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Abstract

The unipotent variety of a reductive algebraic group G plays an important role in the
representation theory. In this paper, we will consider the closure Ū of the unipotent variety
in the De Concini–Procesi compactification Ḡ of a connected simple algebraic group G. We
will prove that Ū − U is a union of some G-stable pieces introduced by Lusztig in [Moscow
Math. J 4 (2004) 869–896]. This was first conjectured by Lusztig. We will also give an explicit
description of Ū . It turns out that similar results hold for the closure of any Steinberg fiber
in Ḡ.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

A connected simple algebraic group G has a “wonderful” compactification Ḡ, intro-
duced by De Concini and Procesi. The variety Ḡ is a smooth, projective variety with
G × G action on it. The G × G-orbits of Ḡ are indexed by the subsets of the simple
roots.

The group G acts diagonally on Ḡ. Lusztig introduced a partition of Ḡ into finitely
many G-stable pieces. The G-orbits on each piece are in one-to-one correspondence to
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the conjugacy classes of a certain reductive group. Based on the partition, he developed
the theory of “Parabolic Character Sheaves” on Ḡ.

In this paper, we study the closure Ū of the unipotent variety U of G in Ḡ, partially
based on the previous work of [Spr2]. The main result is that the boundary of the
closure is a union of some G-stable pieces. (see Theorem 4.3.)

The unipotent variety plays an important role in the representation theory. One would
expect that Ū , the subvariety of Ḡ, which is analogous to the subvariety U of G, also
plays an important role in the theory of “Parabolic Character Sheaves”. Our result is a
step toward this direction.

The arrangement of this paper is as follows. In Section 1, we briefly recall some
results on the B × B-orbits of Ḡ (where B is a Borel subgroup of G) and results on
Ū , which were proved by Springer in [Spr1] and [Spr2]. In Section 2, we first recall
the definition of the G-stable pieces and then in 2.6, we show that any G-stable piece
is the minimal G-stable subset of Ḡ that contains a particular B × B-orbit. In the
remaining part of Section 2, we establish some basic facts about the Coxeter elements,
which will be used in Section 4 to prove our main theorem. In Section 3, we show
case-by-case that certain G-stable pieces are contained in Ū . Hence a lower bound of
Ū is established.

A naive thought about Ū is that the boundary of the “unipotent elements” are “nilpo-
tent cone”. In fact, it is true. A precise statement is given and proved in 4.3. Thus we
obtain an upper bound of Ū . We also show in 4.3 that the lower bound is actually
equal to the upper bound. Therefore, our main theorem is proved. In Section 4, we also
consider the closure of arbitrary Steinberg fiber of G in Ḡ. (An example of Steinberg
fiber is U .) The results are similar. In the end of Section 4, we calculate the number
of points of Ū over a finite field. The formula bears some resemblance to the formula
for Ḡ.

1. Preliminaries

1.1. Let G be a connected, simple algebraic group over an algebraically closed field k.
Let B be a Borel subgroup of G, B− be the opposite Borel subgroup and T = B ∩B−.
Let (�i )i∈I be the set of simple roots. For i ∈ I , we denote by �∨

i , �i , �∨
i and si

the simple coroot, the fundamental weight, the fundamental coweight and the simple
reflection corresponding to �i . We denote by <, > the standard pairing between the
weight lattice and the root lattice. For any element w in the Weyl group W = N(T )/T ,
we will choose a representative ẇ in N(T ) in the same way as in [L1, 1.1].

For any subset J of I, let WJ be the subgroup of W generated by {sj | j ∈ J } and
WJ (resp. J W ) be the set of minimal length coset representatives of W/WJ (resp.
WJ \W ). Let wJ

0 be the unique element of maximal length in WJ . (We will simply
write wI

0 as w0.) For J, K ⊂ I , we write J WK for J W ∩ WK .

1.2. For J ⊂ I , let PJ ⊃ B be the standard parabolic subgroup defined by J and
P −

J ⊃ B− be the opposite of PJ . Set LJ = PJ ∩ P −
J . Then LJ is a Levi subgroup of
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PJ and P −
J . Let ZJ be the center of LJ and GJ = LJ /ZJ be its adjoint group. We

denote by �PJ
(resp. �P −

J
) the projection of PJ (resp. P −

J ) onto GJ .

Let Ḡ be the wonderful compactification of G ([DP] deals with the case k = C. The
generalization to arbitrary k was given in [Str]). It is an irreducible, projective smooth
G×G-variety. The G×G-orbits ZJ of Ḡ are indexed by the subsets J of I. Moreover,
ZJ = (G × G) ×P −

J ×PJ
GJ , where P −

J × PJ acts on the right on G × G and on the

left on GJ by (q, p) · z = �P −
J

(q)z�PJ
(p)−1. Let hJ be the image of (1, 1, 1) in ZJ .

We will identify ZI with G and the G×G-action on it is given by (g, h)·x = gxh−1.
For any subvariety X of Ḡ, we denote by X̄ the closure of X in Ḡ.
For any finite set A, we will write |A| for the cardinality of A.

1.3. For any closed subgroup H of G, we denote by Hdiag the image of the diagonal
embedding of H in G × G and by Lie(H) the corresponding Lie subalgebra of H. For
g ∈ G, we write gH for gHg−1.

For any parabolic subgroup P, we denote by UP its unipotent radical. We will simply
write U for UB and U− for UB− . For J ⊂ I , set UJ = U ∩ LJ and U−

J = U− ∩ LJ .
For parabolic subgroups P and Q, define

P Q = (P ∩ Q)UP .

It is easy to see that for J, K ⊂ I and u ∈J WK , P
(u̇PK)
J = PJ∩Ad(u)K .

Let U be the unipotent variety of G. Then U is stable under the action of Gdiag and
U is stable under the action of U × U and Tdiag. Moreover, U = Gdiag · U . Similarly,
Ū = Gdiag · Ū (see [Spr2, 1.4]).

1.4. Now consider the B × B-orbits on Ḡ. We use the same notation as in [Spr1].
For any J ⊂ I , u, v ∈ W , set [J, u, v] = (B × B)(u̇, v̇) · hJ . It is easy to see that
[J, u, v] = [J, x, vz−1], where u = xz with x ∈ WJ and z ∈ WJ . Moreover, Ḡ =⊔

J⊂I

⊔
x∈WJ ,w∈W [J, x, w]. Springer proved the following result in [Spr1, 2.4].

Theorem. Let x ∈ WJ , x′ ∈ WK , w, w′ ∈ W . Then [K, x′, w′] is contained in [J, x, w]
if and only if K ⊂ J and there exists u ∈ WK, v ∈ WJ ∩WK with xvu−1 �x′, w′u�wv

and l(wv) = l(w) + l(v).

As a consequence of the theorem, we have the following properties which will be
used later.

(1) For any K ⊂ J , w ∈ WJ and v ∈ WJ , [K, wv, v] ⊂ [J, w, 1].
(2) For any J ⊂ I , w, w′ ∈ WJ with w�w′, then [J, w′, 1] ⊂ [J, w, 1].
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1.5. In this subsection, we recall some results of [Spr2].

Let � be an indeterminate. Put o = k[[�]] and K = k((�)). An o-valued point of
a k-variety Z is a k-morphism � : Spec(o) → Z. We write Z(o) for the set of all
o-valued points of Z. Similarly, we write Z(K) for the set of all K-valued points of Z.
For � ∈ Z(o), we have that �(0) ∈ Z, where 0 is the closed point of Spec(o).

By the valuative criterion of completeness (see [EGA, Ch II, 7.3.8 & 7.3.9]), for
the complete k-variety Ḡ, the inclusion o ↪→ K induces a bijective from Ḡ(o) onto
Ḡ(K). Therefore, any � ∈ Ḡ(K) defines a point �(0) ∈ Ḡ. In particular, any � ∈ U(K)

defines a point �(0) ∈ Ḡ. Here we regard U(K) as a subset of Ḡ(K) in the natural
way.

We have that x ∈ Ū if and only if there exists � ∈ U(K) such that �(0) = x (see
[Spr2, 2.2]).

Let Y be the cocharacter group of T. An element � ∈ Y defines a point in T (k[�, �−1]),
hence a point p� of T (K). Let H ⊂ G(o) be the subgroup consisting of elements �
with �(0) ∈ B. Then for � ∈ U(K), there exists �1, �2 ∈ H , w ∈ W and � ∈ Y , such
that � = �1ẇp��2. Moreover, w and � are uniquely determined by � (see [Spr2, 2.6]).
In this case, we will call (w, �) admissible. Springer showed that (w, � − w−1�) is
admissible for any dominant regular coweight � (see [Spr2, 3.1]).

For � ∈ Y and x ∈ W with x−1 · � dominant, we have that p�(0) = (ẋ, ẋ) · hI (x−1�),
where I (x−1�) is the set of simple roots orthogonal to x−1� (see [Spr2, 2.5]). If
moreover, (w, �) is admissible, then there exists some t ∈ T such that (U ×U)(ẇẋt, ẋ)·
hI (x−1�) ⊂ Ū .

2. The partition of ZJ

2.1. We will follow the set-up of [L4, 8.18].

For any J ⊂ I , let PJ be the set of parabolic subgroups conjugate to PJ . We will
write B for P�. For P ∈ PJ , Q ∈ PK and u ∈ J WK , we write pos(P, Q) = u if
there exists g ∈ G, such that gP = PJ , gQ = u̇PK . For J, J ′ ⊂ I and y ∈ J ′

WJ with
Ad(y)J = J ′, define

Z̃
y
J = {(P, P ′, �) | P ∈ PJ , P ′ ∈ PJ ′

, � = UP ′gUP , pos(P ′, gP ) = y}

with the G × G action given by (g1, g2) · (P, Q, �) = (g1P , g2P ′ , g2�g
−1
1 ).

To z = (P, P ′, �) ∈ Z̃
y
J , we associate a sequence (Jk, J

′
k, uk, yk, Pk, P

′
k, �k)k �0 with

Jk, J
′
k ⊂ I , uk ∈ W , yk ∈ J ′

kWKk , Ad(yk)Jk = J ′
k , Pk ∈ PJk

, P ′
k ∈ PJ ′

k
, �k = UP ′

k
gUPk

for some g ∈ G satisfies pos(P ′
k,

gPk) = uk . The sequence is defined as follows.

P0 = P, P ′
0 = P ′, �0 = �, J0 = J, J ′

0 = J ′, u0 = pos(P ′
0, P0), y0 = y.
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Assume that k�1, that Pm, P ′
m, �m, Jm, J ′

m, um, ym are already defined for m < k and
that um = pos(P ′

m, Pm), Pm ∈ PJm, P ′
m ∈ PJ ′

m
for m < k. Let

Jk = Jk−1 ∩ Ad(y−1
k−1uk−1)Jk−1, J

′
k = Jk−1 ∩ Ad(u−1

k−1yk−1)Jk−1,

Pk = g−1
k−1(

gk−1Pk−1)
(P ′

k−1
Pk−1 )gk−1 ∈ PJk

, P ′
k = P

P ′
k−1

k−1 ∈ PJ ′
k
,

where

gk−1 ∈ �k−1 is such that gk−1Pk−1 contains some Levi of Pk−1 ∩ P ′
k−1,

uk = pos(P ′
k, Pk), yk = u−1

k−1yk−1, �k = UP ′
k
gk−1UPk

.

It is known that the sequence is well defined. Moreover, for sufficient large n, we
have that Jn = J ′

n = Jn+1 = J ′
n+1 = · · · and un = un+1 = · · · = 1. Now we set

�(z) = u0u1 · · · un, n � 0. Then we have that �(z) ∈ J ′
W . By [L4, 8.18], [L3, 2.5],

the sequence (Jk, J
′
k, uk, yk)k �0 is uniquely determined by (J, �(z), y).

The map w 	→ yw−1 is a bijection between WJ and J ′
W . For w ∈ WJ , set

Z̃
y
J,w = {z ∈ Z̃

y
J | �(z) = yw−1}.

Then (Z̃
y
J,w)w∈WJ is a partition of Z̃

y
J into locally closed G-stable subvarieties. For

w ∈ WJ , let (Jk, J
′
k, uk, yk)k �0 be the sequence uniquely determined by (J, yw−1, y).

Then (P, P ′, �) 	→ (P1, P
′
1, �1) define a G-equivariant map ϑ : Z̃

y
J,w → Z̃

y1

J1,u
−1
0 w

.

2.2. Let J ⊂ I . Set Z̃J = Z̃
w0w

J
0

J and J ∗ = Ad(w0w
J
0 )J . For w ∈ WJ , set wJ =

w0w
J
0 w−1. The map w 	→ wJ is a bijection between WJ and J ∗

W . For any w ∈ WJ ,
let

Z̃J,w = {z ∈ Z̃J | �(z) = wJ }.

Then (Z̃J,w)w∈WJ is a partition of Z̃J into locally closed G-stable subvarieties. Let
(Jk, J

′
k, uk, yk)k �0 be the sequence determined by (J, wJ , w0w

J
0 ) (see 2.1). Assume

that Jn = J ′
n = Jn+1 = J ′

n+1 = · · · and un = un+1 = · · · = 1. Set v0 = wJ

and vk = u−1
k−1vk−1 for k ∈ N. By [L4, 8.18], [L3, 2.3], we have uk ∈ J ′

kWJk and
uk+1 ∈ WJk

for all k�0. Hence vk+1 ∈ WJk
for all k�0. Moreover, it is easy to see
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by induction on k that yk = vkw. In particular, w = yn ∈ JnWJn, Ad(w)Jn = Jn and
ẇ normalizes B ∩ LJn . We have the following result.

2.3. Lemma. Keep the notation of 2.2. Let z = (PJ , ẇ−1
J PJ ∗ , ẇ−1

J UPJ∗ ẇJ ẇbUPJ
),

where b ∈ ẇn−1v̇−1
n (UPJ ′

n
∩ UJn−1)

ẇn−2v̇−1
n−1(UPJ ′

n−1
∩ UJn−2) · · ·v̇−1

1 (UPJ ′
1

∩ UJ0)T or b ∈
B. Then z ∈ Z̃J,w.

Proof. For any k, set Pk = PJk
, P ′

k = v̇−1
k PJ ′

k
. Then

Pk ∩ P ′
k = PJk

∩ v̇−1
k+1u̇

−1
k PJ ′

k
= v̇−1

k+1(PJk
∩ u̇−1

k PJ ′
k
).

Note that u−1
k ∈ JkWJ ′

k . Then LJk
∩ u̇−1

k LJ ′
k

= L
Jk∩Ad(u̇−1

k )J ′
k

= LJ ′
k+1

. Thus v̇−1
k+1LJ ′

k+1

= v̇−1
k+1(LJk

∩ u̇−1
k LJ ′

k
) is a Levi factor of Pk ∩ P ′

k . Moreover, we have

P
P ′

k

k = P
(
v̇
−1
k PJ ′

k
)

Jk
= v̇−1

k+1(P
(
u̇
−1
k PJ ′

k
)

Jk
) = v̇−1

k+1P
Jk∩Ad(u̇−1

k )J ′
k

= v̇−1
k+1PJ ′

k+1

P
′Pk

k = v̇−1
k (P

(v̇k PJk
)

J ′
k

) = v̇−1
k (P

(u̇k PJk
)

J ′
k

) = v̇−1
k PJ ′

k∩Ad(u̇k)Jk

= v̇−1
k PAd(ẏk)(Jk∩Ad(ẏ−1

k u̇k)Jk)
= v̇−1

k PAd(ẏk)Jk+1 .

If b ∈ B, then set gk = ẇb, �k = UP ′
k
gkUPk

and zk = (Pk, P
′
k, �k) for all k. In this

case, v̇−1
k+1LJ ′

k+1
= ẇẏ−1

k+1LJ ′
k+1

= ẇLJk+1 ⊂ ẇPk = gkPk . Thus gkPk contains some Levi

of Pk ∩ P ′
k . Moreover,

g−1
k (gkPk)

(
v̇
−1
k PAd(ẏk )Jk+1 )

gk = P
(
b−1ẇ−1 v̇

−1
k PAd(ẏk )Jk+1 )

k = b−1
(P

ẏ
−1
k PAd(ẏk )Jk+1

k )

= b−1
P

Jk∩Ad(ẏ−1
k )Ad(ẏk)Jk+1

= b−1
PJk+1 = PJk+1 .

Therefore, ϑ(zk) = zk+1.
If b = (ẇn−1v̇−1

n bnv̇nẇ
−n+1) · · · (v̇−1

1 b1v̇1)(ẇ
ntẇ−n), where bj ∈ UPJ ′

j

∩ UJj−1 for

1�j �n and t ∈ T , then set

ak = (ẇn−kv̇−1
n bnv̇nẇ

−n+k) · · · (v̇−1
k bkv̇k)(ẇ

n+1−ktẇ−n−1+k).
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In this case, set gk = ẇak+1, �k = UP ′
k
gkUPk

and zk = (Pk, P
′
k, �k). For j �0,

Jj+1 = Jj ∩ Ad(ẏ−1
j+1)Jj and vj+1 ∈ WJj

. Thus ẇLJj+1 = v̇−1
j+1ẏj+1LJj+1 ⊂ v̇−1

j+1LJj

= LJj
. Then ẇj v̇−1

k+j+1UJk+j
⊂ ẇj

LJk+j
⊂ LJk

. So ak+1 ∈ Pk . Thus gkPk = ẇPk

contains some Levi of PJk

⋂v̇−1
k PJ ′

k
. Moreover,

g−1
k (gkPk)

(
v̇
−1
k PAd(ẏk )Jk+1 )

gk = a−1
k+1PJk+1 .

Thus ϑ(zk) = (Q, Q′, �′), where Q = a−1
k+1PJk+1 , Q′ = v̇−1

k+1PJ ′
k+1

and �′ = UQ′gkUQ.

Note that v̇−1
k+1UPJ ′

k+1
⊂ Q′ and T ⊂ Q′. Moreover, for j �1, ẇj v̇−1

k+j+1UJk+j
⊂ ẇj

LJk+j
⊂

ẇLJk+1 = v̇−1
k+1ẏk+1LJk+1 = v̇−1

k+1LJ ′
k+1

⊂ Q′. Thus ak+1 ∈ Q′. Hence, zk+1=(ak+1, ak+1) ·
ϑ(zk).

In both cases, ϑ(zk) is in the same G orbit as zk+1. Thus

�(z) = �(z0) = u1�(z1) = · · · = u1u2 · · · un = wJ . �

Remark. 1. From the proof of the case where b ∈ B, we can see that

ϑn(PJ ,ẇ
−1
J PJ ∗ , ẇ−1

J UPJ∗ ẇJ ẇbUPJ
) = (PJn, PJn, UPJn

ẇbUPJn
).

This result will be used to establish a relation between the G-stable pieces and the
B × B-orbits.

2. The fact that (PJ , ẇ−1
J PJ ∗ , ẇ−1

J UPJ∗ ẇJ ẇbUPJ
) is contained in Z̃J,w for any b ∈

ẇn−1v̇−1
n (UPJ ′

n
∩ UJn−1)

ẇn−2v̇−1
n−1(UPJ ′

n−1
∩ UJn−2) · · ·v̇−1

1 (UPJ ′
1
∩ UJ0)T plays an important

role in Section 3. We will discuss about it in more detail in 3.1.

2.4. Let (Jn, J
′
n, un, yn)n�0 be the sequence that is determined by wJ and w0w

J
0 .

Assume that Jn = J ′
n = Jn+1 = J ′

n+1 = · · · and un = un+1 = · · · = 1. Then z 	→ ϑn(z)

is a G-equivariant morphism from Z̃J,w to Z̃w
Jn,1 and induces a bijection from the set

of G-orbits on Z̃J,w to the set of G-orbits on Z̃w
Jn,1.

Set L̃J,w = LJn and C̃J,w = ẇL̃J,w. Let NG(L̃J,w) be the normalizer of L̃J,w in
G. Then C̃J,w is a connected component of NG(L̃J,w) and Z̃w

Jn,1 is a fibre bundle

over PJn with fibres isomorphic to C̃J,w. There is a natural bijection between C̃J,w

and F = {z = (PJn, PJn, �n) | z ∈ Z̃w
Jn,1} under which the action of L̃J,w on C̃J,w

by conjugation corresponds to the action of PJn/UPJn
on F by conjugation. Therefore,

we obtain a canonical bijection the set of G-stable subvarieties of Z̃J,w and the set
of L̃J,w-stable subvarieties of C̃J,w (see [L4, 8.21]). Moreover, a G-stable subvariety
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of Z̃J,w is closed if and only if the corresponding L̃J,w-stable subvariety of C̃J,w

is closed. By the remark 1 of 2.3, for any b ∈ B ∩ L̃J,w, the G-orbit that contains

(PJ , ẇ−1
J PJ ∗ , ẇb) corresponds to the L̃J,w-orbit that contains ẇb via the bijection.

2.5. Since G is adjoint, the center of P/UP is connected for any parabolic subgroup
P. Let HP be the inverse image of the (connected) center of P/UP under P → P/UP .
We can regard HP /UP as a single torus �J independent of P. Now �J acts (freely)
on Z̃J by � : (P, P ′, �) 	→ (P, P ′, �z) where z ∈ HP represents � ∈ �J . The action
of G on Z̃J commutes with the action of �J and induces an action of G on �J \ Z̃J .
There exists a G-equivariant isomorphism from ZJ to �J \ Z̃J which sends (g1, g2) ·hJ

to (g2PJ , g1P −
J , Ug1P −

J
g1g

−1
2 Hg2 PJ

). We will identify ZJ with �J \ Z̃J .

It is easy to see that �J (Z̃J,w) = Z̃J,w. Set ZJ,w = �J \ Z̃J,w. Then

ZJ =
⊔

w∈WJ

ZJ,w.

Moreover, we may identify �J with a closed subgroup of the center of L̃J,w. Set
LJ,w = L̃J,w/�J and CJ,w = C̃J,w/�J . Thus we obtain a bijection between the set
of G-stable subvarieties of ZJ,w and the set of LJ,w-stable subvarieties of CJ,w (see
[L4, 11.19]). Moreover, a G-stable subvariety of ZJ,w is closed if and only if the
corresponding LJ,w-stable subvariety of CJ,w is closed and for any b ∈ B ∩ L̃J,w,

the G-orbit that contains (PJ , ẇ−1
J PJ ∗ , ẇb) corresponds to the LJ,w-orbit that contains

ẇb�J via the bijection.

2.6. Proposition. For any w ∈ WJ , ZJ,w = Gdiag · [J, w, 1].

Proof. By 2.3, (ẇ, b)·hJ ∈ ZJ,w for all b ∈ B. Since ZJ,w is G-stable, Gdiag[J, w.1] ⊂
ZJ,w.

For any z ∈ ZJ,w, let C be the LJ,w-stable subvariety corresponding to Gdiag · z

and let c be an element in C̃J,w such that c�J ∈ C. By 2.2, ẇ normalizes B ∩ L̃J,w.
Thus c is L̃J,w-conjugate to an element of ẇ(B ∩ L̃J,w). Therefore, z is G-conjugate
to (ẇ, b) · hJ for some b ∈ B ∩ L̃J,w. The proposition is proved. �

2.7. Proposition. For any w ∈ WJ , ZJ,w = Gdiag(ẇT , 1) · hJ .

Proof. Since (ẇT , 1) · hJ ⊂ ZJ,w and ZJ,w is a G-stable closed variety, we have that
Gdiag(ẇT , 1) · hJ ⊂ ZJ,w.

Set X = {(ẇt, u) · hJ | t ∈ T , u ∈ U}. For any u ∈ ẇUJ and t ∈ T , we have that
Ad(ẇt)−1u ∈ UJ and u ∈ ẇUJ ⊂ U . Consider the map 	 :ẇ UJ × T → X defined by
	(u, t) = (u, u)(ẇt, 1) · hJ = (ẇt, (ẇt)−1uẇtu−1) · hJ , for u ∈ ẇUJ , t ∈ T .
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It is easy to see that there is an open subset T ′ of T, such that the restriction of
	 to ẇUJ × T ′ is injective. Note that dim(X) = dim(T ) + dim(U/UPJ

) = dim(T ) +
dim(UJ ) = dim(ẇUJ × T ). Then the image of 	 is dense in X. The proposition is
proved. �

Remark. This argument was suggested by the referee.

2.8. For w ∈ W , denote by supp(w) the set of simple roots whose associated simple
reflections occur in a reduced expression of w. An element w ∈ W is called a Coxeter
element if it is a product of the simple reflections, in some order, or in other words,
|supp(w)| = l(w) = |I |. We have the following properties.

2.9. Proposition. Fix i ∈ I . Then all the Coxeter elements are conjugate under
elements of WI−{i}.

Proof. Let c, c′ be Coxeter elements. We say that c′ can be obtained from c via a
cyclic shift if c = si1si2 · · · sin is a reduced expression and c′ = si1csi1 . It is known
that for any Coxeter elements c, c′, there exists a finite sequences of Coxeter elements
c = c0, c1, . . . , cm = c′ such that ck+1 can be obtained from ck via a cyclic shift (see
[Bo, p. 116, Prop. 1]).

Now assume that c = si1si2 · · · sin is a reduced expression of a Coxeter element.
If i1 �= i, then si1csi1 and c are conjugated by si1 ∈ WI−{i}. If i1 = i, then si1csi1
= si2si3 · · · sinc(si2si3 · · · sin)−1. Therefore, if a Coxeter element can be obtained from
another Coxeter element via a cyclic shift, then they are conjugated by elements of
WI−{i}. The proposition is proved. �

Remark. The proof of [Bo, p. 116, Prop. 1] also can be used to prove this proposition.

2.10. Proposition. Let J ⊂ I and w ∈ WJ with supp(w) = I . Then there exist a
Coxeter element w′, such that w′ ∈ WJ and w′ �w.

Proof. We prove the statement by induction on l(w).
Let i ∈ I with siw < w. Then siw ∈ WJ . If supp(siw) = I , then the statement holds

by induction hypothesis on siw. Now assume that supp(siw) = I − {i}. By induction,
there exists a Coxeter element w′ of WI−{i}, such that w′ ∈ WJ−{i} and w′ �siw. Then
siw

′ is a Coxeter element of w and siw
′ �w.

Since w′ ∈ WI−{i}, (w′)−1�i is either �i or a non-simple positive root. We also have
that w′ is a Coxeter element of WI−{i}. Thus if (w′)−1�i = �i , then < �i , �∨

j >= 0

for all j �= i. It contradicts the assumption that G is simple. Hence (w′)−1�i is a
non-simple positive root. Note that if siw

′ /∈ WJ , then siw
′ = w′sj for some j ∈ J ,

that is, (w′)−1�i = �j . Therefore, siw
′ ∈ WJ . The proposition is proved. �
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2.11. Corollary. Let i ∈ I , J = I − {i} and w be a Coxeter element of W with
w ∈ WJ . Then

⊔
K⊂J

⊔
w′∈WK,supp(w′)=I ZK,w′ ⊂ ZJ,w.

Proof. By 1.4, [K, wv, v] ⊂ [J, w, 1] for K ⊂ J and v ∈ WJ . Since ZJ,w is G-stable,
(v̇−1ẇv̇T , 1) · hK ⊂ ZJ,w. By 2.9, (ẇ′T , 1) · hK ⊂ ZJ,w for all Coxeter element w′.
By 2.7, ZK,w′ ⊂ ZJ,w for all Coxeter element w′ with w′ ∈ WK . For any u ∈ WK

with supp(u) = I , there exists a Coxeter element w′, such that w′ ∈ WK and w′ �u.
Thus by 1.4, we have that [K, u, 1] ⊂ ZJ,w. By 2.6, ZK,u ⊂ ZJ,w. The corollary is
proved. �

Remark. In 4.4, we will show that the equality holds.

3. Some combinatorial results

3.1. Fix i ∈ I . Define subsets Ik of I for all k ∈ N in the following way. Set I1 = {i}.
Assume that Ik is already defined. Set

Ik+1 = {�j | j ∈ I − ∪k
l=1Il, < �∨

j , �m >�= 0 for some m ∈ Ik}.

It is easy to see that if j1, j2 ∈ Ik with j1 �= j2, then < �j1 , �
∨
j2

>= 0. Thus
sIk

= ∏
j∈Ik

sj is well-defined. For sufficiently large n, we have In = In+1 = · · · = �
and sIn = sIn+1 = · · · = 1. Now set wk = sInsIn−1 · · · sIk

for k ∈ N. We will write
wJ for w1. Set J−1 = I and J0 = J = I − {i}. Then wJ is a Coxeter element and
wJ ∈ WJ . Let (Jn, J

′
n, un, yn) be the sequence determined by wJ and w0w

J
0 . Then we

can show by induction that for k�0, Jk = Jk−1 − Ik+1, uk = w
Jk−1
0 w

Jk

0 sIk+1w
Jk+1
0 w

Jk

0 ,

yk = w
Jk−1
0 w

Jk

0 sIk
sIk−1 · · · sI1 and J ′

k = Ad(yk)Jk . In particular, Jn = �. Thus L̃J,wJ

= T and C̃J,wJ = ẇJ T . Since w is a Coxeter element, the homomorphism T → T

sending t ∈ T to (ẇJ )−1tẇJ t−1 is surjective. Thus L̃J,wJ acts transitively on C̃J,wJ .
By 2.5, G acts transitively on ZJ,wJ .

For k ∈ N, we set vk = w
Jk−1
0 w

Jk

0 w−1
k+1. Then it is easy to see that

v̇−1
k (UPJ ′

k

∩ UJk−1) = wk+1(UP −
Jk

∩ U−
Jk−1

).

Therefore by 2.3, for b ∈ wn−1wn+1(UP −
Jn

∩ U−
Jn−1

) · · ·w2 (UP −
J1

∩ U−
J0

)T , we have that

(ẇJ b, 1) · hJ ∈ ZJ,wJ .
In the rest of this section, we will keep the notations of J, Jk , wJ and wk as above.

We will prove the following statement.
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Proposition. Let X be a closed subvariety of Ḡ satisfying the following condition: for
any admissible pair (w, �) and x ∈ W with x−1� is dominant, there exist some t ∈ T ,
such that Gdiag(U × U)(ẇẋt, ẋ) · hI (x−1�) ⊂ X. Then ZJ,wJ ⊂ X.

An example of such X is Ū . There are some other interesting examples, which we
will discuss in 4.5. The proof is based on case-by-case checking.

Remark. The outline of the case-by-case checking is as follows.

For � ∈ Y , we write ��0 if � ∈ ∑l∈I R�0�∨
l .

We start with the fundamental coweight �∨
i . Find x ∈ W that satisfies the conditions

(1) x�∨
i �0 and (2) for l ∈ I , either (sl − 1)x�∨

i �0 or slx�∨
i �0. Such x always

exists, as we will see by case-by-case checking. The elements x�∨
i that we obtain in

this way are not unique, in general. Fortunately, there always exists some x ∈ W that
satisfies the conditions (1) and (2) and allows us to do the procedures that we will
discuss below.

In the rest of the remark, we fix such x. Since x�∨
i ∈ Y , there exists n ∈ N, such

that nx�∨
i is contained in the coroot lattice. Set � = nx�∨

i . Now we can find v ∈ W

such that (v, �) is admissible. (In practice, we find v ∈ W with l(v) = |supp(v)| and
−v��0. Then we can use Lemma 3.2 to check that if (v, �) is admissible.) By the
assumption on X, Gdiag(U × U)(v̇ẋt, ẋ) · hJ ⊂ X for some t ∈ T .

In some cases, x−1vx = wJ . Since wJ is a Coxeter element, (ẇJ T , 1) · hJ

= Tdiag(ẇJ t, 1) · hJ ⊂ X. By 2.7, ZJ,wJ
⊂ X.

In other cases, the situation is more complicated. We need to choose some u ∈ U ,
such that (uv̇ẋt, ẋ) · hJ ∈ ZJ,wJ

. This is the most difficult part of the case-by-case
checking. The Lemmas 3.3 and 2.3 will be used to overcome the difficulties.

Throughout this section, we will use the same labelling of Dynkin diagram as in
[Bo]. For a, b ∈ I , we denote by s[a,b] the element sbsb−1 · · · sa of the Weyl group W
and ṡ[a,b] = ṡbṡb−1 · · · ṡa . (If b < a, then s[a,b] = 1 and ṡ[a,b] = 1.)

3.2. Lemma. Let x = si1si2 · · · sin with |supp(x)| = n. Then (1 − x−1)�∨
k = 0 if

k /∈ {i1, i2, . . . , in} and (1−x−1)�∨
ij

= sinsin−1 · · · sij+1�
∨
ij

. Thus (x, �) is admissible for

all � ∈ ∑n
j=1 Nsinsin−1 · · · sij+1�

∨
ij

.

The lemma is a direct consequence of [Bo, p. 226, Ex. 22a], which was pointed out
to me by the referee.

3.3. Lemma. Let w, x, y1, y2 ∈ W and t ∈ T . Assume that y1 = si1si2 · · · sil ,
y2 = sil+1sil+2 · · · sil+k

with k + l = |supp(y1y2)|. If moreover, < �∨
il1

, �il2
>= 0 for

all 1� l1 < l2 � l and (1 − y1y2)x�∨
i , (1 − y1)w�∨

i ∈ ∑k
j=1 R>0�∨

ij
, then there ex-

ists u ∈ U−w−1�il+1
U−w−1�il+2

· · · U−w−1�il+k
such that (ẋ−1ẇut, 1) · hJ ∈ Gdiag(U ×

U)(ẇt, ẏ1ẏ2ẋ) · hJ .
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Proof. We have that (1 − y1y2)x�∨
i = ∑k+l

j=1(1 − sij )sij+1 · · · sil+k
x�∨

i . Note that
i1, i2, . . . , ik+l are distinct and (1 − sij )sij+1 · · · sil+k

x�∨
i ∈ R�∨

ij
for all j. Hence

(1−sij )sij+1 · · · sil+k
x�∨

i ∈ R>0�∨
ij

for all j, i.e., < sij+1 · · · sik x�∨
i , �ij >∈ R>0. There-

fore ẋ−1ṡ−1
il+k

· · · ṡ−1
ij+1

U�ij
ṡij+1 · · · ṡil+k

ẋ ⊂ UPJ
. Similarly, we have that ẇ−1U−�ij

ẇ ∈
UP −

J
for j � l.

There exists uj ∈ U�ij
and u′

j ∈ U−�ij
such that uj ṡij uj = u′

j . Note that u′
1u

′
2 · · ·

u′
l+k−1 ∈ LI−{il+k}, ul+k ∈ UPI−{il+k } and ẋ−1ul+kẋ ⊂ UPJ

. Thus

u′
1u

′
2 · · · u′

l+kẋ = u′
1u

′
2 · · · u′

l+k−1ul+kṡik ul+kẋ ∈ UPI−{ik }u
′
1u

′
2 · · · u′

l+k−1ṡik ẋUPJ

⊂ Uu′
1u

′
2 · · · u′

l+k−1ṡik ẋUPJ
.

We can show in the same way that u′
1u

′
2 · · · u′

l+kẋ ∈ Uẏ1ẏ2ẋUPJ
. Therefore, (ẇt,

u′
1u

′
2 · · · u′

l+kẋ)·hJ ∈ (U ×U)(ẇt, ẏ1ẏ2ẋ)·hJ . Set u = ẇ−1u′
l+1u

′
l+2 · · · u′

l+kẇ and u′ =
t−1ẇ−1

(u′
1u

′
2 · · · u′

l )
−1ẇt ∈ UP −

J
. Then

(ẋ−1ẇut, 1) · hJ = (ẋ−1ẇutu′, 1) · hJ = (
ẋ−1(u′

1u
′
2 · · · u′

l+k)
−1ẇt, 1) · hJ

∈ Gdiag(U × U)(ẇt, ẏ1ẏ2ẋ) · hJ . �

3.4. In 3.4–3.7, we assume that G is PGLn(k). Without loss of generality, we assume
that i�n/2. In this case, wJ = s[i+1,n−1]s−1

[1,i]. For any a ∈ R, we denote by [a] the
maximal integer that is less than or equal to a.

For 1�j � i, set aj = [(j − 1)n/i]. For convenience, we will set ai+1 = n − 1.
Note that for j � i − 1, aj+1 − aj = [jn/i] − [(j − 1)n/i]�[n/i]�2. Therefore, we
have that 0 = a1 < a1 + 1 < a2 < a2 + 1 < · · · < ai < ai + 1�ai+1 = n − 1. Now
set b0 = 0. For k ∈ {1, 2, . . . , n − 1} − {a2, a3, . . . , ai} − {a2 + 1, a3 + 1, . . . , ai + 1},
set bk = i. For j ∈ {2, 3, . . . , i}, set baj

= (j − 1)n − iak and baj +1 = i − baj
. In

particular, bn−1 = i.
Now set v = s[a1+1,a2−�ba2 ,0]s[a2+1,a3−�ba3 ,0] · · · s[ai+1,ai+1−�bai+1 ,0], where �a,b is the

Kronecker delta. Set vj = s[aj +1,aj+1]s[aj+1+1,aj+2] · · · s[ai+1,ai+1] for 1�j � i. Set � =∑i
j=1

∑aj+1−aj

k=1 baj +k(s[aj +1,aj +k−1]vj+1)
−1�∨

aj +k . It is easy to see that for 1�a�b

�n − 1 and 1�k�n − 1,

s[a,b]�∨
k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑b
l=a−1 �∨

l if k = a − 1,

−∑b
l=a �∨

l if k = a,
�∨
k−1 if a < k�b,

�∨
b + �∨

b+1 if k = b + 1,
�∨
k otherwise .
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If baj +k �= 0, then (s[aj +1,aj +k−1]s[aj+1+1,aj+2−�baj+2 ,0] · · · s[ai+1,ai+1])−1�∨
aj +k =

(s[aj +1,aj +k−1]vj+1)
−1�∨

aj +k . By 3.2, (v, �) is admissible.
We have that

� =
i∑

j=1

aj+1−aj −1∑
k=1

baj +kv
−1
j+1s

−1
[aj +1,aj +k−1]�

∨
aj +k +

i∑
j=1

baj+1v
−1
j+1s

−1
[aj +1,aj+1−1]�

∨
aj+1

=
i∑

j=1

aj+1−aj −1∑
k=1

k∑
l=1

baj +k�
∨
aj +l +

i−1∑
j=1

baj+1

aj+1−aj +1∑
l=1

�∨
aj +l + bai+1

ai+1−ai∑
l=1

�∨
ai+l

=
i∑

j=1

aj+1−aj∑
k=1

k∑
l=1

baj +k�
∨
aj +l +

i−1∑
j=1

baj+1�
∨
aj+1+1

=
i∑

j=1

aj+1−aj∑
l=1

aj+1−aj∑
k=l

baj +k�
∨
aj +l +

i−1∑
j=1

baj+1�
∨
aj+1+1

=
i∑

j=1

aj+1−aj∑
l=2

(
(aj+1 − aj − l)i + baj+1

)
�∨
aj +l + (

(a2 − 1)i + ba2

)
�∨

1

+
i∑

j=2

(
baj

+ (aj+1 − aj − 2)i + baj+1 + baj +1
)
�∨
aj +1

=
i∑

j=1

aj+1−aj∑
l=1

(
(aj+1 − aj − l)i + baj+1

)
�∨
aj +l = nx�∨

i .

Note that aj �j for j �2. Set xi = 1 and xj = s[j+1,aj+1]s[j+2,aj+2] · · · s[i,ai ] for
1�j � i − 1. If j = 1, we will simply write x for x1.

3.5. Lemma. For 1�j � i, we have that

nxj�
∨
i =

j−1∑
l=1

l(n − i)�∨
l +

aj+1∑
l=j

(
jn − il

)
�∨
l

+
i∑

k=j+1

ak+1−ak∑
l=1

(
(ak+1 − ak − l)i + bak+1

)
�∨
ak+l .

In particular, nx�∨
i = ∑i

j=1
∑aj+1−aj

l=1

(
(aj+1 − aj − l)i + baj+1

)
�∨
aj +l .
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Proof. We argue by induction on j. Note that n�∨
i = ∑i−1

l=1 l(n−i)�∨
l +∑n−1

l=i i(n−l)�∨
l .

Thus the lemma holds for j = i.
Note that jn− i(aj + l) = jn− iaj+1 + i(aj+1 − aj − l) = baj+1 + i(aj+1 − aj − l).
Assume that the lemma holds for j. Then

nxj−1�
∨
i = s[j,aj ]

j−1∑
l=1

l(n − i)�∨
l + s[j,aj ]

aj+1∑
l=j

(jn − il)�∨
1

+s[j,aj ]
i∑

k=j+1

ak+1−ak∑
l=1

(
(ak+1 − ak − l)i + bak+1

)
�∨
ak+l

=
j−2∑
l=1

l(n − i)�∨
l + (j − 1)(n − i)

aj∑
l=j−1

�∨
l − j (n − i)

aj∑
l=j

�∨
l

+
aj∑

l=j+1

(jn − il)�∨
l−1

+(jn − i(aj + 1)
)
(�∨

aj
+ �∨

aj+1
) +

aj+1∑
l=aj +2

(jn − il)�∨
l

+
i∑

k=j+1

ak+1−ak∑
l=1

(
(ak+1 − ak − l)i + bak+1

)
�∨
ak+l

=
j−2∑
l=1

l(n − i)�∨
l + (j − 1)(n − i)

aj∑
l=j−1

�∨
l − j (n − i)

aj∑
l=j

�∨
l

+
aj∑

l=j+1

(jn − il)�∨
l−1 + (

jn − i(aj + 1)
)
�∨
aj

+
i∑

k=j

ak+1−ak∑
l=1

(
(ak+1 − ak − l)i + bak+1

)
�∨
ak+l

=
j−2∑
l=1

l(n − i)�∨
l + (j − 1)(n − i)�∨

j−1 +
aj∑
l=j

(
(j − 1)(n − i)

−j (n − i) + jn − i(l + 1)
)
�∨
l

+
i∑

k=j

ak+1−ak∑
l=1

(
(ak+1 − ak − l)i + bak+1

)
�∨
ak+l
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=
j−2∑
l=1

l(n − i)�∨
l +

aj∑
l=j−1

(
(j − 1)n − il

)
�∨
l

+
i∑

k=j

ak+1−ak∑
l=1

(
(ak+1 − ak − l)i + bak+1

)
�∨
ak+l .

Thus the lemma holds for j. �

3.6. Lemma. We have that x−1v1x = wJ .

Proof. If aj �j +1, then s−1
[j+1,aj+1]s[aj +1,aj+1] = s−1

[j+1,aj ]. If j �2 and aj < j +1, then

j = 2, aj = 2 and s−1
[3,a3]s[a2+1,a3] = 1 = s−1

[3,a2]. In conclusion, s−1
[j+1,aj+1]s[aj +1,aj+1] =

s−1
[j+1,aj ] for j �2. Moreover, s−1

[2,a2]s[a1+1,a2] = s1. Thus

s−1
[2,a2]v1s[2,a2] = s−1

[2,a2]s[a1+1,a2]v2s[2,a2] = s1v2s[2,a2] = v2s1s[2,a2] = v2s[3,a2]s1s2.

s−1
[j+1,aj+1]vj s[j+1,aj ]s−1

[1,j ]s[j+1,aj+1] = s−1
[j+1,aj+1]s[aj +1,aj+1]vj+1s[j+1,aj ]s−1

[1,j ]s[j+1,aj+1]

= s−1
[j+1,aj ]vj+1s[j+1,aj ]s−1

[1,j ]s[j+1,aj+1]

= vj+1s
−1
[1,j ]s[j+2,aj+1]sj+1 =vj+1s[j+2,aj+1]s−1

[1,j+1].

Thus, we can prove by induction on j that x−1v1x = x−1
j vj s[j+1,aj ]s−1

[1,j ]xj for

1�j � i. In particular, x−1v1x = s[i+1,n−1]s−1
[1,i]. The lemma is proved. �

3.7. By 3.4 and 3.5, there exists t ∈ T , such that (U × U)(v̇ẋt, ẋ) · hJ ⊂ X. Consider
K = {aj | baj

= 0}. Then for any j, j ′ ∈ K with j �= j ′, we have that |j −
j ′|�2 and < �∨

j , �j ′ >= 0. Set y = ∏
j∈K sj . Then y is well-defined. Note that

(1 − y)yx�∨
i , (1 − y)vx�∨

i ∈ ∑j∈K R>0�∨
j . By 3.3, (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X. Therefore,

(ẋ−1ẏv̇ẋt, 1) · hJ ∈ X. By 3.6, x−1yvx = x−1v1x = wJ . Therefore, ZJ,wJ ∩ X �= �.
By 3.1, G acts transitively on ZJ,wJ . Therefore ZJ,wJ ⊂ X.

3.8. In this subsection, we assume that G is of type Cn and set

� =
{

1 if 2 | i,
0 otherwise.
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Set v = sn−i+1sn−i+3 · · · sn−�, x1 = s−1
[n−i,n−1]s

−1
[n−i−1,n−2] · · · s−1

[1,i] and x2=s−1
[n+�−1,n]

s−1
[n+�−3,n] · · · s−1

[n−i+2,n]. Set � = �∨
n−i+1 +�∨

n−i+3 +· · ·+�∨
n−�. Then we have that (v, �)

is admissible.
Now set �′ = ∑

j∈I min(i, j)�∨
j ∈ N�∨

i . Set x1,j = s−1
[j−i+1,j ]s

−1
[j−i,j−1] · · · s−1

[1,i] for

i − 1�j �n − 1, s. Then we can show by induction that x1,j�
′ = ∑i

k=1 k�∨
j−i+1+k +

i
∑n

l=j+2 �∨
l . In particular, x1�∨

i = ∑i
k=1 k�∨

n−i+k .

For 0�j �(i+�−1)/2, set x2,j = s−1
[n−i+2j,n]s

−1
[n−i+2j−2,n] · · · s−1

[n−i+2,n]. Then we can

show by induction that x2,j x1�
′ = ∑j−1

k=0 �∨
n−i+1+2k +∑i−2j

l=1 l�∨
n−i+2j+l . In particular,

we have that x2x1�
′ = �. Therefore, there exists t ∈ T , such that (U, U)(v̇ẋ2ẋ1t, ẋ2ẋ1) ·

hJ ⊂ X.
Now set y1 = sn+�−1sn+�−3 · · · sn−i and y2 = s[1,n−i−1]. For 1�j �n − i − 1, set

�k = −(vx2x1)
−1�k = −�k+i . Thus by 3.3, there exists u ∈ U�1

U�2
· · · U�n−i

, such

that (ẋ−1
1 ẋ−1

2 ẏ1ẏ2v̇ẋ2ẋ1ut, 1) · hJ ∈ X.
For 0�j �(i + � − 1)/2, set

v2,j = s[1,n−i](sn−i+2sn−i+4 · · · sn−i+2j )(sn−i+1sn−i+3 · · · sn−i+2j−1)s
−1
[n−i+2j+1,n].

It is easy to see that s[n−i+2j,n]v2,j s
−1
[n−i+2j,n] = v2,j−1. Therefore, we can show

by induction that x−1
2 y1y2vx2 = x−1

2,j v2,j x2,j for 0�j �(i + � − 1)/2. In particular,

x−1
2 y1y2vx2 = s[1,n−i]s−1

[n−i+1,n].
For i − 1�j �n − 1, set v1,j = s[1,j−i+1]s[j+2,n]s−1

[j−i+2,j+1]. Then we have that

s[j−i+1,j ]v1,j s
−1
[j−i+1,j ] = v1,j−1. Therefore, we can show by induction that x−1

1 s[1,n−i]
s−1
[n−i+1,n]x1 = x−1

1,j v1,j x1,j for i − 1�j �n − 1. In particular, x−1
2 y1y2vx2 = s[i+1,n]

s−1
[1,i] = wJ .

Moreover, w−1
n−i−k+1w

−n+i+k+1�k = w−1
n−i−k+1(−�n−1) = −∑n

l=n−k �l . Since n −
k ∈ Jn−i−k−1 − Jn−i−k , U�k

⊂ ẇn−i−k−1ẇn−i−k+1(UP −
Jn−i−k

∩ U−
Jn−i−k−1

). By 3.1,

(ẋ−1
1 ẋ−1

2 ẏ1ẏ2v̇ẋ2ẋ1ut, 1) · hJ ∈ ZJ,wJ . Therefore, ZJ,wJ ⊂ X.
For type Bn, we have the similar results.

3.9. In 3.9 and 3.10, we assume that G is of type Dn. In this subsection, assume that
i�n − 2.

If 2 | i, set v = sn−i sn−i+2 · · · sn−2, � = �∨
n−i + �∨

n−i+2 + · · · + �∨
n−2 and x =

(s−1
[n−1,n]s

−1
[n−3,n] · · · s−1

[n−i+1,n])(s
−1
[n−i−1,n−2]s

−1
[n−i−2,n−3] · · · s−1

[1,i]).
If 2�i, set v = (sn−i sn−i+2 · · · sn−1)sn, � = ∑(i−3)/2

l=0 �∨
n−i+2l + 1/2(�∨

n−1 + �∨
n ) and

x = (s−1
[n−2,n]s

−1
[n−4,n] · · · s−1

[n−i+1,n])(s
−1
[n−i−1,n−2]s

−1
[n−i−2,n−3] · · · s−1

[1,i]).

By the similar calculation to what we did for type Cn−1, we have that in both cases
(v, �) is admissible and x−1� = �∨

i . Moreover, by the similar argument to what we
did for type Cn−1, we can show that ZJ,wJ ⊂ X.
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3.10. Assume that i = n. Set

� =
{

1 if 2 | [n/2],
0 otherwise.

If 2�n, set v = sn+�−1(s1s3 · · · sn−2)sn−�, x = sn+�−1(s
−1
[n−3,n]s

−1
[n−5,n] · · · s−1

[2,n])sn−1

and � = 3
2�∨

n−�+ 1
2�∨

a+�−1+
∑(n−3)/2

j=0 �∨
2j+1. Then � = 2x�∨

n and (v, �) is admissible. Set

y = s2s4 · · · sn−3. Then (v̇ẋt, ẏ−1ẋ)·hJ ∈ X for some t ∈ T . By 3.3, (ẋ−1ẏv̇ẋt, 1)·hJ ∈
X. Since x−1yvx = sn−1s

−1
[1,n−2]sn = wJ , ZJ,wJ ⊂ X.

If 2 | n, set v = (s1s3 · · · sn−3)sn−�, � = �∨
n−� +∑n/2−2

j=0 �∨
1+2j and

x =
{

s2s4 if n = 4,

sn−2sn+�−1(s
−1
[n−4,n]s

−1
[n−6,n] · · · s−1

[2,n])sn−1 otherwise.

Then � = 2x�∨
n and (v, �) is admissible. Therefore, there exists t ∈ T , such that

(U, U)(v̇ẋt, ẋ)·hJ ⊂ X. Set y1 = s2s4 · · · sn−2, y2 = sn+�−1 and � = −(vx)−1�n+�−1 =
−�n/2. By 3.3, there exists u ∈ U� and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X.

It is easy to see that x−1y1y2vx = sn−1s
−1
[1,n−2]sn = wJ and

w−1
2 � =

{
−∑3

l=1 �l if n = 4,

−∑n−2
l=n/2−1 �l otherwise.

Note that J0 = I − {n} and J1 = I − {n − 2, n}. Thus U� ⊂ w2(UP −
J1

∩ U−
J0

). By 3.1,

ZJ,wJ ⊂ X.
Similarly, Z

I−{i−1},sns−1
[1,n−2]sn−1

⊂ X.

3.11. Type G2.

Set v = si , x = wJ and � = �∨
i = x�∨

i . Then (v, �) is admissible. Set y = s3−i , then
(ẋ−1ẏv̇ẋt, 1) ·hJ ∈ X for some t ∈ T . Note that x−1yvx = wJ . Therefore, ZJ,wJ ⊂ X.

3.12. Type F4.

If i = 1, then set v = s2, x = s1s4w
2 and � = �∨

2 = x�∨
1 . Thus (v, �) is admissible.

Set y1 = s1s3, y2 = s4 and � = −(vx)−1�4 = −(�2 + �3). Then there exists u ∈ U�

and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X. Note that x−1y1y2vx = wJ and
w−1

2 � = −(�2 + 2�3 + �4). By 3.1, ZJ,wJ ⊂ X.
If i = 2, then set v = s1s3, x = s2w

2 and � = �∨
1 + �∨

3 = x�∨
2 . Thus (v, �)

is admissible. Set y = s2s4, then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some t ∈ T . Note that
x−1yvx = wJ . Thus ZJ,wJ ⊂ X.
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If i = 3, then set v = s2s4, x = s3w
2 and � = 2�∨

2 + �∨
4 = x�∨

3 . Thus (v, �)

is admissible. Set y = s1s3, then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some t ∈ T . Note that
x−1yvx = wJ . Thus ZJ,wJ ⊂ X.

If i = 4, then set v = s3, x = s1s4w
2 and � = �∨

3 = x�∨
1 . Thus (v, �) is admissible.

Set y1 = s2s4, y2 = s1 and � = −(vx)−1�1 = −(�2 + 2�3). Then there exists u ∈ U�

and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X. Note that x−1y1y2vx = wJ and
w−1

2 � = −(�1 + 2�2 + 2�3). By 3.1, ZJ,wJ ⊂ X.

3.13. Type E6.

If i = 1, then set v = s1s5s3s6, x = s1s4s3s1s6w
J and � = �∨

1 + 2�∨
3 + �∨

5 + 2�∨
6 =

3x�∨
1 . Thus (v, �) is admissible. Set y1 = s4, y2 = s2 and � = −(vx)−1�2 = −(�3 +

�4+�5). Then there exists u ∈ U� and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1)·hJ ∈ X. Note

that x−1y1y2vx = wJ and w−1
2 � = −(�2 + �3 + 2�4 + �5 + �6). By 3.1, ZJ,wJ ⊂ X.

Similarly, ZI−{6},s2s1s3s4s5s6 ⊂ X.
If i = 2, then set v = s4, x = s2s3s5s4s2w

J and � = �∨
4 = x�∨

1 . Thus (v, �)

is admissible. Set y1 = s2s3s5, y2 = s1s6, �1 = −(vx)−1�1 = −(�4 + �5) and
�2 = −(vx)−1�6 = −(�3 + �4). Then there exists u ∈ U�1

U�2
and t ∈ T , such

that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X. Note that x−1y1y2vx = wJ , w−1
2 �1 = −∑6

l=3 �l and
w−1

2 �2 = −(�1 + �3 + �4 + �5). By 3.1, ZJ,wJ ⊂ X.
If i = 3, then set v = s3s6s1s4s5, x = s2s3s4s1s3w

J and � = 2�∨
1 + �∨

3 + 3�∨
4 +

5�∨
5 + �∨

6 = 3x�∨
3 . Thus (v, �) is admissible. Set y = s2, then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X

for some t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X.
Similarly, ZI−{5},s2s1s3s4s6s5 ⊂ X.
If i = 4, then set v = s2s3s5, x = s4(w

J )2 and � = �∨
2 + �∨

3 + 5�∨
5 = x�∨

3 . Thus
(v, �) is admissible. Set y = s1s4s6, then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some t ∈ T . Note
that x−1yvx = wJ . Thus ZJ,wJ ⊂ X.

3.14. Type E7.

If i = 1, then set v = s4, x = s3s1s2s5s4s3s1s7(w
J )2 and � = �∨

4 = x�∨
1 . Thus

(v, �) is admissible. Set y1 = s3s2s5 , y2 = s1s6s7, �1 = −(vx)−1�1 = −∑6
l=3 �l ,

�2 = −(vx)−1�6 = −(�4 + �5) and �3 = −(vx)−1�7 = −(�2 + �3 + �4). Then there
exists u ∈ U�3

U�2
U�1

and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X. Note that

x−1y1y2vx = wJ , w−1
2 �1 = −�4 −∑7

l=2 �l , w−1
2 �2 = −∑6

l=2 �l and w−1
3 (wJ )−1�3 =

−(�2 + �4 + �5 + �6). By 3.1, ZJ,wJ ⊂ X.
If i = 2, then set v = s2s3s5s7, x = s4s2s7(w

J )3 and � = �∨
2 +2�∨

3 +�∨
5 +�∨

7 = 2x�∨
2 .

Thus (v, �) is admissible. Set y = s1s4s6. Then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some t ∈ T .
Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X.

If i = 3, then set v = s2s3s5, x = s1s4s3s7(w
J )3 and � = �∨

2 +�∨
3 +�∨

5 = x�∨
3 . Thus

(v, �) is admissible. Set y1 = s1s4s6, y2 = s7 and � = −(vx)−1�7 = −(�4 + �5). Then
there exists u ∈ U�3

U�2
U�1

and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X. Note that

x−1y1y2vx = wJ and w−1
2 � = −(�2 + �4 + �5 + �6). By 3.1, ZJ,wJ ⊂ X.
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If i = 4, then set v = s1s4s6, x = s2s3s5s4(w
J )3 and � = �∨

1 + 2�∨
4 + �∨

6 = x�∨
4 .

Thus (v, �) is admissible. Set y = s2s3s5s7. Then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some
t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X.

If i = 5, then set v = s2s3s5s7, x = s4s6s5(w
J )3 and � = �∨

2 + 2�∨
3 + 3�∨

5 + �∨
7 =

2x�∨
5 . Thus (v, �) is admissible. Set y = s1s4s6. Then (ẋ−1ẏv̇ẋt, 1) · hJ ∈ X for some

t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X.
If i = 6, then set v = s4s6, x = s1s5s7s6(w

J )3 and � = �∨
4 + �∨

6 = x�∨
6 . Thus (v, �)

is admissible. Set y1 = s2s3s5s7, y2 = s1 and � = −(vx)−1�1 = −(�3 + �4 + �5).
Then there exists u ∈ U� and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X. Note that

x−1y1y2vx = wJ and w−1
2 � = −�4 −∑5

l=1 �l . By 3.1, ZJ,wJ ⊂ X.
If i = 7, then set v = s2s5s7, x = s6s7s4s5s6s7s1(w

J )2 and � = �∨
2 +�∨

5 +�∨
7 = 2x�∨

7 .
Thus (v, �) is admissible. Set y1 = s4s6, y2 = s3s1, �1 = −(vx)−1�3 = −(�3 +�4 +�5)

and �2 = −(vx)−1�1 = −(�2 + �4 + �5 + �6). Then there exists u ∈ U�2
U�1

and

t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X. Note that x−1y1y2vx = wJ , w−1
2 �1 =

−�4 −∑6
l=1 �l , w−1

3 (wJ )−1�2 = −�4 −∑5
l=1 �l . By 3.1, ZJ,wJ ⊂ X.

3.15. Type E8.

If i = 1, then set v = s4s6, x = s3s1s2s5s4s3s1s8(w
J )5 and � = �∨

4 +�∨
6 = x�∨

1 . Thus
(v, �) is admissible. Set y1 = s2s3s5s7, y2 = s1s8, �1 = −(vx)−1�1 = −�4 −∑6

l=2 �l

and �2 = −(vx)−1�8 = −∑7
l=3 �l . Then there exists u ∈ U�2

U�1
and t ∈ T , such that

(ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X. Note that x−1y1y2vx = wJ , w−1
2 �1 = −�4 − �5 −∑7

l=2 �l

and w−1
2 �2 = −�4 −∑8

l=2 �l . By 3.1, ZJ,wJ ⊂ X.
If i = 2, then set v = s2s3s5s7, x = s4s2s7s8(w

J )6 and � = �∨
2 +�∨

3 +�∨
5 +�∨

7 = x�∨
2 .

Thus (v, �) is admissible. Set y = s1s4s6s8. Then (ẋ−1ẏv̇ẋt, 1)·hJ ∈ X for some t ∈ T .
Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X.

If i = 3, then set v = s2s3s5s7, x = s1s4s3s7s8(w
J )6 and � = �∨

2 + �∨
3 + 2�∨

5 + �∨
7 =

x�∨
3 . Thus (v, �) is admissible. Set y = s1s4s6s8. Then (ẋ−1ẏv̇ẋt, 1) ·hJ ∈ X for some

t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X.
If i = 4, then set v = s1s4s6s8, x = s2s5s3s4s8(w

J )6 and � = �∨
1 +3�∨

4 +2�∨
6 +�∨

8 =
x�∨

4 . Thus (v, �) is admissible. Set y = s2s3s5s7. Then (ẋ−1ẏv̇ẋt, 1) ·hJ ∈ X for some
t ∈ T . Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X.

If i = 5, then set v = s2s3s5s7, x = s4s6s5(w
J )6 and � = �∨

2 +2�∨
3 +2�∨

5 +�∨
7 = x�∨

5 .
Thus (v, �) is admissible. Set y = s1s4s6s8. Then (ẋ−1ẏv̇ẋt, 1)·hJ ∈ X for some t ∈ T .
Note that x−1yvx = wJ . Thus ZJ,wJ ⊂ X.

If i = 6, then set v = s1s4s6, x = s1s5s7s6(w
J )6 and � = �∨

1 +2�∨
4 +�∨

6 = x�∨
6 . Thus

(v, �) is admissible. Set y1 = s2s3s5s7, y2 = s8 and � = −(vx)−1�8. Then there exists
u ∈ U� and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X. Note that x−1y1y2vx = wJ

and w−1
2 � = −�4 −∑5

l=1 �l . By 3.1, ZJ,wJ ⊂ X.
If i = 7, then set v = s2s3s5, x = s6s7s8s4s5s6s7(w

J )5 and � = �∨
2 +�∨

3 +�∨
5 = x�∨

7 .
Thus (v, �) is admissible. Set y1 = s1s4s6, y2 = s7s8, �1 = −(vx)−1�7 = −(�3+�4+�5)

and �2 = −(vx)−1�8 = −(�2 + �4 + �5 + �6). Then there exists u ∈ U�2
U�1

and
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t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) · hJ ∈ X. Note that x−1y1y2vx = wJ , w−1
2 �1 =

−�4 −∑6
l=1 �l and w−1

3 (wJ )−1�2 = −�4 −∑5
l=1 �l . By 3.1, ZJ,wJ ⊂ X.

If i = 8, then set v = s4, x = s1s5s6s7s8(w
J )5 and � = �∨

4 = x�∨
8 . Thus (v, �)

is admissible. Set y1 = s5s2s3, y2 = s1s6s7s8, �1 = −(vx)−1�1 = −�4 − ∑7
l=2 �l ,

�2 = −(vx)−1�6 = −(�3 + �4 + �5), �3 = −(vx)−1�7 = wJ �2 and �4 = −(vx)−1�8 =
(wJ )2�2. Then there exists u ∈ U�4

U�3
U�2

U�1
and t ∈ T , such that (ẋ−1ẏ1ẏ2v̇ẋut, 1) ·

hJ ∈ X. Note that x−1y1y2vx = wJ , w−1
2 �1 = −∑6

l=3 �l − ∑7
l=1 �l , w−1

2 �2 =
−�4 −∑7

l=1 �l , w−1
3 (wJ )−1�3 = −�4 −∑6

l=1 �l and w−1
4 (wJ )−2�4 = −�4 −∑5

l=1 �l .
By 3.1, ZJ,wJ ⊂ X.

4. The explicit description of Ū

4.1. We assume that G1 is a disconnected algebraic group such that its identity
component G0 is reductive. Following [St, 9], an element g ∈ G1 is called quasi-
semisimple if gBg−1 = B, gT g−1 = T for some Borel subgroup B of G0 and some
maximal torus T of B. We have the following properties.

(a) if g is semisimple, then it is quasi-semisimple. See [St, 7.5 & 7.6].
(b) Let g ∈ G1 is a quasi-semisimple element and T1 be a maximal torus of ZG0(g)0,

where ZG0(g)0 is the identity component of {x ∈ G0 | xg = gx}. Then any quasi-
semisimple element in gG0 is G0-conjugate to some element of gT1. See [L4,
1.14].

(c) g is quasi-semisimple if and only if the G0-conjugacy class of g is closed in G1.

See [Spa, 1.15(f)] for the if-part, the only-if-part is due to Lusztig in an unpublished
note. His proof is as follows.

Proposition(Lusztig). Let g ∈ G1. Let clG0g be the G0-conjugacy class of g. Assume
that clG0g is closed. Then g is quasi-semisimple.

Proof. The proof is due to Lusztig.
By [St, 7.2], we can find a Borel subgroup B such that gBg−1 = B. Let clBg be

the B-conjugacy class of g. Since clBg ⊂ clG0g and clG0g is closed, we see that the
closure of clBg is contained in clG0g. By [Spa, 1.15(e)], the closure of clBg contains
a quasi-semisimple element. Hence clG0g contains a quasi-semisimple element. Hence
g is quasi-semisimple. �

4.2. Let 
i : G → GL(Vi) be the irreducible representation of G with lowest weight
−�i and 
̄i : Ḡ → P

(
End(Vi)

)
be the morphism induced from 
i (see [DS, 3.15]). Let

N be the subvariety of Ḡ consisting of elements such that for all i ∈ I , the images
under 
̄i are represented by nilpotent endomorphisms of Vi . We have the following
result.
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4.3. Theorem. We have that

Ū − U = N =
⊔
J�I

⊔
w∈WJ ,supp(w)=I

ZJ,w.

Proof. By 2.11 and the results in Section 3, we have that

⊔
J�I

⊔
w∈WJ ,supp(w)=I

ZJ,w ⊂ Ū − U .

For i ∈ I , let Xi be the subvariety of P
(
End(Vi)

)
consisting of the elements that

can be represented by unipotent or nilpotent endomorphisms of Vi . Then Xi is closed
in P(End(Vi)). Thus, 
̄i (z) ∈ Xi for z ∈ Ū . Moreover, since G is simple, for any
g ∈ Ḡ, 
̄i (g) is represented by an automorphism of Vi if and only if g ∈ G. Thus if
z ∈ Ū − U , then 
̄i (z) is represented by an nilpotent endomorphism of Vi . Therefore
Ū − U ⊂ N .

Assume that w ∈ WJ with supp(w) �= I and N ∩ ZJ,w �= �. Let C be the
closed LJ,w-stable subvariety that corresponds to N ∩ ZJ,w. We have seen that ẇ

is a quasi-semisimple element of NG(LJ,w). Moreover, there exists a maximal torus T1
in ZLJ,w

(w)0 such that T1 ⊂ T . Since C is an LJ,w-stable non-empty closed subvariety
of CJ,w, ẇt ∈ C for some t ∈ T1. Set z = (ẇt, 1) · hJ . Then z ∈ N .

Since supp(w) �= I , there exists i ∈ I with i /∈ supp(w). Then −w�i = −�i .
Let v be a lowest weight vector in Vi . Assume that 
̄i (z) is represented by an endo-
morphism A of V. Then Av ∈ k∗v. Thus z /∈ N . That is a contradiction. Therefore
N ⊂ ⊔

J�I

⊔
w∈WJ ,supp(w)=I ZJ,w. The theorem is proved. �

Remark. Let G = PGL4(k) and I = {1, 2, 3}. Then the theorem implies that
Z{1,3},s2s1s3s2 ⊂ Ū . By 2.5, we can see that Z{1,3},s2s1s3s2 contains infinitely many
G-orbits. Therefore Ū contains infinitely many G-orbits.

4.4. Corollary. Let i ∈ I and J = I − {i} and w be a Coxeter element of W with
w ∈ WJ . Then ZJ,w = ⊔

K⊂J

⊔
w′∈WK,supp(w′)=I ZK,w′ .

Proof. Note that ZJ,w ⊂ Ū ∩ (
⊔

K⊂J ZK). Since Ū and
⊔

K⊂J ZK are closed, ZJ,w ⊂
Ū ∩ (

⊔
K⊂J ZK) = ⊔

K⊂J

⊔
w′∈WK,supp(w′)=I ZK,w′ . Therefore by 2.11, ZJ,w = ⊔

K⊂J⊔
w′∈WK,supp(w′)=I ZK,w′ . �

4.5. Let � : G → T/W be the morphism which sends g ∈ G to the W-orbit in T
that contains an element in the G-conjugacy class of the semisimple part gs . The map
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� is called Steinberg map. The fibers of � are called Steinberg fibers. The unipotent
variety is an example of Steinberg fiber. Some other interesting examples are the regular
semisimple conjugacy classes of G.

Let F be a fiber of �. It is known that F is a union of finitely many G-conjugacy
classes. Let t be a representative of �(F ) in T, then F = Gdiag · tU and F̄ = Gdiag · tŪ
(see [Spr2, 1.4]). It is easy to see that t (Ū −U) ⊂ N . Thus F̄ −F = Gdiag · t (Ū −U) ⊂
N . Therefore, if (w, �) is admissible and x−1 ·� dominant, then there exists some t ′ ∈ T

such that (U × U)(ẇẋt ′, ẋ) · hI (x−1�) ⊂ tŪ . Thus by 2.11 and the results in Section 3,⊔
J�I

⊔
w∈WJ ,supp(w)=I ZJ,w ⊂ F̄ − F . Therefore, we have

F̄ − F = N =
⊔
J�I

⊔
w∈WJ ,supp(w)=I

ZJ,w.

Thus F̄ −F is independent of the choice of the Steinberg fiber F. As a consequence,
in general, F̄ contains infinitely many G-orbits (answering a question that Springer
asked in [Spr2]).

4.6. For any variety X that is defined over the finite field Fq , we write |X|q for the
number of Fq -rational points in X.

If G is defined and split over the finite field Fq , then for any w ∈ WJ , |Z̃J,w|q
= |G|qq−l(w) (see [L4, 8.20]). Thus

|ZJ,w|q = |G|qq−l(w)(q − 1)−|I−J | =
(∑

u∈W
ql(u)

)
(q − 1)|J |ql(w0w).

Set L(w) = {i ∈ I | wsi < w}. Then w ∈ WJ if and only if J ⊂ L(w0w). Moreover,
if w �= 1, then L(w0w) �= I . Therefore

|Ū − U |q =
∑
J �=I

∑
w∈WJ ,supp(w)=I

|ZJ,w|q

=
(∑

w∈W

ql(w)

)∑
J �=I

∑
w∈WJ ,supp(w)=I

(q − 1)|J |ql(w0w)

=
∑
w∈W

ql(w)
∑

supp(w)=I

∑
J⊂L(w0w)

ql(w0w)(q − 1)|J |

=
∑
w∈W

ql(w)
∑

supp(w)=I

ql(w0w)+|L(w0w)|.
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Remark. Note that |Ḡ|q = ∑
w∈W ql(w)

∑
w∈W ql(w0w)+|L(w0w)| (see [DP, 7.7]). Our

formula for |Ū − U |q bears some resemblance to the formula for |Ḡ|q .
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