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1. INTRODUCTION

This paper explores the foundations of, generalizes, and continues the
work of Zadeh in [1] and [2]. Perhaps the most important generalization is the
consideration of order structures beyond the unit interval. Because of this we
have been able to develop a new point of view toward optimization problems.
The significance of this work may lie more in its point of view than in any
particular results. The theory is still young, and no doubt many concepts
have yet to be formulated, while others have yet to take their final form.
However it should now be possible to visualize the outlines of the theory.

Throughout the development of the theory of fuzzy sets, pattern classifica-
tion has been a seminal influence. One reason for this is the natural feeling
that probability theory is not appropriate for treating the kind of uncertainty
that appears in pattern classification; this uncertainty seems to be more of an
ambiguity than a statistical variation.

Similar difficulties arise in a wide variety of problems. It is characteristic
of attempts to apply probability theory to them that it is difficult or impossible
to estimate the distributions assumed to be involved, that there is uncertainty
about the nature of the statistical assumptions (independence, etc.), or that
certain parameters are ignored, taken as given, or found difficult to estimate.
Under these circumstances, the chief use of probability theory has been to
partially justify intuitively appealing procedures, to suggest procedures already
found useful in statistics, or to provide some sort of insight into the nature
of things. We believe that fuzzy sets should be able to do at least this much.

Let us consider some specific examples. A housewife faces a fairly typical
optimization problem in her grocery shopping: she must select among all
possible grocery bundles one that meets as well as possible several conflicting
criteria of optimality, such as cost, nutritional value, quality, and variety.
The partial ordering of the bundles is an intrinsic quality of this problem.
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Consider a machine for reading typewritten characters which computes
correlations with various pattern prototypes, and extracts certain ‘‘features.”
Actual samples of the letter “ 4" may produce a variety of values of these
criteria, and some of the criteria intended to detect “A”’s may conflict,
producing an ambiguity. There may very well be no way of determining
whether or not some character is an ‘“4”, Thus the set of characters
intended to be apprehended as “A’’s is a fuzzy set,a set without a well-
defined boundary. The fuzziness appears to be an essential aspect of this
problem.

Partial orderings of optimality and fuzzy ambiguities are characteristics
of many problems. Such problems are #li-posed in the sense that they do not
admit unique solutions; in fact, they may not have solutions at all in the usual
sense. The theory of fuzzy sets studies formal properties of ill-posed problems
and ill-defined sets, much as ordinary set theory does for ordinary sets.

The so-called ‘“‘hard sciences,” such as physics, find crisp (as opposed to
fuzzy) relations between their observables. The appropriate methodology
for the so-called “soft sciences” (biology, psychology, etc.) may involve
finding fuzzy relations between variables; even the variables may be fuzzy.
We develop a theory of fuzzy relations, and discuss some applications. In
particular, fuzzy relations enable one to study fuzzy systems.

Fuzziness is more the rule than the exception in engineering design prob-
lems: usually there is no well-defined best solution or design; increases in
speed, compactness, or efficiency are paid for by increases in cost, difficulty
of service, etc. The usual way out (other than ignoring the partial ordering
or applying intuition) is to pick semiarbitrary “weighting factors” for the
various design parameters, and designate as best the system with the greatest
total “weight.” The significance and justification of this scheme are unclear,
and so is the way the “‘weighting factors” are to be chosen; but the ways of
intuition are still more unclear. Fuzzy sets can operate with the problem as
posed, and clarify various operations, including weighting.

We give a preliminary definition: A fuzzy set is a set with a function to a
transitive partially ordered set (hereafter called a poset); a fuzzy set is there-
fore a sort of generalized characteristic function. We habitually denote the
poset by L and call the fuzzy set an L-fuzzy set or an L-set. Because of the
generality of the mathematical definition, some important applications of
fuzzy sets do not involve the intuitive concept of fuzziness at all.

The use of posets imparts to the theory a special character which empha-
sizes order theoretic statements. In order for it to make sense to ask what the
maximum and minimum values of a fuzzy set are, the poset ought to be in
general at least a complete lattice. Distributivity is also useful.

It may be helpful to think of fuzzy sets as nonsimply ordered utility func-
tions. It can then be seen that the theory is related to statistical decision
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problems. For example, we might think of the poset as a “‘decision language,”
that is, a space of decisions or evaluations which can be combined by the
logical operations “and” and “or” (or “min” and “max”).

Some problems have natural multicomponent optimality criteria as
formulated but require solutions in the poset {yes, no} = {1, 0}. To proceed
toward a solution, we map from one poset to the other; it is particularly
nice if the map preserves order, i.e., if it is 2 homomorphism of order struc-
tures. For example, the weighting process described above is a homomor-
phism from R” (with the product ordering) to the simply ordered set R.

Products of simply ordered sets are particularly common posets in the
applications, and particularly natural mathematically. Nevertheless, in certain
applications more exotic lattices may be found. In the pattern classification
problem, % pattern decisions and their logical combinations might constitute
our decision language.

Although the topics we consider might be important for certain applica-
tions, they do not involve any great mathematical depth. This paper deve-
lops a basic language and a few elementary properties, mainly formal and
algebraic, and prepares for new points of view. However, there are related
topics of greater mathematical depth. These include an information theory
for fuzzy sets, convex fuzzy sets, the fuzzification of various mathematical
structures, and a more detailed treatment of the pattern classification problem.
We hope to consider some of these in future papers.

We have not tried to distinguish between philosophical, applied mathema-
tical, and purely mathematical passages in this paper. It is our impression
that most major assertions are susceptible to all three interpretations.

We have produced a “logic of inexact quantities” within the framework
of modern pure mathematics; the results concerning fuzzy sets are proved as
rigorous mathematical theorems. Yet we hold that these results are for
“inexact quantities.” This is an assertion that pure mathematics applies to
certain philosophical and practical matters and is therefore an applied mathe-
matical statement.

It is not necessary to know particular fuzzy sets as exact mathematical
functions to be able to make about them certain assertions of theoretical
character which may have philosophical and/or practical significance.

Our results, attitudes, and methods might raise some questions about
foundations. It is somewhat unsatisfying philosophically to ground a logic
of fuzziness in a logic of exactness; it would seem to ask for an independent
postulational formulation. On the other hand, our method shows that if
mathematics, as we use it, is consistent, so is fuzziness, as we formulate it.

We have used the axiomatic method, in the sense that our underlying
assumptions, especially about L, are abstract; it can thus be ascertained to
what extent our results apply to some new problem.
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2. L-Fuzzy SETS

The fuzzy set concept deals with situations in which there are evaluations
for elements of a set X. The elements may be typewritten letters (called
characters), and the evaluation of how much they look like the letter “A4”;
or the elements may be grocery bundles, and the evaluation their utility to the
housewife (or ““appeal,” if one wishes to consider subjective evaluation); or the
elements may be acts and the evaluation corresponding payoffs or other results.

X generally has some structure beyond that of a set, although we shall not,
in this paper, make use of any special assumptions about it. For example, if X
consists of all possible grocery bundles, or outputs of a factory, etc., it is
customary to view x € X as a vector (called a commodity bundle in economics)
whose components are real numbers designating the amounts of the various
commodities involved (a negative component would have the meaning of an
input in the factory example). Thus X has the structure of a vector space.

In pattern classification we are most often concerned with the output of
some machine. This output is usually a vector. For example, patterns might
be reduced to n X n square arrays with the intensity of each square given
(perhaps on a logarithmic scale); a pattern then appears as a vector in R"’.

If we think of speech wave forms as square-integrable functions on, say,
the unit interval, then the set of such elements can be given the structure of a
Hilbert space, with correlation as the inner product (more properly, the ele-
ments of the space would be equivalence classes of functions). Thus the
space X for speech recognition may be considered a Hilbert space.

In practical applications, there is usually some concept of “nearness” on X,
so that it is a topological space, if not a metric space.

A fuzzy set on a set X is a sort of generalized “characteristic function” on
X, whose “degrees of membership” may be more general than “yes” or “no.”
In fact, we assume a set, from here on denoted L, of degrees of membership,
In an optimization problem, L may express the degree of optimality of the
choice (in X); in a classification problem, it may express the degree of mem-
bership in a pattern class; in other contexts, other terminologies will appear.

DEFINITION. An L-fuzzy set A on a set X is a function A : X — L.

Thus fuzzy sets are to be considered equal iff they are equal as functions.

If the elements of X have a name (e.g., ‘‘characters”), 4 will be called an
L-fuzzy set of such elements (e.g., “4 is an L-fuzzy set of characters”). We
may drop the prefix “L-" if convenient, euphoneous, or unconfusing; or
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we may drop the prefix ‘“fuzzy’’; but we will not drop both “L-" and ‘‘fuzzy.”
This applies to other fuzzy concepts as well.

We use the notation XY for the set theoretic product of X and Y; that is,
XY ={(x,y)|x€ X,y € Y}. X 4+ Y will denote the disjoint union of X and
Y, and XY the set of all functions from Y to X. It is straightforward to verify
the following set theoretic isomorphisms.

ProposITION 1.
X+VYaV+X, X+ (Y+Z)=(X+Y)+Z XV YX
X(VZ)2 (XY)Z: X(Y +2)~ XY +XZ, (X+Y)Z~XZ + YZ;
X2 o, XYXZ, (XYY ~ X2YZ, (XY)Z ~ X7Z,

There is no associative law for exponentiation, that is, X %) & (X%,
and when we write X*°, we shall intend the stronger form X (¥%), Since the
set of all L-sets on X is LX, the “base set” in an exponent expression will
usually be L. Elements of L are “values,” so an element of LE is a “fuzzy
value.”

ProposITION 2. L* can be given whatever operations L has, and these
operations in LX will obey any law valid in L which extends point by point.

For example, if a binary operation * is defined on L, it induces an opera-
tion x on LX by pointwise extension: (4 x B) (x) = A(x) x B(x), for 4, B e L¥X
and x € X. If some law, such as associative, commutative, or idempotent
holds for * on L, it also extends to LX. The cancellation law will not extend
pointwise; if L is an integral domain, and X has more than one point, LX will
be a ring, but the cancellation law will fail.

This could be made completely precise by considerations of ‘“‘universal
algebra” (see Birkhoff [3]), but it does not seem worth introducing this
complication. L is the same as the product [1,.xL, of L’s indexed by X,
and the above construction is essentially the usual “product process” found
in algebra. If L had a topological structure, L* could be given the product
topology.

L might be a semigroup, a poset, a lattice, or a Boolean o-ring. In the next
section we shall argue that the most appropriate categories for most purposes
are those of complete lattices or complete lattice ordered semigroups.

We shall use the notation 2 for the special and important lattice {0, I},
where 0 << /. If L is a lattice with zero 0 and infinity I, 2 will denote the
sublattice {0,1}. The case L =2 is essentially set theory, for elements of
2% are characteristic functions of subsets of X. The case L = J, the closed
unit interval [0, 1], is the special case of fuzzy sets in the original sense of
Zadeh [1].
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3. THE STRUCTURE OF L

In this section we discuss axioms which it might be desirable for L to
satisfy, and we introduce important examples which we prove do satisfy
various of these axioms. In general, the structure desired varies with the
context.

In most applications, for example in pattern classification, L ought to
have some sort of order structure; for we wish to say “x is better than y,”
“x is less expensive than y,” “x looks more like an ‘A4’ than y,” etc. Although
it has usually been assumed that the ordering is simple, we have argued that
this is often inappropriate. On the other hand, it is hard to imagine being
able to get along with an ordering that is not at least transitive. Thus L is at
least a (reflexive) transitive partially ordered set, or poset.

In many examples, L was a product of simply ordered sets, with “vectors”
a =(ay,..., a,), ordered by a a > b<a;>b,, i =1,..,n, as elements.
This ordering is called the product ordering, and from here on we assume all
products are ordered in this way. The most important properties of a product
of simply ordered sets are included in the assertion that it is a distributive
lattice, and is complete if each factor is. This follows from the following
easily verified results.

ProposiTioN 1. A simply ordered set is a distributive lattice. A product
of distributive lattices is distributive, and a product of complete lattices is
complete.

For some applications, this type of L seems to be too special. For example,
we might want L to be a language of decisions for a pattern classification
problem, allowing combinations by “and” and “or.” In any case the mathe-
matical theory of fuzzy sets does not depend upon L having any special form,
but upon certain general assumptions, which we are now developing.

The question of the existence of lub and glb (which we denote \/ and A
respectively) may be somewhat illuminated by the following: Let A be an
L-fuzzy set on X, and let ¥ C X. For convenience of explanation, let us agree
that “a > b means “a is better than 5.” In the kinds of problems we are
considering it is important to know how well or how badly things might
turn out if a choice of some x € Y is made. It is clear that we will do better
than glb{A(x)|x € Y} and worse than lub{A(x)|x e Y}, if these are
defined; and it is clear that glb and lub are the most reasonable ways of
obtaining bounds in a poset.

If a poset has a glb and lub for each nonempty subset, it is a complete
lattice, and from here on we assume L has at least this structure. In some
applications we may not be interested in the glb, but only the lub; the alge-
braic structure relevant to this case is briefly discussed later.
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The lub of an indexed family a; of elements of L will be written V/; a; or
V a;, and dually for the glb. We will sometimes use the notation

VA=V{d@x)|xecX} ad AAd=A{dx)]|xeX)

If L has zero 0 and infinity J, we will use the conventions that \/ ¢ = 0 and
Ae=1

If L does not have 0 and 7, they can be added without loss of generality,
and we hereafter assume L does. It then becomes possible for a fuzzy set to
be crisp in the sense that it takes only the values 0 and I.

Proposition 2 of the previous section enables us to conclude that L* also
has a lattice structure, namely that given by defining

(AV B)(x) =A(*) V B(x) and (4 A B)(x) = A(») A B(#),

for A, B € LX and x € X. The associative, commutative, etc. laws for \/ and
A on L extend to LX. The ordering of L¥ is given by defining 4 < B iff
A(x) < B(x) for all x € X. Many special laws which hold for L, such as
completeness or distributivity, will extend to L%,

The principle of duality for lattices says that if a result is true of L, so is
its dual, obtained by interchanging A and V, and < and >. It is important
to notice that this extends to L%, so that we have the Principle of Duality for
Fuzzy Sets : If a theorem or identity is true of fuzzy sets, so is its dual.

This principle is a labor saving device in proving theorems and identities.

By analogy with the terminology of the special case of set theory, L = 2,
we may call 4 \/ B the union of A and B, A A B the intersection of A and B,
and read 4 < B as “4 is contained in B.”

Another assumption about L which seems intuitively natural, and which
plays an important technical role, is distributivity. Actually, the law is
neither natural nor very useful in a complete lattice unless it occurs in a
strong form which we call the complete distributive law :

a A b=\ (a Ab).

By the principle of duality, this identity is equivalent to its dual. We will
call a complete lattice which satisfies the complete distributive law a com-
pletely distributive lattice.

'To summarize the discussion so far, we assume that L is a completely
distributive lattice with zero and infinity elements.

Since a lattice is in particular a commutative semigroup (by a semigroup
we mean a set with an associative binary operation) with respect to either
lattice operation, it satisfies the usual generalized (finite) commutative and
associative laws (see Chapter 1 of [4]). For a complete lattice, more general
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forms of these laws are valid. A particularly useful form of the commutative

law is
V{Vaij=vj\4a“.

A very general law of Birkhoff ([3], p. 53) is valid for all complete lattices
and includes the general commutative, general associative, idempotent, and
above commutative laws. For each index 7 let @; be a set of indices, let
® ={); D,, and let a; be a family of elements of L indexed by j € @. Then
Birkhoft’s law is

VVa=Vag.

i jed je®

PROPOSITION 2. The complete distributive law is equivalent to the following,
also called the complete distributive law :

Vai/\Vbjr—“ V a,-/\b,-.

ied jEY (i,j)ep¥

Proor. Obviously the law of the proposition implies that of the definition
(let @ ={1}). Conversely,

VAV b=V (a A Vo) =V (V@ ns)

ied jew b i Vg

= V (a; A b)),

(i,j)eo¥

where the last step uses, say, Birkhoff’s law. [

The duals are equivalent to each other and to the original law.

We now continue the discussion which initiated this section by asking
whether products of complete simply ordered sets obey the complete distri-
butive law. The usual product argument shows it suffices to establish the law
for the factors. Strangely enough, this involves topological considerations.
The interval topology of a simply ordered set is that generated by the sub-
basis of half-open intervals, or by subsets of the form {x|x > a4} and
{x]x < a}.

LemMA 1. Let L be a complete simply ordered set with the interval topology.
Then a montone increasing net in L with bounded range converges to the supre-
mum of its range.

LemmA 2. The lattice operations \/ and A\ are continuous in a simply
ordered set with the interval topology.
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THEOREM 1. A complete simply ordered set L obeys the complete distributive
law.

Proor. It suffices to establish the first form of the law. Let a, b; € L for
i € @. Let D be the directed set of all finite subsets of @, directed by inclusion.
Then bg = Vs b;and cs = Vicsa A b, for S € D define nets in L. Lemma 1
implies bg—b = Vo b; and cs—c = Viesa A b;.

By Proposition 1, L is distributive, and by induction the complete distri-
butive law holds for all finite index sets. Thus

CS=Va/\bi=a/\Vbi=a/\bs.

€S €S

bs — b and the continuity of A imply that @ A bs—a A b. Since cg has a
unique limit, we conclude that c = a A b. [

The appropriate notion of homomorphism for complete lattices is more
special than that for general lattices. A mapping ¢ : L, — L, between com-
plete lattices is a complete lattice homomorphism iff it preserves arbitrary lub
and glb, that is, iff £ /; a; = V;%a; , and dually. Complete lattices and com-
plete lattice homomorphisms form a category (see Section 5).

The minimax inequality

Z\1 (3\2/1 ai.i) = j\:/1 (51 ai,i)

holds for any lattice, and generalizes to infinite sets of indices for complete
lattices.

In many applications the simply ordered sets are subintervals of the reals.
For most purposes things are unchanged by applying a preliminary order-
preserving transformation and adding endpoints, so that we may assume we
are dealing with J=[0,1]. The intervals [— o0, + 0], [0, 4+ 0],
[—1,1], and J are especially interesting because they are closed under
multiplication (in the ordinary sense of real numbers). This multiplication
is very important in applications for taking percentages, forming averages,
etc. The lattice and multiplication structures are interrelated in a way which
will also appear in other contexts, and to the abstract study of which we
now turn.

DeriNiTiON. A multiplicative lattice is a lattice M closed under an operation
* which satisfies the *distributive’” laws, for alla,b,c € M

ax(bVe)y=(axb)V (axc) and (@aVbd)yxc=(axc)V (bx*c).

Identities involving +’s in multiplicative lattices will 7ot remain identities
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when A and V/, and > and < are interchanged; thus the Principle of Duality
is not valid. But there is a principle of left-right symmetry, as exhibited in
the two “distributive” laws above.

ProposiTION 3. Let a, b, ¢ be elements of a multiplicative lattice M. Then :

(1) a<b =cxa<crxbandaxc<bx*c
(2) (@aAb)yx(aV by (b*xa) A (axb)
Proor.
Khb>brxe=(@aVh*xc=(axc)V(bxc)=axeLbxc
(@aAb)x(aVbd)=[aAbxal V[ (@aAb)xb]<(bxa)V (axb). O

The structure we had in mind for the above examples is still mote restric-
tive, and is given by the following

DEerFINITION. A complete lattice L which is also a semigroup with identity
under  and which satisfies the “distributive” laws,

ax\[b;=\(axb) and (Va,-)*b:\/(ai*b)
is a complete lattice ordered semigroup, abbreviated closg. The semigroup identity
is called the identity of L. If there is an element O of L such that, for all a €L

OANa=0xa=a%x0=0
it is called a zero for L. If there is an element I in L such that, for all acL
IVa=Ixa=axI=1

it is called an infinity for L. If * is commutative, we call L a commutative closg,
if L is distributive as a lattice we call it a distributive closg, and if L satisfies
the complete distributive law as a lattice, we call it a completely distributive
closg.

It is easy to verify that all the above-mentioned intervals are commutative
completely distributive closg’s with identity. All have 0 and I in the lattice
sense, and J, [— o0, 4 <0], and [0, + co] have zeroes in the closg sense if
we make the appropriate conventions regarding multiplications of infinities,
By the usual product argument, any product of these intervals will also be a
commutative completely distributive closg with identity and lattice 0 and 1.

PrOPOSITION 4. A complete lattice is a closg with )\ as x if it is completely
distributive,
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This easily verified remark shows that there will be no loss of generality,
and indeed a slight gain, if we assume that L is a completely distributive
closg with lattice (but not necessarily closg) zero and infinity, and this
assumption is made throughout most of the rest of this paper. It is also
necessary to assume that the (lattice) infinity I is a semigroup identity.

As with multiplicative lattices, there is no principle of duality, but there
is a principle of left-right symmetry for closg’s. If x = A the principle of
duality holds again, and the dual of this x is V.

In all of these intervals % has no zero divisors (that is, axb =0=>a =0
or b = 0); however products of intervals will have zero divisors.

We point out that since L¥ has the algebraic structure of L, the operation *
is defined for A4, B e LX by A *x B(x) = A(x) * B(x).

We will see later that the algebraic structure of the set of fuzzy relations
(or systems) on a set is that of a closg.

DerINITION. A mapping £ : Ly — L, between closg’s is a closg homomor-
phism iff it preserves \/, A\, and *.

closg’s with closg homomorphisms form a category.

To summarize, we will assume that L is a complete lattice ordered semi-
group with zero 0 and semigroup identity I, which is also a lattice infinity.

Most of the results of this paper are valid under the more general assump-
tion that L has an operation |/ defined on subsets and a binary operation *
such that:

(1) Birkhoff’s generalized law holds for V/;

(2) * is associative and has a zero 0 and identity /;

(3) the two complete distributive laws relate \/ and x;
4 O0Va=aandlIVa=1L

We then define a transitive reflexive order < onL by a<<b<wa Vb=,
and it is easy to see that \/ is a least upper bound operator, () is a zero, and [
is an infinity. Also @ << b = a * ¢ <{ b * ¢. For the proofs of these assertions,
recall that Birkhoff’s generalized law implies the general commutative, asso-
ciative, and idempotent laws for /. A principle of left-right symmetry holds.
Probably the L’s which arise in practice will satisfy more than these minimal
requirements; for example, they may be closg’s.

Notice that our L’s, viewed as abstract logics, are (generally) negationless,
and that the order relation can be interpreted as implication. However,
if L is a complete distributive lattice (with 0 and I), it is relatively pseudo-
complemented (see [3], p. 147). If complemented it is, of course, a Boolean
algebra. Cohen’s independence results can be obtained, I understand, from
Boolean algebra valued models for set theory.
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We conclude this section with some additional examples. The set of all
left ideals of an (associative) ring with unit is a suitable complete lattice
ordered semigroup. The set of regular events (words) in a free semigroup
is a (noncomplete) lattice ordered semigroup. The set of open sets of a
topological space is an (upper semi-complete) semi-lattice ordered semi-
group with zero and suitable identity. If one attempts to consider it to be
a complete lattice by defining A; U; = Interior ((); U;), the distributive

law fails.

4. FuzziricaTioN

Fuzzification is the process of imparting a fuzzy structure to a definition
(concept), theorem, or even a whole theory. This process is not necessarily
unique, as will be seen. In a sense, most of this paper is devoted to fuzzifying
set theory. A fundamental method is given by the Principle of Fuzzification :
A fuzzy (or L-fuzzy or L-) something is an L-set of somethings (i.e., an L-fuzzy
set on the set of somethings).

This is not a mathematical result; rather it is an heuristic aid in formulating
and subsequently interpreting definitions. We will use the terminology it
suggests whenever possible, but it must be noted that it does not apply to all
cases, and even when it applies, it does not necessarily give the most appro-
priate fuzzification.

As an example, we formulate the terminology for fuzzy sets and subsets.
Recall that an element of LX is an L-fuzzy set on X, or more simply an L-set
on X, or a fuzzy set on X, but not a set on X, By the Prlnc1ple, an L-fuzzy
subset of X is an L-set of subsets of X, that is, an element of L**, AnL- -fuzzy
L-set on X (or a fuzzy L-set, or even a fuzzy fuzzy set on X) is an element
of L,

A somewhat analogous situation obtains for relations. An L-relation between
sets X and Y is an element of LXY, A fuzzy L-relation between X and Y
is an element of LL*7. “Relation”” with no prefix means ‘“2-relation,” so an
L-fuzzy relation might mean an element of "7, This terminology is con-
fusing and fortunately is not used later in this paper; but notice that the
principle of fuzzification suggests the L-fuzzy 2-relation, although it is not
the most natural fuzzification for many purposes. Because 2 C L, L-fuzzy
2-relations are in particular L-fuzzy L-relations. The L-relation was first
suggested by Zadeh [3] for L = Jand X =Y.

An L-fuzzy mapping from X to Y is an L-set of mappmgs from X to Y,
that is, a mapping from YX to L, or an element LY* If X and Y have more

struture than sets, it is appropriate to correspondingly restrict the mappings.
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For example, if X and Y are vector spaces, an L-fuzzy linear map from X to Y
is a fuzzy set of linear maps from X to Y, i.e., an element of LZMnX. 1),

It is very important to notice that all fuzzy things are in particular fuzzy
sets, i.e., functions from some set to L; fuzzy sets are the basic building
blocks for all fuzzy objects. It therefore follows that all fuzzy things enjoy
most of the same algebraic properties L does.

For example, let &/ and # be L-fuzzy L-sets on X. Then & V % is
defined by (& V %) (4) = A(4) \V #(A), where A is an L-set on X,
& A % is defined dually, and the set of all L-fuzzy L-sets on X is a lattice;
it has 0, I and is completely distributive since L is, the Principle of Duality
holds, etc.

Things unfuzzified or only trivially fuzzified are crisp; crispness is the
qualitative opposite of fuzziness, although technically it is a special case.

DEFINITION. Let L have 0, I. An L-fuzzy set on X is crisp if it takes only
the values 0, I on X.

It is always possible to specialize some fuzzy object or structure back to
a (crisp) set theoretic one by setting L = 2. Sometimes, in order to obtain
the original set theoretical model, it is also necessary to impose a restriction
to singletons. For example, a fuzzy L-subset may be made conceptually
equivalent to an ordinary subset by requiring it to be crisp, and non-0 only
on singleton subsets.

DEerFINITION.  An L-fuzzy set on X is a singleton if it takes the value
for all x € X except one. Let x € X ; then x* is the crisp singleton on X defined
byat(y) =0dfx Ayandxt(y) =Ilifx =y, forye X.

For example, let 4 C X. Then A* is the crisp L-fuzzy subset of X which
is non-0 only on 4. x* is parallel to {x} in ordinary set theory.

We shall not always be explicit about specializations to and analogies with
ordinary set theory in the following.

V and A are fuzzy fuzzy sets on X; for \/ : A ~ \/ 4, where 4 €L¥,
and \V 4 eL.

There is no reason not to have fuzzy fuzzy fuzzy sets, L,-fuzzy L,-fuzzy
sets, etc. Indeed, there is no end to the possible levels of fuzzification.

5. CATEGORIES AND THE CoMPpOsITION OF Fuzzy Maps

A category % is a collection of objects, such as groups, together with, for
each pair of objects X, Y, a (possibly empty) set Mor (X, Y) of “maps”
or morphisms from X to Y of the “appropriate” kind, such as group homo-
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morphisms. If X is an object of ¥, write X € €. The appropriate maps for ¢
are called €-morphisms. Mor (X, Y) and Mor (X', Y') are supposed to be
disjoint if (X, ¥) 7= (X', Y'). It is assumed that a map from X to ¥ can be
composed with one from Y to Z to yield one from X to Z; if f € Mor (X, Y)
and g € Mor (Y, Z), then their composition is denoted g o f € Mor (X, Z).
Composition is assumed to be associative (when it makes sense for it to be),
and finally, there is supposed to be, for each X in &, an identity
map 1y € Mor (X, X), such that for each f € Mor (X, V), each g € Mor (Y, X)
and each Ye¥%, foly=f and lyog=yg If feMor(X,Y),
write f: X — Y or X Z» Y. To emphasize € write Morg (X, V).

This concept, though very abstract and general, is not very deep. It will
enable us to describe a fuzzification of whole theories in a unified manner,
and it motivates some of our results.

Categories are very common in mathematics. Groups with group homo-
morphisms, sets with maps, lattices with lattice homomorphisms, complete
lattices with complete lattice homomorphisms, closg’s with closg homo-
morphisms, topological spaces with continuous maps, and measure spaces
with measurable transformations are, for example, all categories. Lang [4] has
further discussion of category theory with notation similar to ours.

DeriNtTiON. Let € be a category, and let X, Y € €. Then an L-fuzzy
€-morphism from X to Y 1s an L-fuzzy set of €-morphisms from X to Y, that 1s,
an element of IMOYX.V) If F e IMOTX.X) grjte F: X—>Y or X 5 Y. We
may also call F a fuzzy €-map.

The above definition is in accord with the Principle of Fuzzification. If ¥
is some specific category, say linear spaces and linear maps, we use a more
specific name, L-fuzzy linear maps.

DeriNiTiON, If F: Y —Z and G: X — Y are L-fuzzy €-morphisms,
their composition F o G : X — Z is defined, for h € Mor (X, Z) by

FoGhy =\ gF(f)*G(g)}g:X_»Y,f; Y Z andfog—hl.
f.g

If L =2, and if F and G are (crisp) singletons, \/ becomes existential
quantification, * becomes and, and the above reduces to the ordinary com-
position. Notice particularly that for L = [ the two main x’s we allow, A and
multiplication, agree on the sub-closg 2, and agree with logical and; thus *
in either case generalizes “‘and.”

ProposiTioN 1. Composition of fuzzy €-maps is associative.
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Proor. Let XL Y% ZE W be fuzzy %-morphisms, and let
i € Mor (X, W). Then

(FoG)o B)@) =V |V () Gg) [ fog =3}« H®|j o h =
=V {V () + Gy« H®) | fog =53 |ion =i

= V{F(f) = G(g) « H) | fog o h =1}.

Similarly, (F o (G o H)) (i) can be shown to be equal to the same expres-
sion. [

DerNITION. The identity L-fuzzy map on X € € is the crisp singleton
(1)t in IMoT XYY We ayill also denote it 1y if this is not confusing.

PROPOSITION. 1y s an identity for fuzzy €-morphisms; that is, for every
FeMor(X,Y), 1yoF =Foly =F.

PROOF.

(1yoF)(h) = V {L{f) <F(g) | fo g =h} = \ {F(g) | 1y 0 g = b} =F(h),

and the other identity is proved similarly. [
These two basic properties of composition are summarized by the fol-
lowing, for which they constitute a proof.

THEOREM 1. Let € be a category. Then the objects of € with the L-fuzzy
€-morphisms and the above definition of composition constitute a category,
which we denote by L¥.

This construction fuzzifies, in particular, set theory, but the fuzzification
involves fuzzy maps and crisp sets. Ways of combining fuzzy sets and maps
are discussed in later sections, and set theory is fuzzified more satisfactorily.
The complete fuzzification of other categories is a difficult and important
problem which we hope to discuss elsewhere.

A fuzzy 6-map is to be thought of as a fuzzy processor of objects of €;
the composition of two fuzzy maps then corresponds to processing first by
one and then by the other.

In the case * is A there is, as usual, a dual composition, defined by the
dual of the above expression, which we denote by 8. It satisfies the duals of
the above properties; since they are self-dual, it satisfies the conclusion of
Theorem 1. Since x does not distribute over A in general, these considera-
tions do not apply to arbitrary closg’s.
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This section ends with some purely categoric theoretic results and con-
cepts which will be of use, or at least of interest, in the sequel. Let € be a
fixed category.

It is possible to characterize | — 1 and onto maps, say for sets, in a way
which makes sense in any category. However in other categories the maps
which satisfy these conditions will not necessarily be the maps which are
1 — 1 and onto in the set theoretic sense. Thus it becomes an interesting
problem to determine just what they are in each given category. These maps
are given new names, as follows: f € Mor (X, Y) is a coretraction in € iff
Jg e Mor (Y, X) such that gof=1y. feMor(X,Y) is a retraction
in € iff 3g € Mor (Y, X) such that fog =1y. fe Mor (X, Y) is an so-
morphism in € iff 3g € Mor (Y, X) such that gof =1y and fog = 1y.

fis an isomorphism iff it is a coretraction and a retraction. One half of this
assertion is obvious, and the other can be seen as follows: Suppose 3g, 7 such
that gof=1yand fo g = 1y. Then

g=goly=go(fog)=(gof)og=1305=4.

Elements of Mor (X, X) are called endomorphisms of X. An endomorphism
which is an isomorphism is called an automorphism. The set of endomorphisms
of X is denoted End (X) and of automorphisms Aut (X).

ProposITION 3. End (X) is a semigroup with identity and Aut (X) is a
group.

ProoF. The composition of any two endomorphisms is defined and is
another endomorphism. By definition of category, composition is associative
and there is an identity in Mor (X, X). Thus End (X) is a semigroup with
identity. To check that Aut (X) C End (X) is a group, it suffices to note that
each automorphism of X has an inverse, by definition of isomorphism, and
that said inverse is also an automorphism. [J

If for feMor(X,Y) there exists some ge Mor(Y,X) such that
gof=1xand fog =1y, then f is invertible and g is an inverse of f; we
may write g = f 1. We then have the following

PROPOSITION 4. f is tnvertible iff f is an isomorphism. The inverse is unique
if it exists. f invertible = f~1 invertible and (f—1)* = f. Furthermore, if f
and g are invertible and f o g is defined, then (fog)t =gofL

Proor. The first assertion is a translation of definitions. The second
follows from the same argument used to prove that f is an isomorphism iff f
is a coretraction and a retraction, for of two inverses g, g to f, each will be
both a left and a right inverse. The third assertion follows immediately from
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the definition. The last is proved by noticing that (fog)(gtof 1) =1
and (g ofY) o (fog) =1, by using associativity. []

A subcategory of a category € is a category which has as objects and mor-
phisms subcollections of those of €.

The notions of direct sum and direct product also can be formulated so as
to make sense in any category. Not all categories will have direct sums and
products.

Since we deal with both order and category concepts, it is interesting to
notice that a poset L can be regarded as a category, as follows: the objects
are the elements of L; and for a, b € L, Mor (a, b) is some one point set, say
{a}, if @ = b, and Mor (4, b) = o otherwise. Associativity corresponds to
transitivity and the existence of identities to reflexivity. L has direct sums and
products as a category iff it is a complete lattice as a poset.

6. RELATIONS

The importance of relations is almost self-evident. Science is, in a sense,
the discovery of relations between observables. Zadeh [5] has shown the
study of relations to be equivalent to the general study of systems (a system
is a relation between an “input” space and an “output” space). In addition,
relations play a central role in the purely mathematical development of our
theory.

Difficulties arise in the so-called “soft” sciences because the relations
involved do not appear to be “hard,” as they are, say, in classical physics. A
thoroughgoing application of probability theory has relieved many difficulties,
but it is clear that others remain. We suggest that further difficulties might
be cleared up through a systematic exploitation of fuzziness.

Introspection will show that one’s concept of the relation “x is better
that " for x and y cars, novels, or politicians, is “fuzzy” in some sense. We
suggest that the sense discussed here may be appropriate for problems of
biology, psychology, engineering design, and economics.

Recall that an L-relation R is an element of L*Y, and an L-fuzzy L-relation
is a function # :LXY L. Let R(X, Y;L) denote the set of L-telations
from X to Y, and %#(X, Y; L) the set of fuzzy L-relations from X to Y.

In system theory a fuzzy L-relation corresponds to a fuzzy class of fuzzy
systems (see Zadeh [2]). This section develops an algebraic theory or calculus
of fuzzy relations, which is also an algebraic theory or calculus of fuzzy
systems.

If R is an L-relation from Y to Z and S is an L-relation from X to Y, the
composition R o S of R and S is defined by

(R0 S)(x,2) = Vu{S(x 3) * R(, 2)}.

409/18/1-11
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ProrosiTioN 1. Composition of L-relations is associative.

Proor,

[(RoS)o T)(xw) = V |V (R, 3) + S(v, 2)} + T(s, w)]

= V{R@®, y) * S(y, 2) = T(z, w)}

=V R 3) * V80, 3) * TGz, w)}

=[Ro (S o T)] (x, w). O

Let X be a set. Then Ey denotes the (crisp) identity relation of X defined
by Ex(x, 2') = 0 if x 5 &', and Ex(x, x) = I. We may write E for Ex.

ProrosiTioN 2. The E’s are identities; i.e., if R ts an L-relation from X
to Y,EYoR:ROEX:R.

Proor. Ey o R(x,y) =V, {R(x, ") * Ex(y', y)} = R(x, ), and similarly
for the other. [}

These two propositions show that there is a category R(L) whose objects
are sets, and whose morphisms are L-relations; that is, for sets X, Y,
Mor (X, Y)=R(X, Y;L).

An L-relation R from X to Y is functional iff for every x € X there is a
unique y € Y such that R(x, y) > 0. Then a crisp functional relation is an
ordinary function. The above construction can be repeated using functional
relations as morphisms, obtaining a category which specializes to the category
of sets and maps for L = 2.

If x is A, the construction can be carried out for the dual composition &
of relations,

By the general fuzzification process of the previous section, LX) is also
a category, whose objects are sets and whose morphisms are fuzzy L-rela-
tions; that is, for X, Y sets

Mor (X, Y) = LRE.YiD) — g(X, V; L).

The identity in LRE) is (Ex)t which we write as &y . Composition, to be
explicit, is defined, for Z e (Y, Z;L), ¥ € (X, Y;L),and T € R(X, Z; L),
by

@0 #)(T)=V, (AR« #(S)|Ro S =T),

and is associative. We will write Z(L) for LR,
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Actually, the algebraic structure of these collections of relations is still
richer. Both R(X, Y;L) and #(X, Y; L) are of the form LS, for some set S
(S is XY and R(X, Y;L) respectively), and therefore are, in particular,
L-sets. Thus they take on the algebraic structure of L, as usual.

In particular, they are posets, and it makes sense to consider the following
alternate definition of composition for fuzzy L-relations

(# 0 #)(T) =\ {#R) + #(S) | Ro S < T}

It is easy to verify that there is a category whose objects are sets, whose
morphisms are fuzzy L-relations, and whose composition is defined in this
way.

An L-fuzzy L-relation from X to Y is functional if it is non-0 only on
functional L-relations. Then there is a sub-category of %(L) whose morphisms
are the functional fuzzy L-relations.

Composition and the lattice operations in R(X, Y;L) and #(X, Y;L)
are related as follows:

ProposiTioN 3A. Let RR;,TeR(Y,Z;L), S,S;/,UeR(X, Y;L). Then
(1) If O is the relation identically 0,00 R =R o0 =0;

2) RELT=>RoSKToS, and SKU=RoS<K<RoU;

(3) RoV;S;=Vi(RoS;), and (V;R;)0 S = V;(R;0S8);

4 RoA;Si<Ai(R0OS), and (AiR)o S A:i(R;08),for x = A.
Proor. The first and second assertions are essentially obvious. The two

assertions in each of (3) and (4) are symmetric, so it suffices to prove one of
each. This is done as follows:

(RoV 8i) @ 2) = V[V St )] + Ry, )

= V V {Si(x, ¥) * R(y, 2)} = V (R o 8;)(x, 3);

(Ro A 8,) (@ 2) = v ] A St 9] R(s, 2)
= Y /i\{Si(x, ) * R(y, 2)}
<AV 89+ R ) = AR0S)(3,2). D
ProPOSITION 3B. Exactly the same results as in Proposition 34 hold for

R Ry, T €eRY,Z;Lyand &, F;, U € R(X, Y; L), with either definition of

composition.
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T}le converse of R € R(X, Y;L) is the L-relation R € R(Y, X; L) defined
by R(y, x) = R(x, y). The converse of # € Z(X, Y; L) is the fuzzy L-relation
% € A(Y, X;L) defined by #(R) = RZ(R).

ProrosiTioN 4. Let RR; € R(X,Y;L) and S e R(Y, Z;L). Then:
(1) (SoR”=RoS;

(2) (ViR)” = V;R:, and dually;

3 Ry =

Furthermore the same results hold for #, X, & (with either composition ).

ProOF.
(V R) (%) =(VR) ) =V R )
=V (R 9) = (V &) 0, )

(# o L) (T) =V {RR) + S(S)|Ro S T}
= V{#R) « #(S)| So R T} = (£ o &) (T).

The other assertions are either very easy or similar to the above. [

Since R(L) and (L) are categories, the abstract notion of inverse, as
defined in the previous section, becomes available as a notion of inverse for
relations. To be more concrete, an L-relation R is tnvertible iff 3 an L-relation
S such that Ro S == E and S o R = E; then S is an inverse to R, and we
write R~ = S. Similarly for an L-fuzzy L-relation #%. The general category
results on inverses (Proposition 4 of Section 5) give us the following

ProposITION 5. The tnverse L-relation is unique if it exists. If R is inver-
tible, so is R, and (R~1)"* = R.If R and S are invertible and R o S is defined,
then R o S is invertible and (R o Sy = S~ 0 R And similarly for fuzzy
L-relations.

It would seem that invertible L-relations and fuzzy L-relations must be
very special and are probably not very fuzzy. Furthermore, the similarity
of the formal properties of converse and inverse, and the facts for L = 2
suggest that there should be a strong relationship between converse and
inverse. These conjectures are proved below provided * has no zero divisors
in L. Theorem 1A fails if there are: if L = J2, x = A,(1,0) =#,(0,1) =,
X =Y ={1,2}, and R is defined by R(3,j) = u if # # j and R(3,7) = v for
i,j €{1, 2}, then R-! == R, but R is not crisp.
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TueoREM 1A, If x has no zero divisors, the invertible L-relations are the
set tsomorphisms (i.e., the crisp 1 — 1 onto set mappings).

Proor. Let ReR(X,Y;L), SeR(Y,X;L) such that SoR=Ey
and Ro § = Ey, ie., such that V,{R(x, y) % S(y, x)} = Ex(«’, x) and
V. {S(y, x) * R(x, ")} = Ey(y, ). These imply:

(1) V&' #=xV¥y R(#,y) xS(y,%) =0 and

(2) VxVy{R(x)* S(y, %)} =1I; and

3) Yy #y'VxeR(x,¥)*S(y, %)=0and

@) Vy Ve{S(, %) * Rz, )} =1

Now suppose R is not crisp, i.e., suppose 3w, , ¥, such that

R(xo ,yo) =a Eé 0, I.

By (1)
Vo £ xOR(xo ,}’o) * S(J’o > x) =0,

i.e., a ¥ S(3,, x) = 0. Since a < I, by (4) there must 3 an & 7= x, such that
S(v, , &) * R(%, y,) # 0. Then a * [S(y,, %) * R(%, ¥,)] # 0 since there are
no zero divisors. But also [a x S(y, , £)] * R(%, ¥,) = 0, contradicting asso-
ciativity. Thus R is crisp, and by symmetry, so is S.

Then (2) translates to

Vady : R(x,y) = S(y,%) =1,
and (4) to
Vydx : R(x,y) = S(y,x) =1.
Now suppose R(x,y) = S(y,x) =1, and also R(x,y') ==I for some

y # 9. Then (3) = R(x,y') * S(y, ) = 0, and one of R(x, y'), S(y, x) is 0,
again a contradiction. Thus (3] means 3 a unique)

Vxdly : R(x,y) = S(y, %) =1,

and by symmetry
Vy3dix : R(x, ¥) = S(y, x) =1,

and of course R(x, ) = S(y, #) = 0 otherwise, so that R and .S are functions
and isomorphisms, as well as crisp, and R = S. []

THEOREM 1B. The invertible fuzzy L-relations in &(L) are of the form R+,
where R is an invertible L-relation; inverse agrees with converse when it exists,
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Proor. Suppose Z € #(X, Y;L), ¥ € #(Y, X;L)suchthat Z o & = &y
and S o0Z% =¢Ey. Then: (1) if RoS#Ey, ZR)xL(S)=0; (2)
3R, S such that Ro S = Ey and Z(R) x #(S) >0; (3) if SoR # Ey,
Z(R) x F(S) = 0; (4) IR, S such that S o R = Ey and Z(R) * SL(S) > 0.

Let R, S be as in (2). Then Z(R) x F(S) > 0, so that S 0 R = Ey by (3).
Thus R and S are inverses and R is invertible.

Let S be as above and suppose IR’ such that Z#(R’) > 0. Then
Zo S (RoS)>0,50R 08 =Ey.Also S 0Z(SoR)>0,50 S0 R = Ey.
By uniqueness of the inverse of S, R = R'.

Thus # is I on R and O elsewhere, that is, Z = R*, and symmetrically
for #,S. O

If we use the alternate definition of composition (with R o S < T instead
of R o S = T) there are no invertible fuzzy L-relations, for it is impossible
that o0 =&, since FZE=>Ro S (F)z=Ro L(E)=EE) =1,
but we are supposed to have E £ F = Z o S (F) = 0.

In particular, we have determined Aut (X) if L has no zero divisors; it is
essentially the same as in the category of sets. Even if L has no zero divisors,
coretractions and retractions are not necessarily crisp.

The conjecture that inverse and converse agree is true in full generality.

TrEOREM 2. The tnverse of an L-relation (when it exists) equals the
converse.

PROOF. Say £ is invertible and #-1 = &. Then
SoR(x & =V R(xy)+xS@» =0 i x#&
v

and
Ro Sy, 7)=V Sy, %)« R(x,5) =0 if y#3.

Now R = R o S o R, so we obtain
R(% 5) = V R(#y) * S(, %) * R(%, §) = R(%,3) * S(7, %) * R(%, ),
x.9

the last step because R(%,y) x S(y, #) * R(x, ) =0 unless y = 7 and x = &,
by the observations above. Therefore by (1) of Proposition 3 of Section 3,

R(%,7) < S(7, %),

and by symmetry S(#, #) < R(%, 7). Therefore R(%,7) = S(¥, %), for all
£ 9, ie. S=R [

In the previous section we showed that the setof endomorphisms of an
object in a category is a semigroup with identity (Proposition 3). Thus
R(X, X;L) and #(X, X;L), which we hereafter denote by R(X;L) and
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A(X;L) respectively, are semigroups with identity. Combining this with
earlier results in this section (Proposition 3), we see that we have already
proved the following:

THEOREM 3. R(X;L) and Z(X;L) are completely distributive closg’s
with identity, zero, and lattice theoretic infinity, when we use composttion.

This is in addition, of course, to the closg structures they have already
inherited from L, using x as multiplication. It now follows ([3], p. 202) that
they are residuated lattices (with respect to composition).

An L-relation R on X is symmetric iff R = R, and is transitive iff R o R < R.
Similarly for fuzzy L-relations.

PROPOSITION 6. The intersection (i.e., infimum) of symmetric L-relations
1s symmetric, and of transitive L-relations is transitive; the union (i.e., supre-
mum) of symmetric L-relations is symmetric. And similarly for fuzzy L-relations.

The assumption x = A is required for the results on transitivity.

Proor. Let R; € R(X; L) such that R, = R,. Then
(VRz) = VRz: VRi)
and dually. Now let R, € R(X; L) such that R; 0 R; < R, . Then
/\Rio /\Ri< /\(Rio /\R:‘) < /\(RiORi)< AR;.
7 [ j i

i i

And similarly for Z(X;L). []

CoroLLARY. Every R € R(X; L) has a least symmetric L-relation containing
it, a least transitive L-relation containing it, and a greatest symmetric L-relation
contained in it. Similarly for R(X; L).

Proor. All assertions are proved similarly to the first, which goes as
follows: Let O be the set of all symmetric L-relations .S such that R < S.
O + o since I €Q. Then S, = A {S| S €0} is the desired least symmetric
relation > R. []

The same argument will establish that every relation is contained in (i.e., <)
a unique least relation which is both transitive and symmetric.

7. Imacses

In this section we define and discuss properties of various images. The
direct image is a generalization of Zadeh’s concept of shadow [1]; using it,
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we fuzzify set theory in a way which involves fuzzy maps and fuzzy sets. The
various images also have important phenomenological interpretations.

Let p denote a fixed single point, or (ambiguously) the singelton {p} con-
taining p (context will indicate which is intended).

If 4 is an L-relation from p to X, we will let 4 also denote the L-set on X
which assigns A(p, x) to x € X; conversely, if 4 is an L-set on X, we let 4
also denote the L-relation from p to X defined by A(p, x) = A(x). This
correspondence is equivalent to the isomorphism L?¥ ~ LX, It is also equi-
valent to a correspondence between fuzzy sets and those fuzzy systems which
produce a fuzzy output whenever their one input p is “pushed.”

Similarly L-relations from Y to p are in 1 — 1 correspondence with L-sets
on Y; B(y, p) <> B(y). And relations R from p to p are in 1 — 1 correspond-
ence with elements of L, since L?? ~ L. '

Let R be an L-relation from X to Y, and let 4 be an L-set on X regarded as
an L-relation from p to X. Then the composition R 0 4 is an L-relation
from p to Y, which may be regarded as an L-set on Y. We call this set the
direct R-image of A or the R-image of A, or the image of A under R, and we
denote it by R(4) or R 0 A.

If we think of R as a system and 4 as an input, then the image R(4) is a
fuzzy output, assigning evaluations or degrees of membership, etc., to the
point outputs y € Y. The study of relations of the previous section enables
us to immediately deduce a number of properties of the direct image.

ProrosiTioN 1. Let A, B and A; be L-sets on X and let R, S and R, be
L-relations from X to Y. Then :

(1) 4<B = R(4) < R(B);

(2 R(V:4) = V:R(4:);

() R(V;4) < V. R(4:);

4 R(0)=0;

(3) R<S=R4)< S(4)

(6) [ViR](4) = V;[R(A)];

(M) A R (A) < Ai[Ri(4)], for 5 = A3

(8) 0(4)=0.

There is also the following useful consequence of the associativity of the
composition of relations:

PropoSITION 2. Let R be an L-relation from Y to Z, S an L-relation from
XtoY,and A an L-set of X. Then

(R o 8)(4) = R(S(4)).
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If R is an L-relation from X to Y and B is an L-set on Y, the composition
B o R defines an L-set of X, which we call the converse R-image of B, or the
converse image of B under R, and denote by R(B). This terminology is justified
by noticing that the converse image is actually (R o B)*, and ¥ makes little
difference when one set is p. The results on converses in the previous section
allow the properties of Propositions 1 and 2 of this section to be asserted for
the converse image.

If L = 2, these results become the familiar assertions usually made of set
theoretic mappings (converse image is then usually called inverse image).

Let R be an L-relation from X to Y, 4 an L-set on X, and B an L-set on Y.
Then the R-tmage of A and B is the element of L given by the composition
B o Ro A (if you prefer, it is B o R o A(p, p)). It measures the extent to
which 4 and B are related under R. Properties parallel to the above hold for
this double image.

In fact, direct and converse images are special cases of the double image:
R(A)(y) =yToRo A; and R(B)(x) =B o Ro xt.

We now give the promised fuzzification of set theory. Let the objects of
the category S(L) be L-sets 4:X —L, and let the morphisms from
A:X-—L to B:Y—L be the triples (4, B, R), where R is an L-relation
from X to Y such that R(4) < B; that is,

Mor (4, B) = {(4, B, R) | R(4) < B}.

Let (A4,B,R)yeMor(4,B) and let (B,C,S)eMor(B,C). Then
(B, C, S)o (4, B, R) is defined to be (4, C, S o R), and is seen to be an
element of Mor (4, C) by the associativity property of Proposition 2. The
required category associativity is verified by reference to associativity of
composition of relations, and it is clear that (4, 4, 1x) € Mor (4, A4) is an
identity for 4 : X — L. We call S(L) the category of L-sets and L-relations.
The subcategory F(L) whose morphisms involve only functional relations is
the category of fuzzy sets and fuzzy functions.

These considerations generalize to fuzzy L-relations and fuzzy L-sets.

Let % be a fuzzy L-relation from X to Y, and let &7 be a fuzzy L-set on X,
regarded as a fuzzy L-relation from p to X. Then the composition Z o &
is a fuzzy L-relation from p to ¥ which may be regarded as a fuzzy L-set on Y.
As such, it is denoted Z(&/), and called the (direct) #-image of o, or (direct)
image of s¢ under Z. To be quite specific, we have

R(ANB) = V{ZR) « 4(4) | R(4) = B},

where B is an L-set on Y. Properties (1)-(8) and associativity hold (we could
also use the alternate composition).
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If # is a fuzzy L-set on Y, the composition & ¢ # defines a fuzzy L-set
on X, called the converse image of # under # and denoted .%v’(.@) Properties
(1)-(8) and associativity hold again.

Given &7, #, and Z, the double image # o # © & is an L-fuzzy L-relation
from p to p, that is, an element of L%, or a “‘fuzzy value.”

Given # and &7, B ~ Bt 0 # o .o gives a map from LY to L%, Similarly
consider y ~ yt+ o # o «Z. If ¥+ = A, one could use dual composition and
get dual properties. If L were complemented, one could season definitions
with occasional complements, obtaining appropriately complemented prop-
erties.

There is a category (L) with objects &/ and morphisms defined by
(o, B, &) € Mor (A, B) < A(H) < A, and there is a subcategory F(L)
involving only functional relations.

PRroPOSITION 3. Let A be an L-set on X, S a functional L-relation from
Y to X, and R its converse. Then

SoR(A)< 4.

Proor.
SoRo A(x) = V {A(%) * R(%, y) * S(y, x)}

and

A(%) * R(&, y) * S(y, x) < A(x) Vx, %, y. O

That is RoRo A< A4 if R is functional. If * = A the dual is
Ro R6 A > A. Thus we have proved the following estimate (originally
due to Zadeh [4]):

ProPoSITION 4. Let A be an L-set on X, let R, be functional L-relations from
Yto X, and let x = N. Then

VRoRoA<A< AR ROOA

Exactly the same results hold for fuzzy L-set & and fuzzy L-relations 2,
S Ry

Let R and S be functional L-relations from X to Y. If R(A) = S(4) for
all L-sets 4 on X, or even all crisp singletons 4 on X, then R = S. Similarly
if BoRo A= BoSo A for all crisp singletons B, 4, R = S.

8. DecisioNs AND MAPPINGS BETWEEN LATTICES

This section sketches an algebraic theory of decisions under uncertainty
which is fuzzy rather than statistical. We give a few elementary results and
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some general ideas. Most of it also applies to crisp decision processes. We do
not treat the problem of optimizing decision processes.

While a fuzzy set 4 : X — L may constitute a very adequate description
of a problem, the interesting thing in practice is to reach a decision or solution.
A decision function on a set X is a mapping d: X —L,, and we call L, a
decision language; that is, d is an Ly-fuzzy set on X. This kind of fuzzy set
has little to do with the intuitive conception of fuzziness, but it fits into our
framework very nicely. Often the appropriate X is LY for some other set Y.

It appears natural to assume L, is at least a complete lattice with 0 and 1.
If d decides “yes” or “no,” L, = 2. If d ranks alternatives in X, L, is simply
ordered. L, could be a free distributive lattice or Boolean algebra generated
by a set D of basic decisions, or, if nothing else seems appropriate, a discrete
decision language, with Hasse diagram of the form
I

B

even though it is not distributive. The inverse image of @ € L, under d is the
subset of X for which the decision a is rendered. In many cases the decisions
0 and I will be “reject” decisions,

The most natural way to go from a function 4 : X —L to a function
d: X — L, is via a function £ : L — L, . Thus we are interested in mappings
between lattices in this section.

A map ¢ from one closg L, to another L, could be of many kinds, for exam-
ple: a set map; a poset homomorphism; a map preserving \/ or A; a lattice
homomorphism; a complete lattice homomorphism; a closg homomorphism;
and for any of these it could preserve 0 and/or I. This (partially ordered)
hierarchy of homomorphisms gives an algebraic classification scheme for
decision processes. It can be slightly extended by considering preservation
of V, A, and x separately.

A poset homomorphism preserves <{. Not every poset homomorphism
preserves \/ or A, and some preserve one but not the other. But if a map
preserves \ or A, it is easily seen to be a poset homomorphism. If it pre-
serves both \/ and A, it is (by definition) a lattice homomorphism. If both
lattices are simply ordered, £is a poset homomorphism iff it is a lattice homo-
morphism.

The mappings which arise in practice tend to be rather low in the hierarchy,
although the higher ones tend to have the nicest algebraic properties. We
consider some examples.

Let L be simply ordered, and define ¢ : L2 by #(b) = 0 if 6 < a and
t(d) =1if b > a. tis called the a-threshold mapping, and it is a complete

A
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lattice homomorphism, preserving I and preserving O except in the trivial
case where a = 0. If L = J, t is a closg homomorphism. This is about as nice
a map (algebraically speaking) as one is likely to meet (excepting isomor-
phisms).

t as above induces a homomorphism of the same kind " : L* — 2%, or
more generally t¥ : LX — 2% for any set X, by the usual componentwise
process; one could even use different t’s for each component.

An interesting example occurs in pattern classification. Suppose a pattern
is represented by an N-vector (say N = »? as in Section 2) of real numbers.
Then the threshold transformation tV reduces patterns to binary N-vectors
in a particularly nice way.

We may view an element of " as a J-fuzzy set on X ={0, 1,..., » —1};
denote {0, 1,...,» — 1} by n. Let B € J*, and consider the mapping from J*
to R defined by 4 ~ X,B(1) x A(7) for + = multiplication. We could, without
loss of order-theoretic generality, normalize B so that Z,(B;) < 1; then
w: Jr— J. wis a weighting of the components of A, as in Section 1. It is a
poset homomorphism which preserves neither Y nor A. w can also be
viewed as computing the correlation of A € J* with B. For infinite index sets
X summation could be replaced by integration. We could also use the closg’s
R or 2 instead of J. Component-wise extension yields poset homomorphisms
of the form W = (w, ,..., wy_4) : J*— J-.

A mapping W: J¥ — J* of the form described above might occur as an
intermediate step of a pattern classification machine, in which w; computes
the correlation of 4 € J¥ with some pattern prototype B; e J¥.

Let A eLX, and consider the mapping m : L¥ — L defined by

A%\ {A(x) | x e X}

Then m preserves Y/, and m(A4 * B) < m(A) = m(B); this holds in particular
for x = A, even if L has a given * different from A.

In the pattern classification machine which we have been constructing, m
would tell what the maximum correlation with a stored prototype B; was,
and to some extent would measure the effectiveness of the decision scheme
which assigned A to the class with a representative of which it was maximally
correlated. Let d(A) denote this class, one of 1,..., k, or say one of (¢ = 26)
a,.., 2 €L, , where L, has the Hasse diagram given earlier in this section.

Then the mappings /=mow (ot f=mowot): JN— ] and
d: JN — L, are crisp functional systems which describe the operation of this
machine. The first is order preserving. The practically important questions
of course relate to such quantities as error rate, which we have agreed not to
discuss here.

We now inquire how the various fuzzy structures we have defined in
previous sections behave under closg homomorphisms. The typical result
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is that a fuzzy structure behaves “functorially”, in the sense of category
theory.

A covariant functor T from a category % to a category €’ is an assignment of
an object T(A) in €’ to each object Ain C, and an assignment of a morphism
T(f): T(4)— T(B) in €' to each morphism f: 4— B in € insucha way
that T(1,) =17 and T(fo g) =T(f) o T(g). We will write T : € — €.

A covariant functor 7" induces a map from Morg (4, B) to Mory(T(4),
T(B)), and it follows immediately from the definition that 7' induces a
semigroup homomorphism from End (4) to End (7(4)), and a group
homomorphism from Aut(4) to Aut (T(4)). Also, if f: A— B is an
isomorphism in € then T(f): T(4)-— T(B) is an isomorphism in €.

Let ¥ be a category, and let £ : L, — L, be a closg homomorphism. Then #
induces a functor £¢ : L,¥ — L, defined by £¥(A) = A for 4 an object of &,
and £%(F) (f) = £ o F(f), for FeLM"4-®) and fe Mor (4, B), so that
L4F) e LYT4:B) Generally speaking we will write ZF for Z%(F). It is easy
to verify that /(F o G) =/F o £G and #(1,) = 1 so that we indeed have a
functor.

In the category R(L) of sets and L-relations, £ : L, — L, induces a functor
R(/) taking each object to itself and the L,-relation R : XY — L, to the L,-
relation /R : XY —L,.

It is easy to see that the map £: R(X, Y;L,) — R(X, Y;L,) defined above
is a complete lattice homomorphism.

We already know that £ : R(X;L,) — R(X;L,) is a semigroup homomor-
phism, since it comes from a functor from R(L,) to R(L,), and since it is a
complete lattice homomorphism, it is a closg homomorphism.

Given, as usual, £:L, —L,, we define £: #(X, Y;L,)—>A(X, Y;L,)
by /(%) (R) =¢ \V {#(R) |{R = R}, for ZeA(X,Y;L,), Re R(X, Y;L,),
and R € R(X, Y;L,). This defines a lattice homomorphism. Then £ gives a
functor #({): A(L,) — #(L,) mapping each set to itself and mapping
morphisms as above.

The situation for categories with fuzzy sets and morphisms is basically
the same. Let £: L, — L, be a homomorphism. Then we define a covariant
functor from S(L,) to S(L,) by mapping the object 4 : X — L, to the object
{4 : X —L,, and mapping the morphism R: 4 — B, for Re R(X, Y;L,),
to /R : A —~¢B, {R € R(X, Y;L,). One has only to check that

R(A) < B = /R(¢A) <¢B,

and this is easy.
The situation for #(L) is analogous. We define £%/ by

tst(d)y =\ {¢4(4) | A = A}

and proceed as above.
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The same results are obtained in the same way if we restrict to functional
relations, or if, for x = A, we use dual composition.

One can think of L€ and ¥ as defining a covariant functor from the category
of lattices to the “‘category of categories.” Strictly speaking, there is no such
category (Would it be a member of itself ?), but all the axioms of a category
are satisfied when we take Mor (%, €’) to be all covariant functors
T:%-—>%'. Then mapping L to L¥ and £:L;—~L, to £¥ :L¥ >L,*
satisfies the axioms for a covariant functor between these categories. The
best way to view such an assertion is probably as a mathematical metaphor.

It is generally possible to view these fuzzy structures as bifunctors, contra-
variant in one variable, and covariant in the lattice variable.

It actually suffices for £ to preserve \/ and x for all the above to be true.
Furthermore, if £ V; a; < V;a; and £(a * b) < fa x £b, we get, for example,
{(R o S) <{(R) of(S), rather than equality, and £ is no longer quite a
functor.
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