cohomology.

Except for the sea-algorithm all these methods work by lifting the variety along with certain
morphisms to a field of characteristic zero, more precisely to finite extensions of Qp with residue
field Fpn . In this p-adic field one then typically needs Frobenius computations or more generally some
calculations concerning an action of the Galois group. In particular, the chain of improvements on
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Satoh’s algorithm consists mainly of ever improving p-adic arithmetic. For instance, one crucial idea
made Harley’s result [9] (see also [37, Section 3.10]) possible, which is the fastest known algorithm
for computing the number of points on an elliptic curve over Fpn for small p. In order to achieve this
result, Harley gave an efficient algorithm for computing a Teichmüller modulus modulo pN (see Sec-
tion 2.5 below). We present an algorithm that has a time complexity of O((Nn log2 p)1+ε), whereas
Harley’s algorithm works also in O((Nn)1+ε) for fixed p, but is at least exponential in p. For curves of
higher genus often the norm of not just one element (for which Harley used a special trick), but of a
matrix of p-adic numbers has to be computed. Using our results this can be done in essentially linear
time apart from an extra factor log p. This leads in our papers [2] (with Castryck and Vercauteren),
[13] and [12] to the following substantial improvement: for fixed p and genus the zeta function of a
Ca,b-curve over Fpn lying in a one parameter family defined over the prime field Fp can be computed
in time O(n2+ε), instead of O(n2.667) as mentioned in those papers.

Other applications of fast p-adic arithmetic include computing zeta functions of certain formal
groups over finite fields [31], bounding Picard numbers of surfaces [17] and computing Coleman in-
tegrals [16].

The basic result required for this paper is the following. In a recent article, Kedlaya and Umans
were able to give an essentially linear time and deterministic algorithm for the problem of modular
composition:

Theorem 1. (See Kedlaya and Umans [15, Theorem 7.1 with parameters m = 1, N = d].) Let R be a finite ring
of cardinality q given as (Z/rZ)[Z ]/(E(Z)) for some monic polynomial E(Z). For every constant δ > 0 there is
an algorithm that does the following. Given polynomials f (X), g(X) and h(X) over R of degree at most d, such
that h has a unit as leading coefficient and that we have access to d1+δ distinct elements of R whose differences
are units in R; then it can compute f (g(X)) mod h(X) in at most d1+δ log1+o(1) q bit operations.

Although the main idea of this paper is merely to combine existing algorithms with the above
theorem, most results are new. A central source for classical fast algorithms is the book [39], and for
more specific p-adic methods we refer to Chapter 12 of [3].

Let Zpn be the valuation ring of the unramified extension field Qpn of degree n of Qp . All results
below for computing in Zpn with precision pN are quasi-linear except for some extra factor log p
arising from computing a p-th power in the finite field Fpn . For example, computing a Teichmüller
lift requires time O((n log p log pN )1+ε), whereas the most general algorithm in [3] requires time
O((n2 log p log pN )1+ε). We note that any improvement in computing xp in Fpn ∼= Fp[x]/ϕ̄(x) over
the complexity O((n log2 p)1+ε) of repeated squaring would yield a similar improvement for most of
our results. Moreover, it is easy to verify that the memory requirements for all results in this paper
are essentially linear, and that all algorithms are deterministic.

The structure of the sequel of the paper is quite straightforward: first we prove a corollary to The-
orem 1 that allows fast modular composition over p-adic fields. Then in separate subsections we give
various results concerning Newton iteration, Galois conjugation, equations involving the Frobenius
automorphism, Teichmüller lift, minimal polynomial, trace, norm and Teichmüller modulus.

We note that the use of the exponent 1 + ε in all our complexity estimates means that for every
ε > 0 an algorithm exists with this estimate. For most results only logarithmic factors are needed (e.g.
O(n log n) instead of O(n1+ε)), but we adopt a more uniform formulation.

2. Fast arithmetic

We choose for once and for all a prime number p, an extension degree n � 1, a p-adic precision
N � 1 and we define q := pN . Recall that there exists up to isomorphism a unique unramified degree n
field extension Qpn of the p-adic field Qp , see [20, Section III.3]. We work in the valuation ring Zpn

of Qpn , with precision pN . We may assume that this ring is represented as Zp[x]/ϕ(x) for some monic
inert (i.e. irreducible modulo p) polynomial ϕ(x) ∈ Zp[x] of degree n and precision pN . From now on
the notation Zpn mod pN will be used for this setting (including the implicit polynomial ϕ(x)).
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It is not in the scope of this text to discuss how to find a (large) prime p and some inert poly-
nomial ϕ(x) of given degree n. However, we note that for finding ϕ(x) it suffices to compute an
irreducible polynomial ϕ̄(x) of degree n over Fp , which is an extensively studied problem [34].

It is well known (see e.g. [39]) that basic operations like addition, multiplication and division
by units in Zpn mod pN can be performed deterministically in time O((n log pN )1+ε). In this section
we will show that many more operations are possible within similar time constraints, if we use
the aforementioned result of Kedlaya and Umans. For our purposes Theorem 1 is not immediately
applicable, hence we give a reformulation.

Theorem 2. Let f (x), g(x) and h(x) be polynomials of degree at most n over Zp[x] mod pN , with h(x) monic.
Recall that q := pN . Then we can compute f (g(x)) mod h(x) in time O((n log q)1+ε).

Proof. If p is large enough in comparison to n, say p � n2, we can use Theorem 1 directly because
Zp contains enough (readily available) elements whose differences are units. Suppose hence p < n2.
Shoup gave in [33] a deterministic algorithm that computes an irreducible polynomial Ē(Y ) of de-
gree a over Fp in at most (

√
p a4)1+ε operations in Fp . It now suffices to take a := �logp n2� and to

note that
√

p is dominated by n. Let E(Y ) be a monic lift of Ē(Y ), then the ring Zp[Y ]/E(Y ) has at
least n2 elements whose differences are units and we conclude the proof with Theorem 1. �

We note that by using q instead of pN in the complexity estimate of the theorem, the result is
more general. In particular, the complexity bound holds for fixed p (in which case N and n have to
be large enough), and for fixed N (for p and n large enough). Moreover, although in some complexity
results below expressions like log2 p + log q will appear, in all these cases the estimates hold also for
fixed p or N .

2.1. Root finding (Newton iteration)

Let f (Y ) be a polynomial over Zp mod pN or over Zpn mod pN . In this subsection we want to
compute an approximation of a root of f (Y ). In order to be able to use Newton iteration, we have to
require that we already know a single root of the polynomial modulo p. We remark that Proposition 2
is added for completeness, it is not new and its proof does not require Theorem 1.

Proposition 1. Let f (Y ) be a polynomial over Zp mod pN of degree m, and let y0 ∈ Zpn mod pN such that

f (y0) ≡ 0 mod p and df
dY (y0) �≡ 0 mod p. Then we can compute y ∈ Zpn mod pN such that y ≡ y0 mod p

and f (y) ≡ 0 mod pN in time O(((n + m) log q)1+ε).

Proposition 2. Let f (Y ) be a polynomial over Zpn mod pN of degree m, and let y0 ∈ Zpn mod pN such that

f (y0) ≡ 0 mod p and df
dY (y0) �≡ 0 mod p. Then we can compute y ∈ Zpn mod pN such that y ≡ y0 mod p

and f (y) ≡ 0 mod pN in time O((nm log q)1+ε).

Proof. Suppose that yi ∈ Zpn mod pN is such that f (yi) ≡ 0 mod p2i
and yi ≡ y0 mod p. Then df

dY (yi)

is invertible and we can define

yi+1 := yi + f (yi) ·
(

df

dY
(yi)

)−1

mod p2i+1
. (1)

By using f (Y ) = f (yi) + (Y − yi)
df
dY (yi) + (Y − yi)

2 · · · , see e.g. Lemma 9.20 in [39], one verifies

trivially that f (yi+1) ≡ 0 mod p2i+1
and yi+1 ≡ y0 mod p. Note that this procedure is just the p-adic

analogue of classical Newton iteration. Clearly we have to apply (1) at most �log2(N)� times in order
to find y mod pN as required in the propositions. In the situation of Proposition 1 each application
of (1) takes time no more than O((max(n,m) · log q)1+ε) by Theorem 2 with h(x) = ϕ(x), and for
Proposition 2 we have O((nm log q)1+ε) for each step by Horner’s rule. �
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2.2. Galois conjugates

We denote with σ the p-th power Frobenius automorphism on Qpn , which is the unique field
automorphism that on Zpn /pZpn ∼= Fpn reduces to σ̄ : x 	→ xp . Note that σ n is the identity map and
that σ generates the Galois group of Qpn over Qp .

Proposition 3. Let α ∈ Zpn mod pN and 0 < k < n be an integer. We can compute σ k(α) in time
O((n log2 p + n log q)1+ε).

Proof. Let Fpn ∼= Fp[x̄]/ϕ̄(x̄) be the ‘reduction modulo p’ of Zpn ∼= Zp[x]/ϕ(x), with σ̄ as p-th power
Frobenius on it. Clearly we can compute σ̄ (x̄) = x̄p in Fpn in time O((n log2 p)1+ε). In order to com-

pute σ̄ k(x̄) = x̄pk
we use the following lemma.

Lemma 1. Given the polynomials A(x̄) := (x̄pa
mod ϕ̄(x̄)) and B(x̄) := (x̄pb

mod ϕ̄(x̄)) for some inte-

gers a,b � 1, we have that A(B(x̄)) ≡ x̄pa+b
mod ϕ̄(x̄), and this composition can be computed in time

O((n log p)1+ε).

Proof. It is easy to verify that A(B(x̄)) mod ϕ̄(x̄) = x̄pa+b
mod ϕ̄(x̄), using the fact that B(x̄) is a root

of ϕ̄(x̄). Now Theorem 2 (for N = 1) completes the proof of the lemma. �
Proof of Proposition 3 (continued). The idea to compute σ̄ k(x̄) is to use the binary representation
of k combined with the lemma. The general algorithm is similar to the classical repeated squaring
technique (Algorithm 4.8 in [39]), we explain here only the easier case where k = 2m for an integer
m � 1. The procedure is quite obvious: compute recursively Ai(x̄) = Ai−1(Ai−1(x̄)) mod ϕ((x̄)) with

A0(x̄) = σ(x̄). Lemma 1 yields A1(x̄) = x̄p2
mod ϕ̄(x̄), A2(x̄) = x̄p4

mod ϕ̄(x̄), . . . , Am(x̄) = x̄p2m

mod
ϕ̄(x̄). Only m = log2 k � log n steps are required, hence if we know σ̄ (x̄), we can compute σ̄ k(x̄) in
time O(log k(n log p)1+ε) = O((n log p)1+ε).

Because σ k(x) is a root of ϕ(X) and ϕ̄(X) is squarefree, we can now apply Proposition 1 in order
to lift σ̄ k(x̄) to σ k(x) modulo pN in time O((n log q)1+ε). For α(x) ∈ Zp[x]/ϕ(x) we have σ k(α(x)) =
α(σ k(x)) mod ϕ(x), and hence Theorem 2 allows us to compute this last expression with precision
q = pN in time O((n log q)1+ε), thereby proving the proposition. �
Corollary 1. Let α ∈ Fpn , σ̄ be the Frobenius automorphism and 0 < k < n. Then we can compute σ̄ k(α) in
time O((n log2 p)1+ε).

Proof. With Fpn given as Fp[x̄]/ϕ̄(x̄), we have shown above that σ̄ k(x̄) can be computed in time
O((n log2 p)1+ε). Now writing α as α(x̄) gives σ̄ k(α(x̄)) = α(σ̄ k(x̄)), hence Theorem 2 gives the corol-
lary. �
2.3. Equations with Frobenius

In this section we rephrase some results from [3] using faster Frobenius computations.

Proposition 4. Let α,β,γ ∈ Zpn mod pN with β ≡ 0 mod p and α �≡ 0 mod p. We can compute the
(unique) solution y in Zpn mod pN of ασ(Y ) + βY + γ = 0 in time O((n log2 p + n log q)1+ε).

Proof. The equation of the proposition is equivalent to σ(Y ) = a1Y + b1, where a1 = −β/α and b1 =
−γ /α. Applying σ to this equation gives

σ 2(Y ) = σ(a1Y + b1) = σ(a1)a1Y + σ(a1)b1 + σ(b1).
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More generally the recurrence relations (for i � 1)

ai+1 := σ(ai)a1, bi+1 := σ(ai)b1 + σ(bi) (2)

imply that σ i(Y ) = ai Y + bi . Let y ∈ Zpn be a solution of the original equation, then we find σ n(y) =
an y + bn . Now σ n(y) = y, hence equivalently y = bn/(1 − an) ∈ Zpn mod pN . Indeed, from (2) and the
fact that a1 ≡ β ≡ 0 mod p we see that 1 − an is a unit. Lercier and Lubicz gave in [25] an efficient
divide and conquer algorithm for computing an and bn and hence y (see also Section 12.6.1 of [3]).
The dominating cost of this algorithm is the computation of σ k for O(log2 n) different values of k,
and Proposition 3 gives then that we can compute y in time O(log n(n log2 p + n log q)1+ε). �
Proposition 5. Let φ(Y , Z) be a polynomial over Zpn mod pN for which the evaluation of φ , ∂φ/∂Y and
∂φ/∂ Z in any (α,β) ∈ (Zpn mod pN )2 requires at most ψ arithmetic operations in Zpn mod pN . Suppose

we have y0 ∈ Zpn mod pN such that φ(y0, σ (y0)) ≡ 0 mod p2k+1 with k := ordp(
∂φ
∂ Z (y0, σ (y0))) < N.

Then we can compute y ∈ Zpn mod pN+k such that φ(y, σ (y)) ≡ 0 mod pN+k and y ≡ y0 mod pk+1 in
time O((n log2 p + ψn log q)1+ε).

Proof. Algorithm 12.23 from [3] gives a multivariate generalization of the Newton iteration used in
the proof of Proposition 2. This algorithm reduces solving the equation φ(Y , σ (Y )) = 0 to solving
equations of the type considered in Proposition 4. We refer to [3] for details of the algorithm. Except
for O(log N) times an evaluation of φ, ∂φ/∂Y and ∂φ/∂ Z , its complexity is the same as the one given
in Proposition 4 above. Hence the total complexity is bounded by O(ψ log N(n log q)1+ε + (n log2 p +
n log q)1+ε). �
2.4. Teichmüller lift

In the point counting algorithms mentioned in the beginning that are based on Monsky–
Washnitzer cohomology and deformation (e.g. [21,13]), it is necessary to apply σ to a formal pa-
rameter Γ in such a way that σ behaves like the Frobenius automorphism after the substitution of a
well-chosen p-adic number γ for Γ . This can be achieved by taking σ(Γ ) := Γ p and for γ a Teich-
müller lift. Let β̄ ∈ Fpn ∼= Zpn /pZpn , then the Teichmüller lift β of β̄ in Zpn is by definition the unique
root of unity congruent to β̄ modulo p. It is easy to verify that for such β the relation σ(β) = β p

holds.

Proposition 6. Given α ∈ Zpn mod p, we can compute the Teichmüller lift of (α mod p) in time
O((n log p log q)1+ε).

Proof. As pointed out in Section 12.8.1 of [3], we can use Proposition 5 for the polynomial φ(Y , Z) =
Y p − Z with x0 = α and k = 0. Indeed, the unique root of φ(Y , σ (Y )) = Y p −σ(Y ) = 0 congruent to α
modulo p is the Teichmüller lift of α. Evaluating φ, ∂φ/∂Y and ∂φ/∂ Z requires O(log p) elementary
operations in Zpn mod pN and we find the proposition. �
2.5. Minimal polynomial, trace and norm

As Qpn has degree n over Qp , every element α of Qpn is the root of a unique irreducible monic
polynomial over Qp of degree a divisor of n. When α ∈ Zpn , this minimal polynomial f (X) is also
defined over Zpn . Indeed, with A := {σ k(α) | k = 0, . . . ,n − 1} as the set of conjugates of α, we have

f (X) =
∏
β∈A

(X − β).
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Proposition 7. Let α ∈ Zpn mod pN and suppose that α mod p has degree n over Fp . We can compute the
minimal polynomial modulo pN of α over Zp in time O((n log q)1+ε).

Proof. We follow an idea of [28] and [36] as explained in Section 3 of [34]. Define the linear operator
P : Zp[x]/ϕ(x) → Zp by P (1) := 1 and P (x) = P (x2) = · · · = P (xn−1) = 0. We can compute—using
the fast modular power projection of Theorem 7.7 in [15]—the sequence P (1), P (α), . . . , P (α2n−1)

with precision pN in essentially linear time O((n log q)1+ε). The monic minimal polynomial c(X) of
{P (αi)}i�0 is a divisor of the minimal polynomial of α. As this last one is irreducible modulo pN

(even when reduced modulo p), they are equal. Step 2 of Shoup’s algorithm refers to the fact that
one can obtain the minimal polynomial of {P (αi)} from the (fast) extended Euclidean algorithm for

g(X) =
2n−1∑
i=0

P
(
αi)X2n−1−i and f (X) = X2n.

Indeed, knowing a Euclidean expansion c(X)g(X) + q(X) f (X) = r(X) for some remainder r(X) of
degree at most n − 1 and with c(X) of minimal degree, implies that c(X) is the minimal polynomial
of {P (αi)}. �

It is interesting to discuss why we have to require that the reduction of α modulo p has degree n
over Fp . It is not hard to see that the concept of minimal polynomial cannot be defined in a satisfying
way in general when working with finite precision p-adic fields. For example, take p = n = N = 2.
The minimal polynomial of 1 + 2x in Z22 ∼= Z2[x]/(x2 − x − 1) is then X2 − 4X − 1, which modulo p2

reduces to X2 − 1. This polynomial is not even irreducible, and in the above algorithm the sequence
P (αi) mod pN would be identically 1 and have minimal polynomial X − 1.

The (absolute) trace Tr(α) and norm N(α) of α ∈ Qpn are defined as respectively
∑n−1

k=0 σ k(α)

and
∏n−1

k=0 σ k(α). Suppose for a moment that n = 2m , then by using the recursion relation α0 :=
σ(α), αi := σ 2i−1

(αi−1) + αi−1—so that αm = Tr(α)—it is easy to see that the trace (and similarly the
norm) of α can be computed in time O((n log2 p + n log q)1+ε). It is however an easy corollary of
Proposition 7 that this can be done faster.

Corollary 2. Let α ∈ Zpn mod pN . We can compute the trace Tr(α) and norm N(α) over Zp mod pN in time
O((n log q)1+ε).

Proof. If the reduction of α modulo p has degree n over Fp , we can compute its minimal polynomial
f (X) ∈ Zp[X] mod pN using Proposition 7. Its constant term equals (−1)nN(α) and the coefficient
of Xn−1 equals −Tr(α). Suppose hence that α mod p has degree less than n over Fp . Recall that
Zpn is given as Zp[x]/ϕ(x). Clearly the reductions of x, α/x and α − x modulo p have degree n
over Fp , so that their trace and norm can be computed using Proposition 7. Now the equalities
Tr(α) = Tr(x) + Tr(α − x) and N(α) = N(x) · N(α/x) allow us to compute the norm and trace of α. We
note that in order to determine whether α mod p has degree n over Fp , one can work as follows.
The technique explained in the proof of Proposition 7 works always when we are working over Fp

instead of Zp mod pN , regardless of the degree of α. This hence gives the minimal polynomial of the
reduction of α in time O((n log p)1+ε). �

We note that for computing N(α) a much more elegant algorithm was given by Harley, see Sec-
tion 12.8.5.c in [3]. Namely, if we write α as α(x), the resultant formula N(α) = ResX (ϕ(X),α(X))

can be computed in the same amount of time as in Corollary 2, using a variant of Moenck’s extended
gcd algorithm [27].

A Teichmüller modulus is the minimal polynomial Φ(X) of a Teichmüller lift α (see Section 12.1
of [3]). Equivalently we can say that Φ(X) is the unique divisor in Zp[X] of X pn − X which reduces
modulo p to the minimal polynomial of α mod p. Combining Propositions 6 and 7 we then find:
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Corollary 3. Given Fpn ∼= Fp[x]/ϕ̄(x), we can compute a Teichmüller modulus Φ(X) modulo pN which equals
ϕ̄(X) modulo p in time O((n log2 p + n log q)1+ε).
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