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1. INTRODUCTION 

This paper explores the foundations of, generalizes, and continues the 
work of Zadeh in [I] and [2]. Perhaps the most important generalization is the 
consideration of order structures beyond the unit interval. Because of this we 
have been able to develop a new point of view toward optimization problems. 
The significance of this work may lie more in its point of view than in any 
particular results. The theory is still young, and no doubt many concepts 
have yet to be formulated, while others have yet to take their final form. 
However it should now be possible to visualize the outlines of the theory. 

Throughout the development of the theory of fuzzy sets, pattern classifica- 
tion has been a seminal influence. One reason for this is the natural feeling 
that probability theory is not appropriate for treating the kind of uncertainty 
that appears in pattern classification; this uncertainty seems to be more of an 
ambiguity than a statistical variation. 

Similar difficulties arise in a wide variety of problems. It is characteristic 
of attempts to apply probability theory to them that it is difficult or impossible 
to estimate the distributions assumed to be involved, that there is uncertainty 
about the nature of the statistical assumptions (independence, etc.), or that 
certain parameters are ignored, taken as given, or found difficult to estimate. 
Under these circumstances, the chief use of probability theory has been to 
partially justify intuitively appealing procedures, to suggest procedures already 
found useful in statistics, or to provide some sort of insight into the nature 
of things. We believe that fuzzy sets should be able to do at least this much. 

Let us consider some specific examples. A housewife faces a fairly typical 
optimization problem in her grocery shopping: she must select among all 
possible grocery bundles one that meets as well as possible several conflicting 
criteria of optimality, such as cost, nutritional value, quality, and variety. 
The partial ordering of the bundles is an intrinsic quality of this problem. 

*This research was supported by Contracts Nonr 222(85) and Nonr 3656(08), 
Office of Naval Research. 
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Consider a machine for reading typewritten characters which computes 
correlations with various pattern prototypes, and extracts certain “features.” 
Actual samplesof the letter “A” may produce a variety of values of these 
criteria, and some of the criteria intended to detect “A”‘s may conflict, 
producing an ambiguity. There may very well be no way of determining 
whether or not some character is an “A”. Thus the set of characters 
intended to be apprehended as “A “‘s is a fuzzy set, a set without a well- 
defined boundary. The fuzziness appears to be an essential aspect of this 
problem. 

Partial orderings of optimality and fuzzy ambiguities are characteristics 
of many problems. Such problems are ill-posed in the sense that they do not 
admit unique solutions; in fact, they may not have solutions at all in the usual 
sense. The theory of fuzzy sets studies formal properties of ill-posed problems 
and ill-defined sets, much as ordinary set theory does for ordinary sets. 

The so-called “hard sciences,” such as physics, find crisp (as opposed to 
fuzzy) relations between their observables. The appropriate methodology 
for the so-called “soft sciences” (biology, psychology, etc.) may involve 
finding fuzzy relations between variables; even the variables may be fuzzy. 
We develop a theory of fuzzy relations, and discuss some applications. In 
particular, fuzzy relations enable one to study fuzzy systems. 

Fuzziness is more the rule than the exception in engineering design prob- 
lems: usually there is no well-defined best solution or design; increases in 
speed, compactness, or efficiency are paid for by increases in cost, difficulty 
of service, etc. The usual way out (other than ignoring the partial ordering 
or applying intuition) is to pick semiarbitrary “weighting factors” for the 
various design parameters, and designate as best the system with the greatest 
total “weight.” The significance and justification of this scheme are unclear, 
and so is the way the “weighting factors” are to be chosen; but the ways of 
intuition are still more unclear. Fuzzy sets can operate with the problem as 
posed, and clarify various operations, including weighting. 

We give a preliminary definition: Afuxzy set is a set with a function to a 
transitive partially ordered set (hereafter called a poset); a fuzzy set is there- 
fore a sort of generalized characteristic function. We habitually denote the 
poset by L and call the fuzzy set an L-fuzzy set or an L-set. Because of the 
generality of the mathematical definition, some important applications of 
fuzzy sets do not involve the intuitive concept of fuzziness at all. 

The use of posets imparts to the theory a special character which empha- 
sizes order theoretic statements. In order for it to make sense to ask what the 
maximum and minimum values of a fuzzy set are, the poset ought to be in 
general at least a complete lattice. Distributivity is also useful. 

It may be helpful to think of fuzzy sets as nonsimply ordered utility func- 
tions. It can then be seen that the theory is related to statistical decision 
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problems. For example, we might think of the poset as a “decision language,” 
that is, a space of decisions or evaluations which can be combined by the 
logical operations “and” and “or” (or “min” and “max”). 

Some problems have natural multicomponent optimality criteria as 
formulated but require solutions in the poset {yes, no} = (1, O}. To proceed 
toward a solution, we map from one poset to the other; it is particularly 
nice if the map preserves order, i.e., if it is a homomorphism of order struc- 
tures. For example, the weighting process described above is a homomor- 
phism from Rn (with the product ordering) to the simply ordered set R. 

Products of simply ordered sets are particularly common posets in the 
applications, and particularly natural mathematically. Nevertheless, in certain 
applications more exotic lattices may be found. In the pattern classification 
problem, K pattern decisions and their logical combinations might constitute 
our decision language. 

Although the topics we consider might be important for certain applica- 
tions, they do not involve any great mathematical depth. This paper deve- 
lops a basic language and a few elementary properties, mainly formal and 
algebraic, and prepares for new points of view. However, there are related 
topics of greater mathematical depth. These include an information theory 
for fuzzy sets, convex fuzzy sets, the fuzzification of various mathematical 
structures, and a more detailed treatment of the pattern classification problem. 
We hope to consider some of these in future papers. 

We have not tried to distinguish between philosophical, applied mathema- 
tical, and purely mathematical passages in this paper. It is our impression 
that most major assertions are susceptible to all three interpretations. 

We have produced a “logic of inexact quantities” within the framework 
of modern pure mathematics; the results concerning fuzzy sets are proved as 
rigorous mathematical theorems. Yet we hold that these results are for 
“inexact quantities.” This is an assertion that pure mathematics applies to 
certain philosophical and practical matters and is therefore an applied mathe- 
matical statement. 

It is not necessary to know particular fuzzy sets as exact mathematical 
functions to be able to make about them certain assertions of theoretical 
character which may have philosophical and/or practical significance. 

Our results, attitudes, and methods might raise some questions about 
foundations. It is somewhat unsatisfying philosophically to ground a logic 
of fuzziness in a logic of exactness; it would seem to ask for an independent 
postulational formulation. On the other hand, our method shows that if 
mathematics, as we use it, is consistent, so is fuzziness, as we formulate it. 

We have used the axiomatic method, in the sense that our underlying 
assumptions, especially about L, are abstract; it can thus be ascertained to 
what extent our results apply to some new problem. 
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2. L-FUZZY SETS 

The fuzzy set concept deals with situations in which there are evaluations 
for elements of a set X. The elements may be typewritten letters (called 
characters), and the evaluation of how much they look like the letter “A”; 
or the elements may be grocery bundles, and the evaluation their utility to the 
housewife (or “appeal,” if one wishes to consider subjective evaluation); or the 
elements may be acts and the evaluation corresponding payoffs or other results. 

X generally has some structure beyond that of a set, although we shall not, 
in this paper, make use of any special assumptions about it. For example, if X 
consists of all possible grocery bundles, or outputs of a factory, etc., it is 
customary to view x E X as a vector (called a commodity bundle in economics) 
whose components are real numbers designating the amounts of the various 
commodities involved (a negative component would have the meaning of an 
input in the factory example). Thus X has the structure of a vector space. 

In pattern classification we are most often concerned with the output of 
some machine. This output is usually a vector. For example, patterns might 
be reduced to n x 71 square arrays with the intensity of each square given 
(perhaps on a logarithmic scale); a pattern then appears as a vector in RrL2. 

If we think of speech wave forms as square-integrable functions on, say, 
the unit interval, then the set of such elements can be given the structure of a 
Hilbert space, with correlation as the inner product (more properly, the ele- 
ments of the space would be equivalence classes of functions). Thus the 
space X for speech recognition may be considered a Hilbert space. 

In practical applications, there is usually some concept of “nearness” on X, 
so that it is a topological space, if not a metric space. 

A fuzzy set on a set X is a sort of generalized “characteristic function” on 
X, whose “degrees of membership” may be more general than “yes” or “no.” 
In fact, we assume a set, from here on denoted L, of degrees of membership. 
In an optimization problem, L may express the degree of optimality of the 
choice (in X); in a classification problem, it may express the degree of mem- 
bership in a pattern class; in other contexts, other terminologies will appear. 

DEFINITION. An L-fuzzy set A on a set X is a function A : X -+ L. 
Thus fuzzy sets are to be considered equal iff they are equal as functions. 
If the elements of X have a name (e.g., “characters”), A will be called an 

L-fuzzy set of such elements (e.g., “A is an L-fuzzy set of characters”). We 
may drop the prefix ‘L-” if convenient, euphoneous, or unconfusing; or 
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we may drop the prefix “fuzzy”; but we will not drop both “L-” and “fuzzy.” 
This applies to other fuzzy concepts as well. 

We use the notation XY for the set theoretic product of X and Y; that is, 
XY = {(x, JJ) 1 x E X, y E Y}. X + Y will denote the disjoint union of X and 
Y, and Xr the set of all functions from Y to X. It is straightforward to verify 
the following set theoretic isomorphisms. 

PROPOSITION 1. 

x+ygy+x, x+(y+qE(x+y)+Z; XYr YX; 

X(YZ)Lx(XY)Z; x(Y+z)gxY+xz; (X+Y)ZgXZ+YZ; 

xy+= gg xyx=; (XY)Z gg XZYZ; (XY)Z g X". 

There is no associative law for exponentiation, that is, Xcyz) C$ (Xy)=, 
and when we write Xyz, we shall intend the stronger form X(rz). Since the 
set of all L-sets on X is Lx, the “base set” in an exponent expression will 
usually be L. Elements of L are “values,” so an element of LL is a “fuzzy 
value.” 

PROPOSITION 2. Lx can be given whatever operations L has, and these 
operations in LX will obey any law valid in L which extends point by point. 

For example, if a binary operation t is defined on L, it induces an opera- 
tion * on LX by pointwise extension: (A t B) (x) = A(x) * B(x), for A, B ELX 
and x E X. If some law, such as associative, commutative, or idempotent 
holds for * on L, it also extends to Lx. The cancellation law will not extend 
pointwise; if L is an integral domain, and X has more than one point, Lx will 
be a ring, but the cancellation law will fail. 

This could be made completely precise by considerations of “universal 
algebra” (see Birkhoff [3]), but it does not seem worth introducing this 
complication. Lx is the same as the product nzExLz of L’s indexed by X, 
and the above construction is essentially the usual “product process” found 
in algebra. If L had a topological structure, LX could be given the product 
topology. 

L might be a semigroup, a poset, a lattice, or a Boolean u-ring. In the next 
section we shall argue that the most appropriate categories for most purposes 
are those of complete lattices or complete lattice ordered semigroups. 

We shall use the notation 2 for the special and important lattice (0, I}, 
where 0 < I. If L is a lattice with zero 0 and infinity I, 2 will denote the 
sublattice (0, I}. The case L = 2 is essentially set theory, for elements of 
2x are characteristic functions of subsets of X. The case L = J, the closed 
unit interval [0, 11, is the special case of fuzzy sets in the original sense of 
Zadeh [I]. 
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3. THE STRUCTURE OF L 

In this section we discuss axioms which it might be desirable for L to 
satisfy, and we introduce important examples which we prove do satisfy 
various of these axioms. In general, the structure desired varies with the 
context. 

In most applications, for example in pattern classification, L ought to 
have some sort of order structure; for we wish to say “x is better than y,” 
“x is less expensive than y, ” “x looks more like an ‘A’ than y,” etc. Although 
it has usually been assumed that the ordering is simple, we have argued that 
this is often inappropriate. On the other hand, it is hard to imagine being 
able to get along with an ordering that is not at least transitive. Thus L is at 
least a (reflexive) transitive partially ordered set, or poset. 

In many examples, L was a product of simply ordered sets, with “vectors” 
a = (al ,..., a,), ordered by a a > b o ai 3 bi , i = l,..., n, as elements. 
This ordering is called the product ordering, and from here on we assume all 
products are ordered in this way. The most important properties of a product 
of simply ordered sets are included in the assertion that it is a distributive 
lattice, and is complete if each factor is. This follows from the following 
easily verified results. 

PROPOSITION 1. A simply ordered set is a distributive lattice. A product 
of distributive lattices is distributive, and a product of complete lattices is 
complete. 

For some applications, this type of L seems to be too special. For example, 
we might want L to be a language of decisions for a pattern classification 
problem, allowing combinations by “and” and “or.” In any case the mathe- 
matical theory of fuzzy sets does not depend upon L having any special form, 
but upon certain general assumptions, which we are now developing. 

The question of the existence of lub and glb (which we denote V and A 
respectively) may be somewhat illuminated by the following: Let A be an 
L-fuzzy set on X, and let Y C X. For convenience of explanation, let us agree 
that “u > b” means “u is better than b.” In the kinds of problems we are 
considering it is important to know how well or how badly things might 
turn out if a choice of some x E Y is made. It is clear that we will do better 
than glb (A(x) 1 x E Y> and worse than lub {A(x) 1 x E Y>, if these are 
defined; and it is clear that glb and lub are the most reasonable ways of 
obtaining bounds in a poset. 

If a poset has a glb and lub for each nonempty subset, it is a complete 
lattice, and from here on we assume L has at least this structure. In some 
applications we may not be interested in the glb, but only the lub; the alge- 
braic structure relevant to this case is briefly discussed later. 
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The lub of an indexed family ai of elements of L will be written Vi a, or 
V ai , and dually for the glb. We will sometimes use the notation 

VA =VbwI~~xl and AA=A{A(~)I~EX}. 

If L has zero 0 and infinity I, we will use the conventions that V o = 0 and 
Jj0=I. 

If L does not have 0 and I, they can be added without loss of generality, 
and we hereafter assume L does. It then becomes possible for a fuzzy set to 
be misp in the sense that it takes only the values 0 and I. 

Proposition 2 of the previous section enables us to conclude that Lx also 
has a lattice structure, namely that given by defining 

(A v B) (4 = 4%) v B(x) and (A A 4 (4 = 4x) A B(4, 

for A, B gLx and x E X. The associative, commutative, etc. laws for V and 
A on L extend to Lx. The ordering of Lx is given by defining A < B iff 
A(x) < B(x) for all x E X. Many special laws which hold for L, such as 
completeness or distributivity, will extend to Lx. 

The principle of duality for lattices says that if a result is true of L, so is 
its dual, obtained by interchanging A and V, and < and 2. It is important 
to notice that this extends to Lx, so that we have the Principle of Duality for 
Fuzzy Sets : If a theorem or identity is true of fuzzy sets, so is its dual. 

This principle is a labor saving device in proving theorems and identities. 
By analogy with the terminology of the special case of set theory, L = 2, 

we may call A V B the union of A and B, A A B the intersection of A and B, 
and read A < B as “A is contained in B.” 

Another assumption about L which seems intuitively natural, and which 
plays an important technical role, is distributivity. Actually, the law is 
neither natural nor very useful in a complete lattice unless it occurs in a 
strong form which we call the complete distributive law : 

a A v bi = v (a A h). 

By the principle of duality, this identity is equivalent to its dual. We will 
call a complete lattice which satisfies the complete distributive law a com- 
pletely distributive lattice. 

To summarize the discussion so far, we assume that L is a completely 
distributive lattice with zero and infinity elements. 

Since a lattice is in particular a commutative semigroup (by a semigroup 
we mean a set with an associative binary operation) with respect to either 
lattice operation, it satisfies the usual generalized (finite) commutative and 
associative laws (see Chapter 1 of [4]). F or a complete lattice, more general 
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forms of these laws are valid. A particularly useful form of the commutative 
law is 

y y aij = v v aij - 

A very general law of Birkhoff ([3], p. 53) is valid for all complete lattices 
and includes the general commutative, general associative, idempotent, and 
above commutative laws. For each index i let @‘i be a set of indices, let 
@ = Ui oi , and let a, be a family of elements of L indexed by j E @. Then 
Birkhoff’s law is 

PROPOSITION 2. The complete distributive law is equivalent to the following, 
also called the complete distributive law : 

iY,ai AJLbj= V ai Ahe 
(i,j)EQ!P 

PROOF. Obviously the law of the proposition implies that of the definition 
(let @ = (1)). Conversely, 

where the last step uses, say, BirkhofYs law. 0 
The duals are equivalent to each other and to the original law. 
We now continue the discussion which initiated this section by asking 

whether products of complete simply ordered sets obey the complete distri- 
butive law. The usual product argument shows it suffices to establish the law 
for the factors. Strangely enough, this involves topological considerations. 
The interval topology of a simply ordered set is that generated by the sub- 
basis of half-open intervals, or by subsets of the form {X 1 x > a) and 
{x I x < a}. 

LEMMA 1. Let L be a complete simply ordmed set with the interval topology. 
Then a montone increasiq net in L with bounded range converges to the supre- 
mum of its range. 

LEMMA 2. The lattice operations V and A are continuous in a simply 
ordered set with the interval topology. 
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THEOREM 1. A complete simply ordered set L obeys the complete distributive 
law. 

PROOF. It suffices to establish the first form of the law. Let a, b, EL for 
i E 0. Let D be the directed set of allfinite subsets of @, directed by inclusion. 
Then bs = viss b, and cs = vies a A b, for S E D define nets in L. Lemma 1 
implies bs -+ b = vip19 bi and cs -+ c = /fiE9 a A bd . 

By Proposition 1, L is distributive, and by induction the complete distri- 
butive law holds for all finite index sets. Thus 

cs=VaAb,=aAVbi=aAbs. 
iES LS 

bs -+ b and the continuity of A imply that a A bs + a A b. Since cs has a 
unique limit, we conclude that c = a A b. 17 

The appropriate notion of homomorphism for complete lattices is more 
special than that for general lattices. A mapping r! : L, + L, between com- 
plete lattices is a complete lattice homomorphism iff it preserves arbitrary lub 
and glb, that is, iff t Vi ai = Vi 4aj , and dually. Complete lattices and com- 
plete lattice homomorphisms form a category (see Section 5). 

The minimax inequality 

holds for any lattice, and generalizes to infinite sets of indices for complete 
lattices. 

In many applications the simply ordered sets are subintervals of the reals. 
For most purposes things are unchanged by applying a preliminary order- 
preserving transformation and adding endpoints, so that we may assume we 
are dealing with J = [0, 11. The intervals [- co, + co], [0, + co], 
[- 1, 11, and j are especially interesting because they are closed under 
multiplication (in the ordinary sense of real numbers). This multiplication 
is very important in applications for taking percentages, forming averages, 
etc. The lattice and multiplication structures are interrelated in a way which 
will also appear in other contexts, and to the abstract study of which we 
now turn. 

DEFINITION. A multiplicative lattice is a lattice M closed under an operation 
* which satisjies the “distributive” laws, for all a, b, c E M 

a c (b V c) = (a * b) V (a * c) and (a V b) * c = (a *c) V (b * c). 

Identities involving *‘s in multiplicative lattices will not remain identities 
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when A and V , and > and < are interchanged; thus the Principle of Duality 
is not valid. But there is a principle of left-right symmetry, as exhibited in 
the two “distributive” laws above. 

PROPOSITION 3. Let a, b, c be elements of a multiplicative lattice M. Then : 

(1) a<b =>c*a<c*bandacc<b*c; 

(2) (a A b) * (a V b) < (b * a) A (a * b). 

PROOF. 

a<bz-b*c=(aVb)*c=(a*c)V(b*c)=-a*c<b*cc; 

(a A b) * (a V b) = [(a A b) * al V [(a A b) * bl < (b * a) V (a * b). 0 

The structure we had in mind for the above examples is still more restric- 
tive, and is given by the following 

DEFINITION. A complete lattice L which is also a semigroup with identity 
under * and which satisfies the “distributive” laws, 

a * V bi = V (a * bi) and 
z z 

()/ ai) * b = V (ap. * b) 
z 

is a complete lattice ordered semigroup, abbreviated closg. The semigroup identity 
is called the identity of L. If there is an element 0 of L such that, for all a EL 

OAa=O*a=a*O=O 

it is called a zuo for L. If there is an element I in L such that, for all a EL 

IVa=I*a=a*I=I 

it is called an injinity for L. If * is commutative, we call L a commutative closg, 
if L is distributive as a lattice we call it a distributive closg, and if L satisfies 
the complete distributive law as a lattice, we call it a completely distributive 
closg. 

It is easy to verify that all the above-mentioned intervals are commutative 
completely distributive closg’s with identity. AI1 have 0 and I in the lattice 
sense, and J, [ - co, + co], and [0, + co] have zeroes in the closg sense if 
we make the appropriate conventions regarding multiplications of infinities. 
By the usual product argument, any product of these intervals will also be a 
commutative completely distributive closg with identity and lattice 0 and I. 

PROPOSITION 4. A complete lattice is a crOsg with A as * ;f it is completely 
distributive. 
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This easily verified remark shows that there will be no loss of generality, 
and indeed a slight gain, if we assume that L is a completely distributive 
closg with lattice (but not necessarily closg) zero and infinity, and this 
assumption is made throughout most of the rest of this paper. It is also 
necessary to assume that the (lattice) infinity I is a semigroup identity. 

As with multiplicative lattices, there is no principle of duality, but there 
is a principle of left-right symmetry for closg’s. If * = A the principle of 
duality holds again, and the dual of this * is V. 

In all of these intervals * has no zero divisors (that is, a * b = 0 5 a = 0 
or b = 0); however products of intervals will have zero divisors. 

We point out that since LX has the algebraic structure of L, the operation * 
is defined for A, B eLx by A * B(x) = A(x) * B(x). 

We will see later that the algebraic structure of the set of fuzzy relations 
(or systems) on a set is that of a closg. 

DEFINITION. A mapping e: L, --+L, between closg’s is a closg homomor- 
phism z# it preserves v, A, and x. 

closg’s with closg homomorphisms form a category. 
To summarize, we will assume that L is a complete lattice ordered semi- 

group with zero 0 and semigroup identity I, which is also a lattice infinity. 
Most of the results of this paper are valid under the more general assump- 

tion that L has an operation v defined on subsets and a binary operation * 
such that: 

(1) Birkhofl”s generalized law holds for V; 

(2) * is associative and has a zero 0 and identity I; 

(3) the two complete distributive laws relate V and *; 

(4) O//a=aandIVa=I. 

We then define a transitive reflexive order < on L by a < b o a V b = b, 
and it is easy to see that V is a least upper bound operator, 0 is a zero, and I 
is an infinity. Also a < b + a * c < b * c. For the proofs of these assertions, 
recall that Birkhoff’s generalized law implies the general commutative, asso- 
ciative, and idempotent laws for V. A principle of left-right symmetry holds. 
Probably the L’s which arise in practice will satisfy more than these minimal 
requirements; for example, they may be closg’s. 

Notice that our L’s, viewed as abstract logics, are (generally) negationless, 
and that the order relation can be interpreted as implication. However, 
if L is a complete distributive lattice (with 0 and I), it is relatively pseudo- 
complemented (see [3], p. 147). If complemented it is, of course, a Boolean 
algebra. Cohen’s independence results can be obtained, I understand, from 
Boolean algebra valued models for set theory. 
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We conclude this section with some additional examples. The set of all 
left ideals of an (associative) ring with unit is a suitable complete lattice 
ordered semigroup. The set of regular events (words) in a free semigroup 
is a (noncomplete) lattice ordered semigroup. The set of open sets of a 
topological space is an (upper semi-complete) semi-lattice ordered semi- 
group with zero and suitable identity. If one attempts to consider it to be 
a complete lattice by defining Ai Ui = Interior (ni U,), the distributive 
law fails. 

4. FUZZIFICATION 

Fuzxification is the process of imparting a fuzzy structure to a definition 
(concept), theorem, or even a whole theory. This process is not necessarily 
unique, as will be seen. In a sense, most of this paper is devoted to fuzzifying 
set theory. A fundamental method is given by the Principle of Fuzzification : 
A fuzzy (orL-fuzzy or L-) something is anL-set of somethings (i.e., anl-fuzzy 
set on the set of somethings). 

This is not a mathematical result; rather it is an heuristic aid in formulating 
and subsequently interpreting definitions. We will use the terminology it 
suggests whenever possible, but it must be noted that it does not apply to all 
cases, and even when it applies, it does not necessarily give the most appro- 
priate fuzzification. 

As an example, we formulate the terminology for fuzzy sets and subsets. 
Recall that an element of Lx is an L-fuzzy set on X, or more simply an L-set 
on X, or a fuzzy set on X, but not a set on X. By the Principle, an L-fuzzy 
subset of X is an L-set of subsets of X, that is, an element of L2x. An L-fuzzy 
L-set on X (or a fuzzy L-set, or even a fuzzy fuzzy set on X) is an element 
of LLX. 

A somewhat analogous situation obtains for relations. An L-r-elation between 
sets X and Y is an element of L XY. 
is an element of LLxy. “ 

A fuzzy L-relation between X and Y 
Relation” with no prefix means “2-relation,” so an 

L-fuzzy relation might mean an element of Lzxy. This terminology is con- 
fusing and fortunately is not used later in this paper; but notice that the 
principle of fuzzification suggests the L-fuzzy 2-relation, although it is not 
the most natural fuzzification for many purposes. Because 2 &L, L-fuzzy 
2-relations are in particular L-fuzzy L-relations. The L-relation was first 
suggested by Zadeh [3] for L = J and X = Y. 

An L-fuzzy mapping from X to Y is an L-set of mappings from X to Y, 
that is, a mapping from Yx to L, or an element Lyx. If X and Y have more 
struture than sets, it is appropriate to correspondingly restrict the mappings. 
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For example, if X and Y are vector spaces, an L-fuzzy linear map from X to Y 
is a fuzzy set of linear maps from X to Y, i.e., an element of LL1ncx*y). 

It is very important to notice that all fuzzy things are in particular fuzzy 
sets, i.e., functions from some set to L; fuzzy sets are the basic building 
blocks for all fuzzy objects. It therefore follows that all fuzzy things enjoy 
most of the same algebraic properties L does. 

For example, let & and 9 be L-fuzzy L-sets on X. Then ~2 V 9 is 
defined by (-02 V 93) (A) = &(A) \I B’(A), where A is an L-set on X, 
JZZ’ A a is defined dually, and the set of all L-fuzzy L-sets on X is a lattice; 
it has 0, I and is completely distributive since L is, the Principle of Duality 
holds, etc. 

Things unfuzzified or only trivially fuzzified are tip; crispness is the 
qualitative opposite of fuzziness, although technically it is a special case. 

DEFINITION. Let L have 0, I. An L-fuzzy set on X is crisp if it takes only 
the values 0, I on X. 

It is always possible to specialize some fuzzy object or structure back to 
a (crisp) set theoretic one by setting L = 2. Sometimes, in order to obtain 
the original set theoretical model, it is also necessary to impose a restriction 
to singletons. For example, a fuzzy L-subset may be made conceptually 
equivalent to an ordinary subset by requiring it to be crisp, and non-0 only 
on singleton subsets. 

DEFINITION. An L-fuzzy set on X is a singleton if it takes the value 0 
for all x E X except one. Let x E X; then xf is the crisp singleton on X defined 
byx+(y)==Oifx#yandx+(y)=Iifx=y,fory~X. 

For example, let A C X. Then A+ is the crisp L-fuzzy subset of X which 
is non-0 only on A. xf is parallel to {.z} in ordinary set theory. 

We shall not always be explicit about specializations to and analogies with 
ordinary set theory in the following. 

v and A are fuzzy fuzzy sets on X; for v : A -+ V A, where A E Lx, 
and VAEL. 

There is no reason not to have fuzzy fuzzy fuzzy sets, L,-fuzzy L,-fuzzy 
sets, etc. Indeed, there is no end to the possible levels of fuzzification. 

5. CATEGORIES AND THE COMPOSITION OF FUZZY MAPS 

A category w is a collection of objects, such as groups, together with, for 
each pair of objects X, Y, a (possibly empty) set Mor (X, Y) of “maps” 
or morphisms from X to Y of the “appropriate” kind, such as group homo- 
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morphisms. If X is an object of V, write X E V. The appropriate maps for % 
are called %-morphisms. Mor (X, Y) and Mor (X’, Y’) are supposed to be 
disjoint if (X, Y) # (X’, Y’). It is assumed that a map from X to Y can be 
composed with one from Y to 2 to yield one from X to 2; if f E Mor (X, Y) 
and g E Mor (Y, Z), then their composition is denoted g of E Mor (X, 2). 
Composition is assumed to be associative (when it makes sense for it to be), 
and finally, there is supposed to be, for each X in 92, an identity 
map Ix E Mor (X, X), such that for eachf E Mor (X, Y), each g E Mor (Y,X) 
and each YE%‘, folx=f and Ixog=g. If fEMor(X,Y), 
write f : X + Y or X L Y. To emphasize %? write MorV (X, Y). 

This concept, though very abstract and general, is not very deep. It will 
enable us to describe a fuzzification of whole theories in a unified manner, 
and it motivates some of our results. 

Categories are very common in mathematics. Groups with group homo- 
morphisms, sets with maps, lattices with lattice homomorphisms, complete 
lattices with complete lattice homomorphisms, closg’s with closg homo- 
morphisms, topological spaces with continuous maps, and measure spaces 
with measurable transformations are, for example, all categories. Lang [4] has 
further discussion of category theory with notation similar to ours. 

DEFINITION. Let V be a category, and let X, Y E %. Then an L-fuzzy 
9?-morphism from X to Y is an L-fuzzy set of %?-morphisms from X to Y, that is, 
an element of LMor(X.Y). If F ELMO*(~*Y), write F : X-t Y or X -% Y. We 
may also call F a fuzzy V-map. 

The above definition is in accord with the Principle of Fuzzification. If V 
is some specific category, say linear spaces and linear maps, we use a more 
specific name, L-fuzzy linear maps. 

DEFINITION. If F : Y + Z and G : X + Y are L-fuzzy %‘-morphisms, 
their composition F o G : X---f Z is defined, for h E Mor (X, Z) by 

FoG(h)=@‘(f)*G(g)/g:X-Y,f:Y-Z,andfog=hj. 
f,s 

If L = 2, and if F and G are (crisp) singletons, V becomes existential 
quantification, * becomes and, and the above reduces to the ordinary com- 
position. Notice particularly that for L = J the two main *‘s we allow, A and 
multiplication, agree on the sub-closg 2, and agree with logical and; thus r 
in either case generalizes “and.” 

PROPOSITION 1. Composition of fuzzy V-maps is associative. 
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PROOF. Let X% Y % 2 1 W be fuzzy %-morphisms, and let 
i E Mor (X, W). Then 

=V{F(f)*G(g)*H(h)Ifogoh=i). 

Similarly, (F o (G o H)) ( i can be shown to be equal to the same expres- ) 
sion. 0 

DEFINITION. The identity L-fuzzy map on X E % is the crisp singleton 
(Ix)+ in LMortx* y). W e will also denote it lx if this is not confusing. 

PROPOSITION. lx is an identity for faxzy V-morphism-s; that is, for every 
FEMor(X, Y), lyoF=Fo lx =F. 

PROOF. 

and the other identity is proved similarly. 0 
These two basic properties of composition are summarized by the fol- 

lowing, for which they constitute a proof. 

THEOREM 1. Let ‘3 be a category. Then the objects of V with the L-fuzzy 
V-morphisms and the above definition of composition constitute a category, 
which we denote by L’. 

This construction fuzzifies, in particular, set theory, but the fuzzification 
involves fuzzy maps and crisp sets. Ways of combining fuzzy sets and maps 
are discussed in later sections, and set theory is fuzzified more satisfactorily. 
The complete fuzzification of other categories is a difficult and important 
problem which we hope to discuss elsewhere. 

A fuzzy %-map is to be thought of as a fuzzy processor of objects of %; 
the composition of two fuzzy maps then corresponds to processing first by 
one and then by the other. 

In the case c is A there is, as usual, a dual composition, defined by the 
dual of the above expression, which we denote by b. It satisfies the duals of 
the above properties; since they are self-dual, it satisfies the conclusion of 
Theorem 1. Since * does not distribute over A in general, these considera- 
tions do not apply to arbitrary closg’s. 
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This section ends with some purely categoric theoretic results and con- 
cepts which will be of use, or at least of interest, in the sequel. Let % be a 
fixed category. 

It is possible to characterize 1 - 1 and onto maps, say for sets, in a way 
which makes sense in any category. However in other categories the maps 
which satisfy these conditions will not necessarily be the maps which are 
1 - 1 and onto in the set theoretic sense. Thus it becomes an interesting 
problem to determine just what they are in each given category. These maps 
are given new names, as follows: f E Mor (X, Y) is a coretraction in %? iff 
3gEMor(Y,X) such that g of = lx. f E Mor (X, Y) is a retraction 
inViff 3gEMor(Y,X)such thatfog=lr.fEMor(X,Y)isaniso- 
morphism in %7 iff 3g E Mor (Y, X) suchthatgof=lrandfog=lr. 

f is an isomorphism iff it is a coretraction and a retraction. One half of this 
assertion is obvious, and the other can be seen as follows: Suppose 3g, g such 
thatgof=lxandfog=lr.Then 

Elements of Mor (X, X) are called endomorphisxw of X. An endomorphism 
which is an isomorphism is called an automorphism. The set of endomorphisms 
of X is denoted End (X) and of automorphisms Aut (X). 

PROPOSITION 3. End (X) . 1s a semigroup with identity and Aut (X) is a 

group- 

PROOF. The composition of any two endomorphisms is defined and is 
another endomorphism. By definition of category, composition is associative 
and there is an identity in Mor (X, X). Thus End (X) is a semigroup with 
identity. To check that Aut (X) C End (X) is a group, it suffices to note that 
each automorphism of X has an inverse, by definition of isomorphism, and 
that said inverse is also an automorphism. 0 

If for f E Mor (X, Y) there exists some g E Mor (Y, X) such that 
gof=lxandfog=ly, then f is invertible and g is an inverse off; we 
may write g = f -1. We then have the following 

PROPOSITION 4. f is invertible $f is an isomarphism. The inverse is unique 
if it exists. f invertible + f --1 invertible and (f -l)--1 = f. Furthermore, if f 
and g are invertible and f o g is defined, then (f o g)-1 = g-1 of -1. 

PROOF. The first assertion is a translation of definitions. The second 
follows from the same argument used to prove that f is an isomorphism iff f 
is a coretraction and a retraction, for of two inverses g, g to f, each will be 
both a left and a right inverse. The third assertion follows immediately from 
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the definition. The last is proved by noticing that (f o g) (g-1 of-l) = 1 
and (g-l of-l) o (f o g) = 1, by using associativity. 0 

A subcategory of a category %? is a category which has as objects and mor- 
phisms subcollections of those of V?. 

The notions of direct sum and direct product also can be formulated so as 
to make sense in any category. Not all categories will have direct sums and 
products. 

Since we deal with both order and category concepts, it is interesting to 
notice that a poset L can be regarded as a category, as follows: the objects 
are the elements of L; and for a, b EL, Mor (a, b) is some one point set, say 
(o}, if a = 6, and Mor (a, b) = o otherwise. Associativity corresponds to 
transitivity and the existence of identities to reflexivity. L has direct sums and 
products as a category iff it is a complete lattice as a poset. 

6. RELATIONS 

The importance of relations is almost self-evident. Science is, in a sense, 
the discovery of relations between observables. Zadeh [S] has shown the 
study of relations to be equivalent to the general study of systems (a system 
is a relation between an “input” space and an “output” space). In addition, 
relations play a centralrole in the purely mathematical development of our 
theory. 

Difficulties arise in the so-called “soft” sciences because the relations 
involved do not appear to be “hard,” as they are, say, in classical physics. A 
thoroughgoing application of probability theory has relieved many difficulties, 
but it is clear that others remain. We suggest that further difficulties might 
be cleared up through a systematic exploitation of fuzziness. 

Introspection will show that one’s concept of the relation “x is better 
that y” for x and y cars, novels, or politicians, is “fuzzy” in some sense. We 
suggest that the sense discussed here may be appropriate for problems of 
biology, psychology, engineering design, and economics. 

Recall that an L-relation R is an element of Lxy, and an L-fuzzy L-relation 
is a function 9 : Lxy+L. Let R(X, Y; L) denote the set of L-relations 
from X to Y, and 9(X, Y, L) the set of fuzzy L-relations from X to Y. 

In system theory a fuzzy L-relation corresponds to a fuzzy class of fuzzy 
systems (see Zadeh [2]). This section develops an algebraic theory or calculus 
of fuzzy relations, which is also an algebraic theory or calculus of fuzzy 
systems. 

If R is an L-relation from Y to Z and S is an L-relation from X to Y, the 
composition R o S of R and S is defined by 

(R 0 9 (x, 4 = V,(W Y) * WY, 41. 

409/18/1-1x 
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PROPOSITION 1. Composition of L-relations is associative. 

PROOF, 

= v p(x> Y) * v WY, 4 * w, w,,l 
Y * 

= [R 0 (As 0 T)] (x, w). q 

Let X be a set. Then Ex denotes the (crisp) identity relation of X defined 
by Ex(x, x’) = 0 if x # x’, and E&x, x) = I. We may write E for Ex . 

PROPOSITION 2. The E’s are identities; i.e., zf R is an L-relation from X 
to Y, E,. o R = R o Ex = R. 

PROOF. EY o R(x, y) = V,, {R(x, y’) * Er(y’, y)} = R(x, y), and similarly 
for the other. 0 

These two propositions show that there is a category R(L) whose objects 
are sets, and whose morphisms are L-relations; that is, for sets X, Y, 
Mor (X, Y) = R(X, Y; L). 

An L-relation R from X to Y is functional iff for every x E X there is a 
unique y E Y such that R(x, y) > 0. Then a crisp functional relation is an 
ordinary function. The above construction can be repeated using functional 
relations as morphisms, obtaining a category which specializes to the category 
of sets and maps for L = 2. 

If * is A, the construction can be carried out for the dual composition 8 
of relations. 

By the general fuzzification process of the previous section, LRfL) is also 
a category, whose objects are sets and whose morphisms are fuzzy L-rela- 
tions; that is, for X, Y sets 

Mar (X, Y) = LR(X.YiL) = W(X, Y, L). 

The identity in LRtL) is (E,)+ which we write as bx. Composition, to be 
explicit, is defined, for W E a( Y, 2; L), Y E W(X, Y, L), and T E R(X, Z; L), 
bY 

(BOY)(T)= VRS(9(~)*~(~)~~o~=~}, 

and is associative. We will write 9%‘(L) for LRcL). 
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Actually, the algebraic structure of these collections of relations is still 
richer. Both R(X, Y, L) and 92(X, Y; L) are of the form Ls, for some set S 
(S is XY and R(X, Y; L) respectively), and therefore are, in particular, 
L-sets. Thus they take on the algebraic structure of L, as usual. 

In particular, they are posets, and it makes sense to consider the following 
alternate definition of composition for fuzzy L-relations 

(W o 9’) (T) = V {.54?(R) t Y(S) j R o S < T). 

It is easy to verify that there is a category whose objects are sets, whose 
morphisms are fuzzy L-relations, and whose composition is defined in this 
way. 

An L-fuzzy L-relation from X to Y is functional if it is non-0 only on 
functional L-relations. Then there is a sub-category of 9(L) whose morphisms 
are the functional fuzzy L-relations. 

Composition and the lattice operations in R(X, Y; L) and 92(X, Y; L) 
are related as follows: 

PROPOSITION 3A. Let R,Ri ,T E R( Y, 2; L), S,Si/y U E R(X, Y; L). Then 

(1) If 0 is the relation identically 0, 0 o R = R o 0 = 0; 

(2) R<T=>RoS<ToS,andS<U~RoS<RoU; 

(3) R 0 vc Si = vi (R o Si), and (Vi Ri) 0 S = Vi (Ri 0 S); 

(4) R 0 l\i Si < Ai (R 0 Si>s and (/\iRi)oS~A\,(RiOS),for*=A. 

PROOF. The first and second assertions are essentially obvious. The two 
assertions in each of (3) and (4) are symmetric, so it suffices to prove one of 
each. This is done as follows: 

(R 0 ‘f Si) (~9 2) = V 1 [V Sdx, Y)] * R(Y, 211 
Y a 

= )’ y (Si(X, Y) * WY, 2))> = y (R 0 Si) (X,X); 

(R O /) si) lx, 2, = V I[ 4 si(x, Y)] * R(Y, 2,1 
II 

= V A {Sdx, Y) * R(Y, z)> 

< L ;/ {Si(Xs Y) * R(Y, 2)) = A (R 0 S,) (J’s 2). q 
1 Y i 

PROPOSITION 3B. Exactly the same results as in Proposition 3A hold fw 
9, &?< , .7 E W(Y, Z; L) and 9’, .44i , % E a(X, Y; L), with either definition of 
composition. 
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The converse of R E R(X, Y, L) is the L-relation R E R( Y, X, L) defined 
b,y R(Y, 4 = R(x, Y), Th e converse of W E G!?(X, Y; L) is the fuzzy L-relation 
3 E &!( Y, X; L) defined by g’(R) = %?(I?). 

PROPOSITION 4. Let R,R, E R(X, Y; L) and S E R( Y, 2; L). Then : 

(1) (S o R)” = ri o 9; 

(2) (Vi Ri)” = Vi l& , and dually; 

(3) (I?)” = R. 

Furthermore the same results hold for W, g’t , 9’ (with either composition). 

PROOF. 

(v 4)” (Y, 4 = (v Ri) (~3 Y) = v (R&s Y)) z I 8 

= y @i(Y, 4) = (y “i) (Y, 4. 

(W 0 9’)” (T) = i/ {W(R) * 9’(S) 1 R o S < ?+) 

= v {9(R) * Y(S) / $ o I? < T} = (9 o 8) (T). 

The other assertions are either very easy or similar to the above. q 
Since R(L) and 9(L) are categories, the abstract notion of inverse, as 

defined in the previous section, becomes available as a notion of inverse for 
relations. To be more concrete, an L-relation R is inwertible iff 3 an L-relation 
S such that R o S = E and S o R = E; then S is an inverse to R, and we 
write R-l = S. Similarly for an L-fuzzy L-relation 9. The general category 
results on inverses (Proposition 4 of Section 5) give us the following 

PROPOSITION 5. The inverse L-relation is unique ;f it exists. If R is inver- 
tible, so is R-1, and (R-l)-l = R. If R and S are invertible and R o S is defined, 
then R o S is invertible and (R o S)-1 = S-l o R-l. And similarly for fuzzy 
L-relations. 

It would seem that invertible L-relations and fuzzy L-relations must be 
very special and are probably not very fuzzy. Furthermore, the similarity 
of the formal properties of converse and inverse, and the facts for L = 2 
suggest that there should be a strong relationship between converse and 
inverse. These conjectures are proved below provided * has no zero divisors 
in L. Theorem 1A fails if there are: if L = J2, * = A, (1,O) = u, (0, 1) = v, 
x = Y = {1,2}, and R is defined by R(i,j) = u if i #j and R(i, i) = v for 
i, i E { 1,2}, then R-l = R, but R is not crisp. 
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THEOREM 1A. If * has no zero divisors, the invertible L-relations are the 
set isomorphisms (i.e., the crisp 1 - 1 onto set mappings). 

PROOF. Let R E R(X, Y; L), S E R(Y, X; L) such that S o R = Ex 
and R o S = EY, i.e., such that V, (R(x’, y) * S(y, x)} = E,(x’, x) and 
V, {S(y, x) * R(x, y’)) = E,(y, y’). These imply: 

(1) Vx’ # xVy I+‘, y) c S(y, x) = 0 and 
(2) Vx V, {R(x, y) * S(y, x)} = I; and 
(3) Vy # y’Vx R(x, y’) t S(y, x) = 0 and 

(4) VY Vz {W 4 * Nx> Y)) = 1. 

Now suppose R is not crisp, i.e., suppose 3x,, y0 such that 

BY (1) 

R(xo,yo) =a#O,I. 

VLx # qlq% , 33) * sty, 9 4 = 0, 

i.e., a * S(y,, , x) = 0. Since a < I, by (4) there must 3 an 2 # x0 such that 
S(y,, , 3) * R($ y,J # 0. Then a * [S(y,, , R) * R(R, ya)] # 0 since there are 
no zero divisors. But also [a * S(y, , a)] * R(R, y,,) = 0, contradicting asso- 
ciativity. Thus R is crisp, and by symmetry, so is S. 

Then (2) translates to 

and (4) to 

Vx3y : R(x, y) = S(y, x) = I, 

Vy3x : R(x, y) = S(y, x) = I. 

Now suppose R&y) = S(y, x) = I, and also R(x, y’) = I for some 
y # y’. Then (3) 3 R(x, y’) * S(y, x) = 0, and one of R(x, y’), S(y, x) is 0, 
again a contradiction. Thus (3) means 3 a unique) 

and by symmetry 

Vx3ly : R(x, y) = S(y, x) = I, 

Vy3lx : R(x, y) = S(y, x) = I, 

and of course R(x, y) = S(y, x) = 0 otherwise, so that R and S are functions 
and isomorphisms, as well as crisp, and R-1 = S. 0 

THEOREM 1B. The invertible~zy L-relations in W(L) are of the form R+, 
where R is an invt&ble L-relation; inverse agrees with converse when it eax3t.r. 
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PROOF. Suppose .%? E W(X, Y, L), Y E W( Y, X; L) such that 9 o 9’ = ~9~ 
and Y 0 9? = gx. Then: (1) if R o S # Ex, B(R) * Y(S) =O; (2) 
3R,SsuchthatRoS=E,and9?(R)*9’(S)>0;(3)ifSoR#Ey, 
9(R) * Y(S) = 0; (4) 3R, S such that S o R = EY and 9(R) * Y(S) > 0. 

Let R, S be as in (2). Then 9?(R) * Y(S) > 0, so that S o R = EY by (3). 
Thus R and S are inverses and R is invertible. 

Let S be as above and suppose 3R’ such that W(R’) > 0. Then 
WoY(R’oS)>O,soR’oS=E,.AlsoYo~(SoR’)>O,soSoR’=E,. 
By uniqueness of the inverse of S, R = R’. 

Thus g is I on R and 0 elsewhere, that is, W = R+, and symmetrically 
for 9, S. 0 

If we use the alternate definition of composition (with R o S < T instead 
of R o S = T) there are no invertible fuzzy L-relations, for it is impossible 
that 99 o 9 = &‘, since F > E j W o Y(F) > W o Y(E) = b(E) = I, 
but we are supposed to have E #F G- 9 o Y(F) = 0. 

In particular, we have determined Aut (X) if L has no zero divisors; it is 
essentially the same as in the category of sets. Even if L has no zero divisors, 
coretractions and retractions are not necessarily crisp. 

The conjecture that inverse and converse agree is true in full generality. 

THEOREM 2. The inverse of an L-relation (when it exists) equals the 
converse. 

PROOF. Say 9 is invertible and W-l = Y. Then 

SoR(x,a)=VR(x,y)*S(y,n)=O if x # $7 
Y 

and 

RoS(y,jj)=VS(y,x)*R(x,jj)=O if Y ZF 
5 

Now R = R o S o R, so we obtain 

R&y-) = j/ R(n, y) 4 S(y, x) * R(x, 7) = R(a, 7) * S(y, a) * R($, y), 
Z.Y 

the last step because R(3, y) * S(y, x) * R(x, 9) = 0 unless y = 7 and x = 3, 
by the observations above. Therefore by (1) of Proposition 3 of Section 3, 

and by symmetry S(y, 3) < R(R,~). Therefore R(f, jr) = S(f, n), for all 
R, 7; i.e. S = R. iJ 

In the previous section we showed that the set of endomorphiims of an 
object in a category is a semigroup with identity (Proposition 3). Thus 
R(X, X, L) and @(X, X; L), which we hereafter denote by R(X; L) and 
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W(X, L) respectively, are semigroups with identity. Combining this with 
earlier results in this section (Proposition 3), we see that we have already 
proved the following: 

THEOREM 3. R(X,L) and W(X,L) are completely distributive closg’s 
with identity, zero, and lattice theoretic infkity, when we use composition. 

This is in addition, of course, to the closg structures they have already 
inherited from L, using * as multiplication. It now follows ([3], p. 202) that 
they are residuated lattices (with respect to composition). 

An L-relation R on X is symmetric iff R = 8, and is transitive iff R o R < R. 
Similarly for fuzzy L-relations. 

PROPOSITION 6. The intersection (i.e., injinrum) of symmetric L-relatiom 
is symmetric, and of transitive L-relations is transitive; the union (i.e., supre- 
mum) of symmetric L-relations is symmetric. And similarly for fuzzy L-relations. 

The assumption * = A is required for the results on transitivity. 

PROOF. Let Ri E R(X; L) such that Ri = l?, . Then 

and dually. NOW let Rd E R(X; L) such that R, o Ri < Ri . Then 

And similarly for W(X, L). 0 

COROLLARY. Every R E R(X; L) h as a least symmetric L-relation containing 
it, a least transitive L-relation containing it, and a greatest symmetric L-relation 
contained in it. Similarly for R(X, L). 

PROOF. All assertions are proved similarly to the first, which goes as 
follows: Let Q be the set of all symmetric L-relations S such that R < S. 
Q # o since I E Q. Then S, = A (S ) S E Q} is the desired least symmetric 
relation > R. q 

The same argument will establish that every relation is contained in (i.e., <) 
a unique least relation which is both transitive and symmetric. 

7. IMAGES 

In this section we define and discuss properties of various images. The 
direct image is a generalization of Zadeh’s concept of shadow [l]; using it, 
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we fuzzify set theory in a way which involves fuzzy maps and fuzzy sets. The 
various images also have important phenomenological interpretations. 

Let p denote a fixed single point, or (ambiguously) the singelton {p} con- 
taining p (context will indicate which is intended). 

If A is an L-relation from p to X, we will let A also denote the L-set on X 
which assigns A(p, x) to x E X; conversely, if A is an L-set on X, we let A 
also denote the L-relation from p to X defined by A(p, x) = A(x). This 
correspondence is equivalent to the isomorphism Lpx g Lx. It is also equi- 
valent to a correspondence between fuzzy sets and those fuzzy systems which 
produce a fuzzy output whenever their one input p is “pushed.” 

Similarly L-relations from Y to p are in 1 - 1 correspondence with L-sets 
on Y, B(y, p) t--) B(y). And relations R from p to p are in 1 - 1 correspond- 
ence with elements of L, since Lpp s L. 

Let R be an L-relation from X to Y, and let A be an L-set on X regarded as 
an L-relation from p to X. Then the composition R o A is an L-relation 
from p to Y, which may be regarded as an L-set on Y. We call this set the 
direct R-image of A or the R-image of A, or the image of A under I-2, and we 
denote it by R(A) or R o A. 

If we think of R as a system and A as an input, then the image R(A) is a 
fuzzy output, assigning evaluations or degrees of membership, etc., to the 
point outputs y E Y. The study of relations of the previous section enables 
us to immediately deduce a number of properties of the direct image. 

PROPOSITION 1. Let A, B and Ai be L-sets on X and let R, S and R$ be 
L-relations from X to Y. Then : 

(1) A < B =c= R(A) < R(B); 

(2) R(Vi 4) = Vi R(A); 
(3) RN, 4 Q Vi W4); 
(4) R(0) = 0; 

(5) R < S + R(A) < S(A); 

(6) [Vi &I (4 = Vi PMI; 
(7) [Ai &I (A) < Ai [&(A)], for * = A; 
(8) O(A) = 0. 

There is also the following useful consequence of the associativity of the 
composition of relations: 

PROPOSITION 2. Let R be an L-relation from Y to 2, S an L-relation from 
X to Y, and A an L-set of X. Then 

(R o S) (A) = R(S(A)). 
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If R is an L-relation from X to Y and B is an L-set on Y, the composition 
B o R defmes an L-set of X, which we call the converse R-image of B, or the 
converse image of B under R, and denote by l?(B). This terminology is justified 
by noticing that the converse image is actually (fi o @‘, and ” makes little 
difference when one set is p. The results on converses in the previous section 
allow the properties of Propositions 1 and 2 of this section to be asserted for 
the converse image. 

If L = 2, these results become the familiar assertions usually made of set 
theoretic mappings (converse image is then usually called inverse image). 

Let R be an L-relation from X to Y, A an L-set on X, and B an L-set on Y. 
Then the R-image of A and B is the element of L given by the composition 
B o R o A (if you prefer, it is B o R o A@, p)). It measures the extent to 
which A and B are related under R. Properties parallel to the above hold for 
this double image. 

In fact, direct and converse images are special cases of the double image: 
&(A)(y)=y+oRoA; and R(B)(x)=BoRox+. 

We now give the promised fuzzification of set theory. Let the objects of 
the category S(L) be L-sets A : X-+ L, and let the morphisms from 
A : X + L to B : Y---f L be the triples (A, B, R), where R is an L-relation 
from X to Y such that R(A) < B; that is, 

Mor (A, B) = {(A, B, R) 1 R(A) < B). 

Let (A, B, R) E Mor (A, B) and let (B, C, S) E Mor (B, C). Then 
(B, C, S) o (A, B, R) is defined to be (A, C, S o R), and is seen to be an 
element of Mor (A, C) by the associativity property of Proposition 2. The 
required category associativity is verified by reference to associativity of 
composition of relations, and it is clear that (A, A, lx) E Mor (A, A) is an 
identity for A : X -+L. We call S(L) the category of L-sets and L-relations. 
The subcategory F(L) h w ose morphisms involve only functional relations is 
the category of fuzzy sets and fuzzy functions. 

These considerations generalize to fuzzy L-relations and fuzzy L-sets. 
Let W be a fuzzy L-relation from X to Y, and let .& be a fuzzy L-set on X, 

regarded as a fuzzy L-relation from p to X. Then the composition .B o &’ 
is a fuzzy L-relation from p to Y which may be regarded as a fuzzy L-set on Y. 
As such, it is denoted W(&‘), and called the (direct) &?-image of a?, or (direct) 
image of & under W. To be quite specific, we have 

92(d)(B) = i/(9(R) * d(A) I R(A) = B}, 

where B is an L-set on Y. Properties (l)-(8) an associativity hold (we could d 
also use the alternate composition). 
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If B is a fuzzy L-set on Y, the composition 3 o 9 defines a fuzzy L-set 
on X, called the converse image of 33 under W and denoted d(g). Properties 
(l)-(8) and associativity hold again. 

Given &‘, 93, and 9, the double image .2 o W o JZZ’ is an L-fuzzy L-relation 
from p to p, that is, an element of LL, or a “fuzzy value.” 

Given 9 and JZZ’, B IY-)- B+ o 2 o ~2 gives a map from Ly to LL. Similarly 
consider y lu+ y++ o 92 o &. If * = A, one could use dual composition and 
get dual properties. If L were complemented, one could season definitions 
with occasional complements, obtaining appropriately complemented prop- 
erties. 

There is a category Y(L) with objects & and morphisms defined by 
(-(&‘, 9, W) E Mor (&‘, ~3) o 22(d) < 39, and there is a subcategory F(L) 
involving only functional relations. 

PROPOSITION 3. Let A be an L-set on X, S a functional L-relation from 
1’ to X, and R its converse. Then 

S o R(A) < A. 

PROOF. 

and 

S o R o A(x) = V {A(*) * R(R, y) c S(y, x)} 
I.3 

4%) * R@, Y) * S(Y, 4 G 44 k %Y. 0 

That is R o R o A < A if R is functional. If * = A the dual is 
R 6 R 0 A > A. Thus we have proved the following estimate (originally 
due to Zadeh [4]): 

PROPOSITION 4. Let A be an L-set on X, let R, be functional L-relations porn 
Y to X, and let x = A. Then 

VRioi?ioA<A<jjRR,sl?i8A. 
t z 

Exactly the same results hold for fuzzy L-set & and fuzzy L-relations 9, 
Y, wi . 

Let R and S be functional L-relations from X to Y. If R(A) = S(A) for 
all L-sets A on X, or even all crisp singletons A on X, then R = S. Similarly 
ifBoRoA=B~SoAforallcrispsingletonsB,A,R=S. 

8. DECISIONS AND MAPPINGS BETWEEN LATTICES 

This section sketches an algebraic theory of decisions under uncertainty 
which is fuzzy rather than statistical. We give a few elementary results and 
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some general ideas. Most of it also applies to crisp decision processes. We do 
not treat the problem of optimizing decision processes. 

While a fuzzy set A : X + L may constitute a very adequate description 
of a problem, the interesting thing in practice is to reach a decision or solution. 
A decision function on a set X is a mapping d : X---f L, , and we call L, a 
decision language; that is, d is an L,-fuzzy set on X. This kind of fuzzy set 
has little to do with the intuitive conception of fuzziness, but it fits into our 
framework very nicely. Often the appropriate X is Ly for some other set Y. 

It appears natural to assume L, is at least a complete lattice with 0 and I. 
If d decides “yes” or “no,” L, = 2. If d ranks alternatives in X, L, is simply 
ordered. L, could be a free distributive lattice or Boolean algebra generated 
by a set D of basic decisions, or, if nothing else seems appropriate, a discrete 
decision language, with Hasse diagram of the form 

even though it is not distributive. The inverse image of a EL, under d is the 
subset of X for which the decision a is rendered. In many cases the decisions 
0 and I will be “reject” decisions. 

The most natural way to go from a function A : X --+L to a function 
d:X+L,isviaafunction/:L-+L,. Thus we are interested in mappings 
between lattices in this section. 

A map C! from one closg L, to another L, could be of many kinds, for exam- 
ple: a set map; a poset homomorphism; a map preserving V or A ; a lattice 
homomorphism; a complete lattice homomorphism; a closg homomorphism; 
and for any of these it could preserve 0 and/or I. This (partially ordered) 
hierarchy of homomorphisms gives an algebraic classification scheme for 
decision processes. It can be slightly extended by considering preservation 
of V, A, and * separately. 

A poset homomorphism preserves <. Not every poset homomorphism 
preserves V or A, and some preserve one but not the other. But if a map 
preserves V or A, it is easily seen to be a poset homomorphism. If it pre- 
serves both V and A, it is (by definition) a lattice homomorphism. If both 
lattices are simply ordered, 4 is a poset homomorphism iff it is a lattice homo- 
morphism. 

The mappings which arise in practice tend to be rather low in the hierarchy, 
although the higher ones tend to have the nicest algebraic properties. We 
consider some examples. 

Let L be simply ordered, and define t : L -+ 2 by t(b) = 0 if b < a and 
t(b) = I if b > a. t is called the a-threshold mapping, and it is a complete 
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lattice homomorphism, preserving I and preserving 0 except in the trivial 
case where a = 0. If L = J, t is a closg homomorphism. This is about as nice 
a map (algebraically speaking) as one is likely to meet (excepting isomor- 
phisms). 

t as above induces a homomorphism of the same kind tn : Ln -+ 2”, or 
more generally tX : Lx + 2x, for any set X, by the usual componentwise 
process; one could even use different t’s for each component. 

An interesting example occurs in pattern classification. Suppose a pattern 
is represented by an N-vector (say N = na as in Section 2) of real numbers. 
Then the threshold transformation tN reduces patterns to binary N-vectors 
in a particularly nice way. 

We may view an element of 1” as a J-fuzzy set on X = (0, I,..., n --I}; 
denote (0, l,..., n - l} by 71. Let B E p, and consider the mapping from J 
to R defined by A + &B(i) * A(i) for * = multiplication. We could, without 
loss of order-theoretic generality, normalize B so that &(Bi) < 1; then 
w : p+- J. w is a weighting of the components of A, as in Section 1. It is a 
poset homomorphism which preserves neither V nor A. w can also be 
viewed as computing the correlation of A E J” with B. For infinite index sets 
X summation could be replaced by integration. We could also use the closg’s 
R or 2 instead of J. Component-wise extension yields poset homomorphisms 
of the form W = (wO ,..., wkpl) : J” -+ J”. 

A mapping W : JN -+ Jk of the f orm described above might occur as an 
intermediate step of a pattern classification machine, in which wi computes 
the correlation of A E JN with some pattern prototype Bi E J”. 

Let A E Lx, and consider the mapping m : Lx -+ L defined by 

Then m preserves V, and m(A * B) < m(A) * m(B); this holds in particular 
for * = A, even if L has a given * different from A. 

In the pattern classification machine which we have been constructing, m 
would tell what the maximum correlation with a stored prototype B, was, 
and to some extent would measure the effectiveness of the decision scheme 
which assigned A to the class with a representative of which it was maximally 
correlated. Let d(A) denote this class, one of l,..., R, or say one of (K = 26) 
a,..., z EL, ) where L, has the Hasse diagram given earlier in this section. 

Then the mappings l=mow (or 4’=mowot):JN+] and 
d : IN -+ L, are crisp functional systems which describe the operation of this 
machine. The first is order preserving. The practically important questions 
of course relate to such quantities as error rate, which we have agreed not to 
discuss here. 

We now inquire how the various fuzzy structures we have defined in 
previous sections behave under closg homomorphisms. The typical result 
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is that a fuzzy structure behaves “functorially”, in the sense of category 
theory. 

A covariant fun&w T from a category %? to a category Q’ is an assignment of 
an object T(A) in V’ to each object A in C, and an assignment of a morphism 
T(f): TV)-T(B) in $7 to each morphism f : A-+ B in P? in such a way 
that T(1,) = 1 rcA) and T( f o g) = T(f) o T(g). ‘VVe will write T : V -+ W. 

A covariant functor T induces a map from Mary (A, B) to Mor&T(A), 
T(B)), and it follows immediately from the definition that T induces a 
semigroup homomorphism from End (A) to End (T(A)), and a group 
homomorphism from Aut (A) to Aut (T(A)). Also, if f : A + B is an 
isomorphism in V then T(f) : T(A) -+ T(B) is an isomorphism in V’. 

Let V be a category, and let e : L, -+ L, be a closg homomorphism. Then G 
induces a functor r!” : LIQ -+ L,’ defined by p(A) = A for A an object of 27, 
and p(F) (f) = 8 o F(f ), for F ~Lp@*z) and f E Mor (A, B), so that 
dg(F) E Ly@sB). G enerally speaking we will write fF for p(F). It is easy 
to verify that t(F o G) = t% o 8G and &( lA) = IA so that we indeed have a 
functor. 

In the category R(L) of sets and L-relations, / : L, -+ L, induces a functor 
R(d) taking each object to itself and the L,-relation R : XY + L, to the L,- 
relation t!R : XY -+ L, . 

It is easy to see that the map / : R(X, Y; L,) + R(X, Y; L,) defined above 
is a complete lattice homomorphism. 

We already know that 4’ : R(X, L,) + R(X, L2) is a semigroup homomor- 
phism, since it comes from a functor from R(LJ to R(L,), and since it is a 
complete lattice homomorphism, it is a closg homomorphism. 

Given, as usual, 4: L, -+L, , we define e: W(X, Y, L,) -+ W(X, Y, L,) 
by e(9) (R) = 4 V {W(R) 1 /R = R), for W E W(X, Y; L,), R E R(X, Y; L,), 
and R E R(X, Y; L,). This defines a lattice homomorphism. Then I gives a 
functor W(4) : W(L,) -+ W(L,) mapping each set to itself and mapping 
morphisms as above. 

The situation for categories with fuzzy sets and morphisms is basically 
the same. Let 4 : L, + L, be a homomorphism. Then we define a covariant 
functor from S(L,) to S(L,) by mapping the object A : X-tL, to the object 
1A : X -+ L, , and mapping the morphism R : A + B, for R E R(X, Y, L,), 
to r!R : t’A + [B, {R E R(X, Y; L,). One has only to check that 

and this is easy. 

R(A) < B =s /R(/A) < t?B, 

The situation for Y(L) is analogous. We define & by 

Ad(A) = v {&i’(A) 1 /A = A} 

and proceed as above. 
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The same results are obtained in the same way if we restrict to functional 
relations, or if, for t = A, we use dual composition. 

One can think of Lv and k as defining a covariant functor from the category 
of lattices to the “category of categories.” Strictly speaking, there is no such 
category (Would it be a member of itself ?), but all the axioms of a category 
are satisfied when we take Mor (U, V) to be all covariant functors 
T : V + V. Then mapping L to Lv and L’: L, --+L2 to e” : L,“-LzP 
satisfies the axioms for a covariant functor between these categories. The 
best way to view such an assertion is probably as a mathematical metaphor. 

It is generally possible to view these fuzzy structures as bifunctors, contra- 
variant in one variable, and covariant in the lattice variable. 

It actually suffices for e to preserve V and * for all the above to be true. 
Furthermore, if e Vi ai < Vi Azi and /(a * b) < &r * ~53, we get, for example, 
ty(R 0 As) < t(R) 0 t!(S), rather than equality, and G is no longer quite a 
functor. 
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