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Abstract

This paper investigates the use of hyperresolution as a decision procedure and model builder
for guarded formulae. In general, hyperresolution is not a decision procedure for the entire guarded
fragment. However we show that there are natural fragments of the guarded fragment which can be
decided by hyperresolution. In particular, we prove decidability of hyperresolution with or without
splitting for the fragment GF1 and point out several ways of extending this fragment without losing
decidability. As hyperresolution is closely related to various tableaux methods the present work is
also relevant for tableaux methods. We compare our approach to hypertableaux, and mention the
relationship to other clausal classes which are decidable by hyperresolution.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In Andréka et al(1998 1995 Andréka, van Benthem and Netiinvestigate whether
there exist natural fragments of first-order logic extending the modal fragment which
corresponds to basic modal logic (via the relational translation) sharing some or all of
the properties of modal logics, including decidability, Craig interpolation, bisimulation
invariance, Beth definability, the finite model property, and preservation under submodels.
They show that the guarded fragment (GF) shares, indeed, all these properties with the
basic modal logicK. Various extensions of the GF have been proposed and analysed
with respect to these properties. The most well-known extension is the loosely GF,
introduced inAndréka et al.(1998, and shown decidable iGanzinger and de Nivelle
(1999 and Gradel (19990. Decidability has also been shown for the guarded fixpoint
logic (Grade| 19993 and a monadic fragment of GRvith transitive guardsGanzinger
et al, 1999. The decision procedures for the GF and the various extensions exploit
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different approaches: the finite model property, ordered resolution, alternating automata, or
embeddings into monadic second-order logic. This is an interesting contrast to approaches
in the literature on decidable modal logics and description logics, where tableaux-based

decision procedures are predominantly used for testing satisfiability (see for example

Donini et al, 1996 Gorg, 1999.

In Lutz et al. (1999, Lutz, Sattler and Tobies investigate whether tableaux-based
decision procedures exist for subclasses of the GF. They introduce a subclass of the GF,
in particular, of the fragment GF1 which was introduceddimdréka et al.(1995. This
subclass is called GF1 and is obtained by restricting the way the variables may occur
in guards. A formulap belongs to GF1 if any quantified subformufaof ¢ has the form
Y(GX,¥) AP (Y)) orVY(G(X,Y) — ¢(Y)). In formulae of GFI the atomg5(X,y) in
guard positions need to satisfy an additional grouping condition. This grouping condition
is important for termination in the tableaux procedure of Lutz et al.

In this paper we continue this line of investigation. However we exploit the
close correspondence between tableaux-based decision procedures and hyperresolution
combined with splitting which has been demonstrated for extended modal latgcs (
Nivelle et al, 200Q Hustadt and Schmid®000h and for description logicsHustadt
and Schmidt1999 20004. By using a structure preserving transformation of guarded
formulae into clausal form we can recast the method of Lutz et al. in the framework
of hyperresolution. The motivation for this shift in perspective is our interest in the
applicability of resolution and hyperresolution methods as decision procedures.

Generally, hyperresolution is not a decision procedure for the entire GF. A simple
example is provided by the guarded formway) A VX(p(x) — Fz(p(2) A T)) with
clausal form{p(a), —p(x) v p(f(x))}, for which hyperresolution does not terminate.

In contrast, inde Nivelle et al.(2000 and Hustadt and Schmid{20008 it is proved

that hyperresolution with splitting is a decision procedure for a first-order encoding of
the extended modal logikm) (N, U, —). SemanticallyK (N, U, —) is defined by the

class of frames in which the accessibility relations are closed under intersection, union and
converse. In this paper we focus on the question as to whether the res#lisfon, U, —)

can be extended to a generalized first-order logic fragment, for example, to the class
GF1~, and possibly to extensions of this class. Because the method of proving termination
used inde Nivelle et al.(2000 andHustadt and Schmid000b does not generalize to
GF1~, we investigate a different argument which is adapted fraiz et al.(1999. This
argument takes into consideration the form of the derived clauses and crucially depends
on the grouping restriction in the definition of GE1n the setting of hyperresolution it is
immediately clear that the termination result can be extended to a larger class of guarded
formulae than the class GFIidentified in Lutz et al. Thus, we obtain more general results
than those previously known.

A problem closely related to the satisfiability problem is the problem of generating
(counter-)models. It is well-known that hyperresolution can be employed with dual
purpose, namely, as a reasoning method and a Herbrand model bEidertiller et al,

200)). Therefore, another topic in this paper is the use of hyperresolution as a procedure
for automatically constructing Herbrand models for GFdnd the considered extension.

The paper also considers how the method relates to other inference methods such as
hypertableauxBaumgartner et 311996, and how the work fits in with previous work



L. Georgieva et al. / Journal of Symbolic Computation 36 (2003) 163-192 165

on using hyperresolution as a decision procedure for first-order cladssagaifler et al,
200% Leitsch 1993.

The structure of the paper is as follows. Some preliminary definitions are given in
Section 2 Section 3defines the fragment GFland describes the clausal normal form
into which GFT formulae are conveniently translated. The hyperresolution calculus
is described inSection 4and decidability of GF1 is shown. The topic ofSection 5
is model building.Section 6presents results on the computational properties of the
decision procedure and the size of generated mo8elgtion 7analyzes and characterizes
the precise relationship between the hyperresolution calculus and the semantic tableaux
method of Lutz et al. Generalizations of the results for GEd a larger class of formulae
are sketched iSection 8 The final section summarizes the contributions of this paper and
concludes with some thoughts on further work.

2. Preliminaries

First-order variables are denoted byy, z, terms are denoted kg/ t, u, constants by
a, b, functions byf, g, h, predicate symbols b, Q, G, p, q,r, atoms byA, B, literals
by L, clauses byC, formulae byg, ¢, ¥, ¢, «, 8 and sets of clauses hy.

An over-line indicates a sequence, for examgldenotes a finite sequence of variables
ands denotes a finite sequence of termss ¥ (sy, ..., y) then f (S) denotes a sequence
of terms of the formfy(sy, ..., s). If Sandt are sequences of terms thea T means that
every term irs also occurs ifi. By definition,5 =t iff S C t andt € S. The union of the
terms inS andt is denoted b U t.

For any sequencgof terms (or formulap) by var3s) (or varn¢)) we denote the set of
variables that occur freely im(or ¢). We also writep (X) to indicate that the free variables
occurring ing are all and only those iX, regardless of the order they appeawirand
duplication of variables is possible.

An expressiofis a term, an atom, a literal or a clause. An expression is chlledtional
if it contains a constant or a function symbol, amah-functional otherwise. The set of
all free variables occurring in an expressiBnor in a set of expressiony, is denoted
asV(E) or V(N). An expression is callegroundif it contains no variables. For sets of
expression$N| denotes theardinality of the setN.

Clausesare disjunctions of literals, i.€ = L1 vLyV---VvLp, they can also be regarded
as multisets. As usual the symboilsand— denote disjunction and negation, respectively.
A positive(resp. negativexlause contains only positive (resp., negative) literals. A clause
is callednon-positivdf it contains at least one negative literal. A clause which consists of
only one literal is called anit clause The empty clause is denoted iy A split component
of aclauseC v D is a subclaus€ such thatC andD do not have any variables in common,
i.e. arevariable disjoint A clause which cannot be split further is callechaximally split
clause. Two formulae or clauses are said tovhgants of each other if they are equal
modulo variable renaming. Variant clauses are assumed to be equal.

A clauseC is calledrange-restrictedff every variable occurring in the positive literals
of C occurs also in the negative literals ©f
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The(term) depthdp(t) of a termt is inductively defined as follows: (i) if is a variable
or a constantthen dp = 1, and (ii) ift = f(t1,...,ty), then dpgt) = 1 + max{dp(t;) |
1 <i < n}). Theterm depthdp(L) of a literal is defined to be the maximal depth of its
argument terms and therm depthdp(C) of a clause is defined as the maximal term depth
of the literals occurring irC.

We assume that a fixed finite signatute i.e. a countable set of predicate symbols,
a countable set of function symbols and a countable set of variables is given. With each
predicate and each function symbol we associate a natural numtladlied the arity of the
symbol. Given a set of clausé$ the Herbrand universEi/ (X)) over the signaturé’y
of N is the set of all ground terms built from the function and constant symbalg,inf
there are no constants in the signature, a special constant symbol is introduced so that the
HU(XN) is not empty.

A first-orderinterpretationfor a signatureZy is a structureM = (M, -'), whereM is
a non-empty set and is aninterpretation functiordefined over the predicate symbols, the
function symbols and the constant symbols. As usuaksigns am-ary relation oveiM
to ann-ary predicate symbol, amary function fromM™ — M to n-ary function symbols,
and an element dfl to constant symbols.

An assignmeng for M is a mapping from the set of variables inkd. Given an
assignmeng if x is a variable anan € M, thengX,(x) = m andg},(y) = g(y) for any

variabley different fromx. Analogously, ifx, ..., X, are variables anthy, ..., my are
elements oM, theng{,’;ll’,':_'j_”‘r;‘]l](xi) =m; foreveryi,1<i <n andg{r’;ll”'_'_'_”xr;‘]]n](y) =g(y)
foranyy ¢ {xi,...,Xn}. Given an interpretatiotM and an assignmerg for M, the
interpretation function can be extended to all terms<by: gx) and f(tg,...,t))! =
fll, ... t)). The satisfiability relatiofr is defined as

M,gET

M,gF L

M, gFE Py, ...ty iff t],....t}) e P!

M,gE —p iff M,gFe

M,g’:(pl/\(pz iff M,g'ﬁ(pland./\/l,g?(pz

M, gk g iff M., g E ¢ for somem e M.

If there exists an interpretatiom and an assignmentsuch thatM, g F ¢, for a formula
@ over Xy, theng is satisfiableand M satisfiesp.

A Herbrand interpretation His a set of ground atoms. By definition a ground atom
A is true in the interpretatiorH if A € H and it isfalsein the interpretationH if
A ¢ H, T is true in all interpretations and. is false in all interpretations. The truth
value of the binary logical connectivesand A is defined as follows: a conjunction of
two ground atomsA and B is true in the interpretatiofl iff both A andB are true inH
and respectively, a disjunction of ground atoms is truéliiff at least one ofA or B is
true in the interpretation. The truth value of a formula depends on the truth value assigned
to its atomic subformulae. A clauge is true in an interpretatiom iff for all ground
substitutionsr there is a literaL in Co which is true inH. If an expression is true in an
interpretationH thenH is referred to as dlerbrand modebf the expression.



L. Georgieva et al. / Journal of Symbolic Computation 36 (2003) 163-192 167

3. Thefragment GF1~

In the language of GF1leveryn-ary predicate symbdP is associated with a unique
pair (i, j) of positive integers suchthat@i, j, andi +j = n, which is called thgrouping
of the predicate symbol. Often we wriig-)) to makeP’s grouping explicit.

The set of formulae in GF1is defined to be the smallest set satisfying the following
conditions:

() T andl are GFI formulae,
(i) if P is ann-ary predicate symbol aridis a sequence af variables, therP(X) is a
GF1™ formula,
(ii) if ¢ andyr are GFI formulae then so are¢, ¢ A ¥, ¢ v ¥, and
(iv) if ¢(y) is a GFT formula,G)) is a predicate symbol with groupirg j), andx, y
are non-empty variable sequences of lerigimd j with no variables in common,
then the following formulae are GFlformulae.

FY(GID (X, V) A d(Y)) VY(GID (X, Y) = oY)
IKGD (X, Y) A (X)) VX(GH(X,Y) — (X))
Note how the role ok andy may be interchanged in the guard.

Grouping is a global condition of predicate symbols, so that all occurrences of a
predicate symbol in a guard position must satisfy the given grouping of the predicate
symbol. Occurrences of atoms in guard positions such that (iv) is satisfied are saiidfy
the grouping restriction

Examples of GF1 formulae are the following.

aX, y) A3X, y(ru(z, 2, X, y) A p(X, ¥)),  P(X, Y) A P(Y, X),
vxy(ra(x, y,z) — (p(X, y) A 3z(r2(X, ¥, 2) A Q(z, 2)))).

The grouping of the predicate symbals andry is (2,2) and (2, 1), respectively,
while for the remaining predicate symbols the grouping is immaterial. Free variables in
GF1~ formulae are implicitly existentially quantified. Note that making the existential
guantification ofx andy explicit in the second example would result in a formula which
is not in GFT" (it would still be a guarded formula though). Other examples of guarded
formulae which do not belong to GFlarevxy(q(x, X, y) — 1)) andvxy(p(X,y) —
3zp(y. 2)).

The @Quarded quantifier depttgqd(e) of a formulag in GF1~ is defined as follows:
(i) ggd(T) = gqdl) = ggdPX)) = O, (i) if ¢ and ¢ are GFT formulae then
gqd—¢) = gqd¢) and gqd¢ A ¥) = gqde Vv ) = maxgqde), gqdy)), and (iv)
if X is a non-empty sequence of variables &¥¢ andV X¢ are GFI formulae, then
09d3X¢) = gqdV X¢) = 1+ gqd(¢), independent of the number of variablexin

We assume that all formulae are in negation normal form, i.e. negation is pushed inwards
to occur only in front of predicate symbols. Furthermore, we assume that occurrences of
T and_L are respectively replaced by appropriate tautologous and contradictory formulae.
This assumption is not crucial; it is made to simplify the clausal class associated with
GF1~ and consequently the proofs are slightly more elegant. Short reflection will convince
the reader that the transformation to negation normal form does not take us outside the
boundaries of GF1. The transformation of GF1formulae into clausal form makes use
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of structural transformation, also known as definitional form transformation or renaming
(cf. e.g.Baaz et al.1994 Hustadt and Schmid2000h Plaisted and Greenbayt986.

The fundamental idea is the replacement of particular subformulae by atoms with new
predicate symbols. This renaming preserves satisfiability and unsatisfiability.

To present the particular form of renaming we use, we need to define the notion of
position of a (sub)formula within a formula. positionis a word over the natural numbers.
The set Pog) of positions of a given formula is inductively defined as follows: (i) the
empty worde is in Pogg), (i) for1 <i < n,ix € Pogyp) if ¢ = ¢1 %x--- % ¢y and
A € Pogyj) wherex is a first-order operator. i € Pogyp), theng|. = ¢ andgli, = ¢il;
wherep = @1 % - - - * ¢n.

The renaming associates with each elenmieat Pogy) a predicate symbaD, and a
literal Q; (X1, ..., Xn), Wherexy, ..., X, are the free variables qfi;, and the symbo®Q;,
does not occur ip. Two symbolsQ, andQ;  are equal only ifp|, andg|;, are variant
formulae. Thedefinition of Q is the formula:

Defi(p) = ¥x1... Xn(Qa (X1, ..., Xn) — @[5).
Thedefinitional formDefy (¢) of ¢ is inductively defined by:

Defy(p) = ¢ and
Defaupy (@) = Defa (p[ Qi (X1, ..., Xn) = A1) A Defy (p),

where is maximal inAU{1}. (Here,w[ A — 1] denotes the formula obtained by replacing
the subformula at positionin ¢ with A.)

Theorem 3.1 (e.g.Plaisted and Greenbayd®986. Let ¢ be a first-order formula. For
any A C Pogg), Defy (¢) can be computed in polynomial time, apds satisfiable iff
Defy (¢) is satisfiable.

Corollary 3.1. For any given GFI formulag and anyA € Pogg), Defs (p) can be
computed in polynomial time, andis satisfiable ifiDef (¢) is satisfiable.

We denote the result of the transformation of a first-order formputa clausal form
by Cls(¢). We assume that in this transformation the free variableg afe treated as
existentially quantified and are replaced by distinct Skolem constants.

The use of structural transformation prior to the conversion to clausal form has two
major advantages.

1. If a first-order formula is translated directly to its clausal form(g)sthe size of
Cls(¢) can be exponential in the size of If A is the set of all positions of (non-
atomic) subformulae af, then the size of Ci®ef, (¢)) is linear in the size op.

2. The application of structural transformation considerably simplifies the form of
clauses that are obtained fram

In the case of GF1, we require thatA contains the positions of all non-atomic
subformulae of the formula under consideration with the exception of implications and
conjunctions immediately below quantifiers. The transformation maps Gérinulae to
guarded formulae in a certain form, which, when clausified, render clauses satisfying the
schematic presentation &ig. 1 The non-positive clauses are referred tadafinitional
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Q,(a) if ¢ is the input formula
Q@) V-G(T.9) VQu(H) il ¢ =V5G(T.7) — ¢(¥))
—Qu(T) vV G(T, [(T)) : o

- if o = Y(G(7, 7 7
Q7 v Qu(F @) Fo e
~Q() Y Q@) o ) 5L
~Qu(2)V Qu(@) if o = (@) NY(Y) Uy

Q%) V Qu(T) V Qu(y) if o=0@) Vi) z=TUY

Fig. 1. Schematic clausal form for GFformulae.

clauses The symbolQ, is a new symbol introduced for the subformylandicated in
the index. ThugQ, can be thought of as the name for the subformulao simplify our
presentation, we assume thapiis an atomic formuld (X), then the symbaQ,, stands for
the predicate symbd?. By definition, we letj (X, y) represent eitheB (X, y) or G(Y, X). a

stands for a sequence of constants, &m is a sequence of termig(xq, . .., Xn), Where
the arguments of each of tHg are exactly the elements ®f

Theorem 3.2. Suppose is anyGF1~ formula. Let N be the set of clauses obtained from
¢ by negation normal form transformation, the above renaming and clausification. Then,
() any clause in N has one of the formshiy. 1, (ii) the conversion of» to N can be
performed in linear time, and (iiip is satisfiable iff N is satisfiable.

4. Hyperresolution for GF1~

To decide GF1 we use a calculuR™" of positive hyperresolution combined with
splitting.

Positive hyperresolution resolves positive clauses with a non-positive clause always
producing a positive conclusion or the empty clause. More precisely, a hyperresolvent is
derived according to the following rule:

CiVv A CnhV A, —Apt1V---v=Ay v D
(Civ---vChVv D)o
where (i)o is the most general unifier such thdfc = Anyjo foranyi, 1 <i < n,
and (i) C; v Aj and D are positive clauses, for any 1 < i < n. The premise
—=Ant1 V.-V =Ax Vv D is referred to as theegativepremise and all the other premises
in the resolution rule are referred to@asitivepremises. Hence, the positive premises of a
hyperresolution inference step have to be positive clauses.
Factors are generated by the positive factoring rule:
CVALV A
(Cv Ao
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whereC is a positive clause antlis the most general unifier &; andA,. Factoring is not
required for the completeness of our decision procedure, but it helps to avoid applications
of splitting to clauses containing duplicate literals.

The splitting rule is similar to disjunction elimination in semantic tableaux.

N U{CyV Cy}
N U{C1} | N U{Co}

whereC1 andC, are variable disjoint. That is, if the clause $¢tcontains a claus€
which can be split into variable disjoint clausés andC,. The original clause becomes
redundant and the resolution refutation is continued independenty.dc; } or NU{C>}.

A derivationfrom a set of clauseN is a finitely branching tre& with root N. The tree
is expanded either by adding a successor néd¢o one of the leaf nodelN’ of the tree
such thatN” = N’ U {C} whereC is either a factor or a hyperresolvent of clauseBliror
by adding two successor noddsU {C} andN’ U {D} to a leaf nodeN’ U{C v D} whereC
andD are variable disjoint. A derivation is arefutationif for every pathN = Np, N1, ...
the clause set); Nj contains the empty clause. A derivatidnfrom N is calledfair if
for any pathN = Np, Ny, ... in the treeT, with limit N, = Uj ﬂkzj Nk, it is the case
that each claus€ that can be deduced from non-redundant premisé@&.inis contained
in some seN;j.

The calculus is compatible with a general notion of redundamaclimair and
Ganzinger1994 2001).

Theorem 4.1 (Bachmair and Ganzinget994 Bachmair et a.1993. Let T be a fair
R™P derivation from N. If N N, ... is a path with limit N, then N is saturated up

to redundancy. Furthermore, N is satisfiable if and only if there exists a path in T with
limit Noo such that N, is satisfiable.

Theorem 4.2 (Bachmair and Ganzinget994 Bachmair et al.1993. Let T be a fair
R™P derivation from N. N is unsatisfiable if and only if for every path=NNg, N, . ..
the clause seLUj N;j contains the empty clause.

We restrict our attention to derivations generated by strategies such that the positive
premises of any hyperresolution step are positive ground unit clauses. Forti§ tan be
achieved by performing suitable splitting and factoring inferences before hyperresolution
inferences. Furthermore, we assume that no inference step is performed twice with the
same premises. Since we are able to prove termination of any such derivation for sets of
GF1™ clauses, any such strategy is fair.

For the classes of clause sets we consider in this paper the positive premises are always
ground, in particular, because we use splitting, the positive premises are always gniund
clauses, and the conclusions are always positive ground clauses. Crucial for termination is
that the unit clauses are always eitlu@i-nodeor bi-node These are notions inspired by
Lutz et al.(1999, and are defined next. The intuition underlying these notions is that the
uni-nodes represent the vertices and bi-nodes the edges in a bidirectional tree. Uni-node
clauses can be viewed as local constraints and bi-node clauses as transitional constraints.

A (multi-)set{ts, ..., tn} (or sequencé = (i, ..., ty)) of ground terms is called ani-
nodeiff either eachtj, 1 < i < n, is a constant, or there exists a predicate synibaind
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a sequence of ground terrssuch that each, 1 < i < n, has the formfg(5), where
fq is a function symbol associated wi. A uni-nodeX; is called adirect successoof

a uni-nodeX iff there is a predicate symb@) such that for each elemenbf X5 there is
a function symbolfg, associated witl®, andt = fo(S), wheres is a sequence of exactly
the elements oK1. A (multi-)set (or sequence) of ground terms is calleni-aodeiff it
can be presented as a unignU X, of two non-empty disjoint uni-nodes; and X such
that X» is a direct successor of;. A ground literal is auni-node(bi-nodg iff the set of its
arguments is a uni-node (bi-node). A clause imanode(bi-nodg iff it is a unit clauselL
and the set of the argumentslofis a uni-node (bi-node). The empty clausas a special
type of uni-node without direct successors.

The sets{a, a, b}, {hq(a,b)}, {hq(a, b), go(a b}, {hqo(a b), go(@ b), fo(a, b)}
are examples of uni-nodes, while examples of bi-nodes {aré, hg(a, b)} and
{a, b, go(a, b), hg(b,a)}. Here, Q is assumed to be a symbol introduced for an
existentially quantified subformula anidy, go andhg are function symbols associated
with the same predicate symb@l. Observe that botkigg(a, b)}{hq(b, a)} are direct
successors di, b}. The sef{a, fo(a, b)} is neither a uni-node nor a bi-node.

Lemma4.1. Suppose a finite signature is given.

1. The cardinality of any uni-node and any bi-node is finitely bounded.

2. For any given uni-nods, the number of uni-nodes, and bi-nodes, of the 1@(m 1)
is finitely bounded.

3. Every uni-node clause has a bounded number of direct successors, which are uni-
nodes.

Proof. In order to prove property 1 we use the definition of a uni-node (above) and the
assumption that the signature is finite. Debe a uni-node. Then by definition either each
elementinX is a constant or each element has the forea fg(S), for a fixeds and a fixed
predicate symbadQ). By assumption the signature is finite, thus there are only finitely many
distinct elements in the uni-nodéwhich are constants. The number of distinct termXin
which have the fornty = fo(S) is bounded by the number of function symbols associated
with the predicate symbdD. The cardinality of a bi-node is finite, too, because it is the
disjoint union of two uni-nodes.

In the proof of 2 we use the definition of a uni-node and property 1. AsSuae)
is a uni-node. Then by definition of a uni-node, either all $hén S and alltj in t are
constants, or there exists a sequence of ground tersugh that all terms;, tj have the
form fo(U), where fg is a function symbol associated with predicate symQolSince
the number of constants as well as the number of function symigplassociated with
predicate symbaQ is finite, and sinc8 s given, the number of uni-nod€ss, 1) is finitely
bounded. Assumég (5, 1) is a bi-node, and is a direct successor &f By definition any
direct successor of a uni-node sequence (set) of teissf the form( fé(U), e fS(U)},

for somen, where fé, cee, fg are function symbols, associated with a predicate symbol
Q andu =5, andu is non-empty. So by the same argument as before, the number of direct
successors & is finitely bounded, sincé = U is given. In the case whe®is a direct
successor df, eachs in s has the formfg (U) with t = U. Since the number of possibilities

of formingt givenu is finitely bounded, the result follows. This proves property 2.
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Property 3 follows from properties 1 and 2 and by the definitions of a uni-node and a
bi-node. O

It is worth noting that without a restriction on the depth of terms, the number of uni-nodes
is not finitely bounded for a finite signature. Thus, an important result for the proof of
termination isLemma 4.4which proves the existence of a term depth bound for inferred
clauses.

What are the properties of inferred clauses and inferenc@¥f? We note that except
for one positive ground unit claus®, contains only definitional clauses which are non-
positive and non-ground. The negative premise of a resolution inference step is always
a definitional clause iN, and maximally split conclusions of most resolution inference
steps are uni-nodes. The exceptions are inferences with definitional clauses of the form
-Qy (X) v G(X, (X)), which produce bi-node conclusions. As factoring is applied only
to positive clauses, and positive clauses in &8P derivation for GFT clauses (more
generally, for any range restricted set of clauses) are always ground, factoring has the effect
of eliminating duplicate literals in ground clauses. For this reason no special consideration
is given to factoring inference steps in subsequent proofs.

Lemma4.2. In anyR™P derivation from N:

1. The negative premise of any inference step is a definitional clause while at least one

of the positive premises is a uni-node.
2. All derived clauses are either empty or positive ground clauses which can be split

into positive ground unit clauses of the form:, @) or G(S, f(5)), wheres is a

uni-node. That is, maximally split conclusions are either uni-nodes or bi-nodes.
3. If Qy (S) or G(S) are uni-nodes occurring in the derivation, then all term&ihave

the same depth. (S, T) is a bi-node occurring in the derivation arids a direct
successor of, then all terms irF have the same depth d and all term$ lmave the
same depth & 1.

Proof. The proof is by induction over an arbitrary derivation. In the first step of the
derivation there is only one possible positive premise, namely the ground unit clause
Q. (@), which is a uni-node. Since all arguments@f(a) are constants, they have the
same depth. The inductive hypothesis is that properties (1)—(3) hold for the premises and
conclusions of the firat inference steps in any path of the derivation.

In the inductive step we consider inference step 1. Consider the resolution steps
where the negative premise is a definitional clause introduced for an existentially quantified
GF1~ formula. Assume that the positive premigg; (S) is a uni-node. There are two
possibilities. (i) The negative premise is a claus®y (X) v Q,(f(X)). The argument
set of the conclusio®y(f (3)) is a sequence of termig(sy, . . ., Sh), wheresy, .. ., s, are
exactly the elements &f and fx is associated witlQ,,. This means that the conclusion
of this resolution step is a uni-node. Furthermore, if all terms irave the same depth,
then also all the terms irf (S) have the same depth. (i) The negative premise is a
clause—Qy (X) v G(X, f(X)). By definition, any of the function symbol§ in f () is
associated witl@Q., . Consequentlyf (S) is a direct successor 8f Therefore the conclusion
G (s, T(5)) is a bi-node. Obviously, since all terms3ave the same depth all the terms
in f(5) have depthd + 1.
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Consider also hyperresolution inference steps involving a definitional ctaQggX) v
—G(X,Y) Vv Qq(y) corresponding to universally quantified GFfiormula. The two positive
premises have the fori@y (S) andg (s, t). By assumptiorQy, (S) is a uni-nodeg (s, t) is
either a uni-node or a bi-node. In the first case, since the argument set of the conclusion
Q4 () is a subset of the argument set of the positive prei{set) the conclusion is also a
uni-node. By the inductive hypothesis, all the argument terms of the unig&l€) have
the same depth. This implies that also all the term@gft) have the same depth. In the
second case, the argument setj@8, t) consists of two distinct uni-nod&sandt, such
that one of them is a direct successor of the other. The grouping restriction ensures that
the sequences of variablRandy have the same length as the sequences of teansl,
respectively. This implies that all the variablexiare instantiated with terms frogonly.
Similarly for y andt, i.e. there is no variable ir (resp.y) which can be instantiated with
aterm fromt (resp.s). Hence, the conclusion has the fof@g (t) wheret is a ground uni-
node. Sincé is a direct successor 8f or vice versa, it follows by the inductive hypothesis
that all terms it have the same depth.

The remaining inference possibilities are resolution steps between a positive premise
Qy (5) and negative premises of the forrQy (X) v —=P(X), =Qy (X) v Qg (y) where
Yy S X, 0r—=Qy(X) v Qs(y) vV Qp(2) wherey, z C X. Obviously, properties 1-3 hold for
such inferences. O

Lemma4.3. In anyR™P derivation from N:

1. Every ground clause which is a bi-node is an instantiated guard atom of the form
G(5,1), wheres andt are uni-nodes.

2. If C and D are uni-nodes, such that D is a direct successor of C, then D is derived
from C and a bi-node.

Proof. The first property follows immediately from the case analysis in the proof of
Lemma 4.2Inspecting all resolution inference steps we observe that every ground clause
which is a bi-node is an instantiated guard atom of the f@ii® t), wheres andt are
uni-nodes and is a direct successor @for vice versa. The second property is a direct
consequence dfemma 4.2and property 1. (I

The main technical lemma is the following:

Lemma4.4. Letyp be aGF1™ formulaandlet N be the corresponding clause set. The term
depth of any clause in a derivation from N is bounded by one plus the guarded quantifier
depth ofp.

Proof. If Qy is a predicate symbol introduced by the structural transformatignfof a
subformula at position in ¢, then we can define the guarded quantifier depth( @gd
of Qy as gadel;), i.e. gqdQy) = gqd(yy). The guarded quantifier depth of any other
predicate symbol is defined to be zero.

We define a complexity measur€C) for uni-nodes and show for ariy¥P derivation
from N that

(i) the term depth of a positive unit claud®(S) in the derivation does not exceed
ggd(e) — gqd(P) + 1, and
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(i) the complexity of the conclusion of an arbitrary inference step is always smaller than
the complexity of one of the uni-node premises of the inference step.

The particular complexity measure we use, allows us to establish the required upper bound
on the term depth of clauses in the derivation.

We define a partial orderingq on predicate symbols b$ >q &, if there is a
definitional clause~Q,(X) v C, such thatS, = Q, and $ occurs inC. Let A =
(—m)P(ty, ..., ty) be auni-node. Then(A) = (gqdP), dp(A), P), that is, the complexity
measure ob(A) of A is given by the ordered tuple consisting of the guarded quantifier
depth of the predicate symbol &, the term depth ofA, and the predicate symbol &f.

For the empty clause we definel) = (0, O, tt) wherett is a new symbol which is smallest
with respect to-4. We compare complexity measures by the lexicographic combination
of >y, >, and>g.

To prove (ii) it would actually be sufficient if the complexity measure of a uni-nade
would consist of the predicate symbol éfalone. However, the additional components
of v(A) as defined above allow further interesting observations aBB(:derivations
from N.

The proof proceeds by induction over the number of inference steps in the derivation
from N. In the base case, as yet no inference steps have been performed and the only
positive uni-node irN is the unit claus®,, (@) of term depth 1. Since g4@,) = gqd(p),

Q, (@) satisfies the upper bound of ggd —gqd(Q,)+1 = 1 on the term depth of positive
uni-nodes in the derivation.

The inductive hypothesis is that properties (i) and (ii) hold for the firstference
steps of the derivation. We consider inference step 1. If this inference step is the
derivation of the empty clause from two positive uni-nodgs(s) and Q- (S), and the
definitional clause~Q-y (X) v —=Qy (X), thenys is an atom. Since di®-y (S)) > 1, we
havev(Q-y (5)) = (0, dp(Q-y (3)), Q-y) > (0,0,tt) = v(L). So, the inference step
satisfies property (ii).

Consider the derivation @y (t) from Qy (S) and—Qy, (2) v Q4 (X) wherex € Z and
t C s. The negative premise of this inference step is a definitional clause introduced for a
conjunction, that isyy = ¢ A ¥. Therefore, ggqtQy) = ggqd(Qy). Let gqd Qy) bedy.

Let the term depth oy (S) be d;. By Lemma 4.2all terms inS have the same depth.
Sincet C st follows that the term depth oR4(t) is alsod;. Thus, if property (i) holds
for Qy (S) then it also holds foiQg(t). Furthermore, it follows fromQy >4 Qg that
v(Qy(S) = (dg, dt, Qy) > (dg, dt, Q) = v(Qy(1)). The case involving an inference
step with a definitional clause of the formQy () v Qg (X) v Qy(y) introduced for a
disjunctive subformula ap is similar to the previous case.

Next we consider the derivation @, (f (35)) from Qy (5) and—Qy (X) v Qu (T (X)).

The negative premise of this inference step is a definitional clause introduced for an
existentially quantified subformulBX(A A ¢(Y)) of ¢. By the definition of the guarded
quantifier depth of predicate symbols, g@4,) = gqdQg) + 1. On the other hand,
dp(Qy (T (3))) = dp(Qy (5)) + 1. If Qy (5) satisfies property (i), that is, ¢Qy (S)) <
gqdie) — gqdQy) + 1, then also

dp(Qy(f(3)) = dp(Qy () +1
< gqdg) —ggqd Qy) + 2 =gade) — gqd Q) + 1.
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Thus, property (i) also holds foQ,(f(S)). Concerning property (ii) we observe that
9qdQy) > gqd(Qp) implies

v(Qy () = (9qdQy), dp(Qy (5)), Qy) = (9qd Q) + 1, dp(Qy (5)), Qy)
> (99dQy), dp(Qy (3)) + 1, Qp) = (9qdQg). dp(Qy (f(5))), Qgp)
= v(Qup(f (3.
Therefore, property (i) holds for this inference step.
The argument for inference steps with negative premises of the fo@y (X) v
G(X, f(X)) is similar to the previous case. Let the positive premisedpds) with term
depthd;. Note thatG is not a predicate symbol introduced during the structure transfor-
mation ofp. So gqdG) = 0. Furthermore, the definitional clause under consideration has
been introduced for an existentially quantified subformulg.oThus, gqdQy) > 1. If
Qy (5) satisfies property (i), that is, dQy (5)) < ggdi¢) —gqdQy) + 1, then

dp(G . F(3) =dp(Qy(3) + 1 < gqde) — gqd(Qy) + 2
<gqdy) +1=gqde) — gqdQ) + 1.
Obviously, gqdQy) > gqdG) = 0. It follows that

v(Qy () = (9qdQy ), dp(Qy (3)), Qy) L
> (0,dp(Qy (3) + 1, 9) = (9qd9), dp(G (S, f(5))), 9).
Therefore, property (i) holds for this inference step.

Finally, consider the derivation o4 () from unit clausesQy (S), G(5, 1), and the
definitional clause—Qy (X) v =G(X,y) Vv Qu(y). It follows from Lemma 4.23) that
dp(G(s, 1) < dp(Qy(S)) + 1. So, d¢ () < dp(Qy (S)) + 1. Since the definitional
clause under consideration has been introduced for a universally quantified subformula of
¢ we have that gy ) = gqd(Qy) + 1. If Qy (S) satisfies property (i), then

dp(Qy (M) < dp(Qy (S)) + 1 < ggdlp) — gqdQy) + 2 = gqd(p) — gqd(Qy) + 1.
Concerning the complexity of( Q4 (t)) andv(Qy (S)) we obtain

v(Qy(®) =(9adQy). dp(Qy (3)). Qy) = (9ad Q) + 1. dp(Qy (). Qy)
> (99d(Qy), dp(Qy (1)), Qg) = v(Qyp (D).
This concludes the proof of properties (i) and (ii) for all inference steps and clauses in an
arbitrary derivation fronN. O

The considerations in the proof allow the following additional observations:

e If G is a predicate symbol of a guard atomgnand{Qy,, ..., Qy,} is the set of all
predicate symbols such thiitcontains a clause of the formQy, (X) v G(X, f (X))
or—Qy, X v-G(X,¥)VvQqu(y), then the term depth of any bi-nog@és, t) occurring
in a derivation fromN is bounded from above by mégqdi¢) — gqd(Qy;) + 1 |
1<i=<n).

o If a uni-nodeQy, () with term depthd; is used as a premise in an inference step
with a uni-node conclusio@g (t) with term depth greater thai, then gqdQy) >
gqd(Qg)-
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It is interesting to compareemma 4.4with the corresponding results for the modal
logic Kimy (N, U, —) in de Nivelle et al(2000 andHustadt and Schmig¢20008. Theorem
7.3 in de Nivelle et al.(2000 states that the depth of any clause derived from the
translation of aK(m)(N, U, —) formula® in negation normal form using resolution with
maximal selection (or hyperresolution) is bounded by the number of diamond (existential)
subformulae ing. Because the clausal form of the particular translatiok gf, (N, U, —)
formulae are instances of GFZlauses, one might expect, in analogy, that the term depth
of any clause in a derivation from GBef, (¢)) for a GFI” formulag in negation normal
form is bounded by the number of existentially quantified subformulae irhe following
example shows that this bound is too tight.

¢ = RX, X) AVY(R(X, y) = VZ(R(Y, 2) = JU(R(z, u) A P(u)))).
The corresponding clause ¢tcontains the following clauses:

(D Qo(@

(2) —Qo(x) v R(x, x)

(3 —Qo(X) v —=R(X,y)V Qi(y)
@ —Q1(x) v —=R(X,y) Vv Qa(y)
(5 —Qa2(x) Vv R(x, f(x))

6 —Qa2(x) Vv P(f(x)).

We obtain the following derivation bR™" from N.

[(2), (2)] (7 R(a,a)
[(1), (M), )] ® Qi@
[(8), (7), (4)] 9 Q@
[(9), 5)] (10 R, f(a))
[(9), (6)] (11) P(f(@)
[(1),(10),(3)] (12 Qu(f(a)
[(8),(10),(4)] (13 Qa(f(a)

[(13), (5)] (14 R(f(a), f(f@))

[(13), (6)] (15 P(f(f@))

[(12),(14), 4] (16 Qa(f(f(@)

[(16), (5)] 17 R((f@), f(f(f@))
[(16), (6)] (18 P(f(f(f@)).

Here, [(2), (7), (3)] denotes that the negative premise (3) is resolved with the two positive
premises (1) and (7).

The guarded quantifier depth ofis 3. By Lemma 4.4the term depth of clauses in any
derivation fromN is bounded by gg@) + 1 = 4. This is obviously the case. However,
contains only one existentially quantified subformula. A tighter bound on the term depth
of derived clauses based solely on the number of existentially quantified subformulae of a
GF1™ formulais not possible.

The example formulg also shows that GF1lallows the formulation of a form of
‘local reflexivity’ which means it shares some properties with the fragment of first-logic
corresponding to the propositional modal logi&, which is characterized by the class



L. Georgieva et al. / Journal of Symbolic Computation 36 (2003) 163-192 177

of reflexive frames. In fact,emma 4.4describes one of these properties, namely, that the
term depth of derived clauses is linear in the number of universal and existential quantifiers
in the input formula.

Lemma4.5. Lety be aformula inGF1™ and let N be the corresponding clause set. The
number of clauses derivable from N is finitely bounded.

Proof. By Lemma 4.22) all derived clauses are ground clauses.Bynma 4.4there

is an upper bound on the term depth of these derived clauses. Since there are only
boundedly many ground clauses up to a given term depth, the derivation must eventually
terminate. [

Now, we can state the main theorem of this section.

Theorem 4.3. Lety be aGF1™ formula and let N be the corresponding clause set. Then:

1. AnyR™P derivation from N terminates.

2. If T is afair derivation from N then (i) If = Np), N1, . .. is a path with limit N,
N is saturated up to redundancy. (i)is satisfiable if and only if there exists a path
in T with limit Ny, such that N, is satisfiable. (iii)¢ is unsatisfiable if and only if
for every path N= Np), Ny, ... the clause seu)j Nj contains the empty clause.

Proof. This is a consequence éémmas 4.344.5, Corollary 3.1and Theorems 3.24.1
and4.2 O

The decision procedure we have presented looks very similar to the decision procedures
based on refinements of resolution using maximal selection of negative literals for
expressive modal logics and description logics, which are describdd Mivelle et al.

(2000 andHustadt and Schmidfi999 2000ab). The main difference is the way in which

we prove termination. In the proofs d& Nivelle et al. (2000, for instance, an ordering

is defined under which all conclusions of inference steps are smaller than every premise,
while here this is only true for uni-node premises (with introduced predicate symbols). In
the case of guarded formulae an ordering on all clauses would not work because predicate
symbols can occur in guard and non-guard positions and consequently such an ordering
would be cyclic. In addition, we cannot rely solely on the well-foundedness property of the
ordering on the complexity measure, but also have to exploit the type of the conclusions
obtained in the derivation. The proofs in this section extend to the generalizations of GF1
discussed in th8ection 8

5. Model building for GF1~

It is well-known that hyperresolution, like tableaux methods, can be used to construct
models for satisfiable formula&¢rmiller et al, 2007). In the present application R™P
terminates without having produced the empty clause then it takes no extra effort to
construct a model. A model is given by the set of ground unit clauses in an open branch of
the derivation tree.
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Theorem 5.1. Assume thap is a formula inGF1~. Let N be the clausal form @efy (¢),
and let N, denote the saturation of N B§™P. Let H be the set of positive ground unit
clauses in I\,. If N, does not contain the empty clause, then H is a modekofaNd N.

Proof. In order to prove thaH is a model ofN,, we have to show that every ground
instance of a clause iNy is true inH.

The maximally split conclusions of the resolution derivation leadinydoare positive
ground unit clauses byemma 4.2 and are true irH, because by definitiokl contains
the positive ground unit clauses My,. The remaining clauses N, are the definitional
clauses which were already presentNn We consider a ground instan€sr of such a
definitional clauseCo has the form=Aio v--- v —=Ano VvV Bio v .- Vv Bqmo, withn > 0
andm > 0.

Case 1. Assume that there exists anl < i < n, such thatAjo ¢ H. Then—Ajo is true
in H and, thereforeCo is true inH.

Case 2. Assume thatAjo € H foralli, 1 <i < n. We have to show that there exists a
j,»1<j <m,suchthaBjo € H. SinceAioc € H we have thathic € N, for everyi,

1 <i < n. Thus a hyperresolution inference@fwith positive premise#\io, ..., Ano is
possible. Since each clauseNhis range restricted, the conclusiBqo Vv - - - v Bno of the
inference step is ground. Due to the application of splitting one oBtie, 1 < j < m,

has been added to the clausal set. As we do not use any form of redundancy elimination, a
clause that is once generated is never deleted. (It is straightforward to see that, even if we
allow subsumption or other forms of redundancy eliminat®yy still persists.) SoBjo

is an element oNy, and, therefore, also an elementtdf ThusCo is true inH.

Therefore, we have proved thitis a model ofN andNy,. O

Corollary 5.1. A finite model for every satisfiable formula@F1~ can be constructed on
the basis oR™P.

Proof. Let ¢ be a satisfiable formula in GFlwith free variabley, ..., xk. Let N be
the clausal form of Def(¢), let N, denote the saturation &f by R™P and letH be the
Herbrand model of\,. Furthermore, lety, ..., ax be the Skolem constants introduced
for the free variables of in the transformation of to clausal form. We construct an
interpretationM as follows. The domaiiM of M contains all ground terms iN,. There
are only finitely many ground terms iN.,, thus the domairM is finite. Note thaty
contains no constant or function symbols. The interpretafibof a predicate symbol of
arity n is defined by(ty, ..., tn) € P! iff P(ty,...,tn) € Ny forallty, ...ty in M.

Next we prove that there exists an assignnestich thatM, g F ¢. The proof is by
induction over the structure @f starting with its atomic subformulae. We show that/if
is a subformula ofp with free variablexy, ..., X, and there exist terms, ..., t, such
that Qy (t1, ..., tn) is in Nu, then M, g E ¢ for any assignmeng with g(xj) = tj, for
everyi,1 <i <n.Then,sincey,(as, ..., ak) is in N, we know thatM, g = ¢ for the
assignmeng with g(x;) = a;, foreveryk, 1 <i <k.

Base case. Consider an atomic subformwja = P(x1, ..., Xn). Assume that there is a
ground unitclaus®(ty, ..., ty) in N, Wherety, . . ., t, are ground terms. By construction
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t1,...,tn are also elements dfl and by definition ofP', (t1,...,t,) € P'. Thus,
M, gE ¢ foranygwith g(x) =t,1<i <n.

Suppose/ has the form~a with free variablesy, . . ., Xy. Sinceyp is in negation normal
form, « is an atomic formulaP(xy, ..., Xn). We assume that there are terms.. ., ty
such thatQy (t1,...,th) € N. As a consequence, we have theQy (X1, ..., Xn) V
=Qu(X1,...,X%n) € N andQy (i1, ...,th) € Neo. ThenQ(ty, ..., tn) is not an element
of N, Since otherwise we would be able to deduce the empty clause. So, by definition of
P!, (t1,....tn) ¢ P'. Letg be any assignment witip(x;) = t; foralli, 1 <i < n. Then,
M, g ¥ o and thereforeM, g = .

Inductive hypothesis. If w is a strict subformula of some subformufaof ¢ with free
variablesxy, ..., X, and there exist termf, ..., t, such thatQ,(t1, ..., t1) is in N,
then M, g F o for any assignmerg with g(x;) = t;, foreveryi, 1 <i <n.

Inductive step. In the inductive step we look at a subformufteof ¢ with free variables
X1, ..., Xn. We assume there exist tertis. . . , ty such thatQy (t1, ..., th) is in Noo. We
want to show thaiM, g E ¢ for any assignmerg with g(x;) = t;, foreveryi, 1 <i <n.

Case 1. Suppose) has the formxy A ap. Then

—Qy(Z1,...,2Zn) vV Qg (X1, ..., Xm) € N
=Qy(Z1,...,Z0) V Qup (Y1, ..., ¥) € N
Q"/I(tlv"'stn) € NOO

where{zi, ..., zn} = {X1,..., Xm} U {y1, ..., Yk}. We assume without loss of generality
that z1,...,2n, X1,...,Xm, @and yy, ..., Yk are the free variables ofs, o1, and ao,
respectively. Let be the substitutiofzy /11, . . ., zn/th}. Then alsdQy, (X1, . . ., Xm)o and
Quy (Y1, - - ., Yk)o are inNy, sinceNy is saturated unde®™P. Let g1 be any assignment

with gi1(xi) = Xijo foreveryi, 1 <i < mand letg, be any assignment wilp(yj) = yjo
foreveryj, 1 < j < k.By the inductive hypothesid/, g1 F «1 andM, g2 F a2. Now, let
g be any assignment witty(zj) = zio = t;, for everyi, 1 <i < n. Note thatg coincides
with g1 andgy on the free variables af; anday, respectively. ThusM, g E a1 A o and
M, gE .

Case 2. The case thalr has the formB; v B2 is analogous to the previous case.

Case 3. Consider a universally quantified subformuta= vV y(G(X,y) — ¢(y)). We
assume there are terms ..., ty such thatQy (t1,...,tn) is in Neo. N and N, also
contains

=Qu (X1, -y Xn) V 2G (X1, -y Xny Y1y -+ Ym) V Qo (Y1, - - -\ Ym)-

Let s1,...,Sn be arbitrary elements oM. First, assume that the ground unit clause
G(ty,...,th,S1,...,Sm) iSin Ny. Then, we can deriv@y (s, . . ., Sm). By the inductive
hypothesis, any assignmemtvith h(yj) = sj foreveryj, 1 < j <m, M, h E ¢ holds.

In addition, forg” = hﬁ‘ll_’_'.'_'_’t:’]‘], we haveM, g” F G(X,y) as well asM, g” E ¢. Again,
M, g E G(X,Y) — ¢(Y). Second, assume th@fty, ..., tn, Si, ..., Sm) iS NOt in Nuo.
ThenM,g” ¥ G(X1, ..., Xn, Y1, ---» ¥Ym). SO,M, g" E G(X,y) — ¢(Y). Taking both
cases together we see that for any assignrgemith g(x;) = t; for everyi, 1 <i < n,
M,gEGX,Y) — ¢(y) and, thereforeM, g E .
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Case 4. Consider an existentially quantified subformata= 3y(G(X,¥y) A ¢(Y)). We
assume that there are terfas. . ., ty such thatQy (t1, ..., th) € Noo. N andNs contain
also the definitional clauses f@¥y, that is

—Qy(X1,...,Xn) VG(X, f(X)) e N and
—Qy (X1, ..., Xn) V Qg (f (X)) € N.

SinceN, is saturated undeR™P, also

Qp(frty, ..., th), ..., fm(tz,...,tn)) and

Gy, ..., t, fa(te, ..., th), ..., fm(te, ..., th))
are inNy. Let g be any assignment wittp(xj) = t; for everyi, 1 <i < tj. Furthermore,
let g’ be g[[{ll_-)(i.:l::-)-l-r?t]n),---,fm(tl,---,tn)]' By the inductive hypothesisM, g F Qu(y) and
M, d EGX,Y). Thus, M, g F IYG(X, V) A Qu(Y) and, thereforeM, gE y. O

6. Some upper bounds

By considering the ground constraintsR?P derivation trees it is possible to estimate
the maximal computational space requirements for derivatioff and to determine
the maximal size of Herbrand models.

Lemma6.1. Lety be aGF1™ formula and N the corresponding set of clauses. Ldie

the signature of N, let s be the size Xf let a be the maximum of (i) the maximal arity

of function symbols in N and (ii) the maximal arity of predicate symbols in N. The space
requirements of uni-node or bi-node clauses up to term depth d Xvsrof the order of
magnitude 4s9&.

Proof. In a similar way as irde Nivelle and de Rijk€2003 we calculate the number of
significant symbols (i.e. all symbols other than brackets and ;) of each uni-node depending
on its term depth. Lea; and ay be the maximal arity of any of the function symbols
and any of the predicate symbols, respectively. Then by definitien maxas, ap). By
assumption the maximal number of significant symbols of a uni-node clause of term depth
1lis 1+ ap < 1+ a. The maximal number of significant symbols of a uni-node clause of a
term depth 2 is ¥ ax(1+a;) < 1+a+ a2 The maximal size of a uni-node clause of term
depth 3is Hax(1+ai(1+a1)) < 1+a(l+a+a? < 1+a+a?+ad. Thus the maximal

size of a uni-node of term depthis smaller than & - -+ad = (a%*1—1)/(a—1) < d-ad,
whena > 1. Then the number of uni-nodes of depttiban be estimated b;¢‘ad, wheres
stands for the total number of function symbols plus the total number of constant symbols
plus the total number of predicate symbols. Then the space requirements for uni-nodes up
to term depttd over a finite signature of sizgis bounded by . ad.

The size of the bi-node clauses depends on the number of free variables of each
subformula. Letm stand for the maximal number of free variables of each quantified
subformula ofp. Then each bi-node clause of term-degtleonsists ofm uni-nodes of
term-depthd — 1 andaz; — m uni-nodes of term-depttl. Hence the maximal humber of
significant symbols of a bi-node clause over a signature of a boundeslisibeunded by
sda 4 g@-1a%" which in turn is bounded bysga’. [
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Because the maximal term depth in derivations is linear in thersizkp (Lemma 4.4,
the space requirements of uni-node or bi-node clauses)v&of the order of magnitude
ansna",

Lemma6.2. Lety be aGF1~ formula and N the corresponding set of clauses. Let s and
a be as in the previous lemma. Then the maximal size of the mogdekohstructed by
the conclusions of thR™P derivation, is of the order of magnitud@s@", where n is the
length ofp.

Proof. The model of any satisfiable GFXformulag is constructed from the conclusions

in theR™P derivation. We estimate the size of the model depending on the maximal number
of ground unit clauses which could be in it. The result follows therlbsnmas 4.4and

6.L O

Therefore:

Theorem 6.1. Lety be a satisfiable formula iGF1~.

1. A finite model foky can be constructed on the basisRI¥?.
2. The size of the model is at most double exponential in the length of

In Georgieva et al.(2001) we consider complexity issues in more depth. More
specifically, we describe a polynomial space decision procedure of optimal worst-case
space and time complexity for GF1We also consider the problem of minimal Herbrand
model generation for GF], discuss various approaches to this problem and compare their
space complexities.

7. Semantic tableaux ver sus R™P

Next, we investigate the relationship between resolution and tableaux proof systems for
GF1. We describe a tableaux proof system for GFWhich is abstracted frorutz et al.
(1999, and show thaR™P polynomially simulates the tableaux proof system for GF1
and vice versa.

Given two proof systemsd and BB, the systemA polynomially simulateshe proof
systemB if there is a functiorg, computable in polynomial time, that maps proof&ifor
any given formulap to proofs inA for ¢. A systemA polynomially simulates derivations
(as well as proofs) of a systefif there is a functiorg, computable in polynomial time,
such that for any formula, g maps derivations froma in 13 to derivations in4 from ¢ (de
Nivelle et al, 2000.

For a GFI formulag in negation normal form with free variablés = x1, ..., Xn
let p{X/a}, wherea = ay, ..., a,, denote the formula obtained fromby replacing all
occurrences of; by a; for everyi, 1 < i < n. A derivation forg in the tableaux method
of Lutz et al.(1999 is a finitely branching tre& with root {¢{X/a}}. In the following we
write X, ¢ instead ofX U {¢}. The tree is expanded by adding one or two successor nodes,
consisting of sets of formulae, to one of the clash-free leaf nodes of the tree according to the
tableaux rules described below. A leaf node contaiakashiff it contains the formulal,
otherwise it isclash-free A leaf node iscompleteff no successor nodes can be added to
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it by one of the tableaux rules. The derivation terminates if either all leaf nodes contain a
clash or there is a complete leaf node.

X, ¢, ¢

Derivation of falsum: —
X, ¢, =, L

X.ony
X,onY, o, ¢
provided thaf¢, v} Z X.

Conjunction:

X, oVy
XoVy, ol X oV, ¢
provided thaf¢, ¥} N X = @.

Disjunction:

X,IV(G@, V) A (V)
X,3V(G@ Y) A (V). G@, b), ¢(y/b)

providedb is a sequence of fresh constants and there are no cong&assh that
{6@.0),¢((y/0} c X

Existential quantification:

X, Vy(G@y) = ¢(¥), 6@, b)

Universal quantification: —— — —
X,Vy(G@,y) — ¢(¥). 6@ b), ¢(y/b)

provided thaip (y/b) ¢ X.

Theorem 7.1 (Lutz etal, 1999. A formulag in GF1™ is satisfiable iff the rules can be
used to construct a tableaux which contains a braicbuch that the endpoint @& is a
complete and clash-free set of formulae.

Theorem 7.2 (Lutz et al, 1999. For a signature of bounded arity the tableaux algorithm
can be implemented to run in polynomial space.

Before proving the simulation results formally, we illustrate the idea by an example
showing the tableaux and resolution derivations for the Gfetmula

@ = VX[ (X, ¥, 2) = p(X)) AIX(T (X, Y, 2) A =p(X)).
Tableaux derivation fop:

X1 = {VX(r(x,a, b) = px)) A3Ix(r(x, a, b) A =px))}

Xo = X1 U{VX(r (X, a, b) = p(x)), Ix(r (x, a, b) A =p(x))}
X3 = XaU{r(c, a,b), =p(c)}

X4 = X3 U {p(0)}

X5 = XqU{Ll}.

The endpoint of the branch contains a clash. Since no alternative tableau can be constructed
for X1, the original formula is unsatisfiable.
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The corresponding resolution derivation starts from the clausal sebtained fromy
after a renaming of each non-atomic subformula with the exception of implications and
conjunctions immediately below quantifiers.

Defa(p) = QAlY. DA
VY, Z(QA(Y, 2) — (Qv(Y.2) A Qa(y, 2)A
VY, Z(Qv(Y, 2) = YX(r(X,Y,2) = pX)NHA
VY, 2(Qa(y, 2) — IX(r (X, y,2) A =p(X)))
N = {Qx(a, b),
—QA(Y.2) v Qv(Y. 2),
—QA(Y,2) Vv Qa(y, 2),
=Qv(Y,2) VI (X,Y,2) Vv p(Xx),
—=Qa(y,2 vr(f(y, 2.y, 2,
—Q3(y,2) v —p(f(y,2)}.

Resolution derivation fop:

N; = N

N2 = N1 U {Qv(a, b)}

Ns = N3 U {r(f(a,b),a,b)}
Ns = Ng U {p(f(a, b))}

Ns = N5 U {_L}.

The clause selg contains the empty clause. Since the branch on whiglbccurs is the
only one in our derivation, the formulais unsatisfiable.

The correspondence between the tableaux derivation and the resolution derivation is
straightforward. Leg be the function that maps the constanh the tableaux derivation
to the termf (a, b) in the resolution derivation. All other terms in the tableaux derivation
are mapped to themselves. Furthermgrenaps subformulae @f to predicate symbols in
N such thag(P (X)) = P if P(X) is atomic, andy(y) = Qy otherwise. Then

Qa(a, b) = glp)(x, y){x/a, y/b}

Qa(a, b) = g@x(r (X, y,2 A =px)))(Y. 2{y/a, z/b}
Qv(@, b) = g(Vx(r(x,y,z) = px)N(Y. 2{y/a, z/b}
r(f(a b),a b)=9r(x,y,2)X, Y, 2){x/9(c), y/a, z/b}
p(f(a, b)) = g(p(x)(x){x/g(c)}.

For every formula? in the tableaux derivation there is a ground unit claDggenerated in
theR™P derivation such thag () (X)§ = C, whereX are the free variables @ ands is a
suitable substitution.

Extending the simulation results d& Nivelle et al.(2000 andHustadt and Schmidt
(20008 we prove that:

Theorem 7.3. There is a polynomial simulation of the tableaux systebutfet al (1999
for GF1~ by R™P,

Proof. We show thaR™P simulates the tableaux derivation stepwise. ¢.&te a formula
in GF1™ and let(X1,..., Xy) be a branch in the tableaux derivation starting from
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Then there exists a branaiNy, . .., Ny) in the R derivation for some 2 > k > n
starting fromN and a functiorg such that for every formul&(X)y in X, whered (X) is a
subformula ofp andy is a substitution which maps the free varialdtesf ¢ to constants
there exists a ground unit claugé?) (X)s in Nx wheres(xi) = g(y (x;)) for everyx; in X,
with g(@ (X)y) = g(¥)(X)3.

The proofis by induction on, which stands for the length of the branch in the tableaux
derivation.

Base case. If n = 1 then the tableaux consists of the single ndde= {¢y} with
y = {X/a}. We assume without loss of generality that in the clausal form transformation,
we have used the same constant symhols instantiate the free variables in Rgb).
Thus, the functiorg maps these constant symbols to themselves. The claudé set
Cls(Defy (¢)) contains one ground clause, nam€ly(@). We letk = 1 andN; = N, and
g mapsyp to Q.

Inductive step. Suppose that the result holds for a derivation of lengtlthat is, if
(X1, ..., Xp) is a branch in the tableaux derivation fram then there exists a branch
(N1, ..., Ny) in the R™P derivation for some 2 > k > n from N and a functiorg such
that for every formula? (X)y in X, wheret (X) is a subformula o andy is a substitution
which maps the free variabl&@of ¢ to constants there exists a ground unit clag@®) (X)$
in Nk, wheresd (xi) = g(y (x;)) for everyx; in X, with g(8(X)y) = g(®)(X)3.

We show that the claim holds also for derivations of length 1. The proof is by case
analysis of the tableaux rule applied to the endp&inof the branch.

Case 1. Suppose the conjunction rule is applied to the formu@y = ¢y1 A ¥y2in Xp
wherey; andy, map the free variables gf andy to constants. The branch is extended by
the successor nodé, 1 = XnU{¢y1, ¥y2}. By the inductive hypothesis there is a branch
in the R™P derivation with endpoinfNy and a functiorg such that there exists a ground
unit clausey(9)(2)8 with g() @y = g(¥)(2)8, wheres(zj) = g(y(z)) for everyz; in Z.
Sincey is a non-atomic formula also contains the definitional clause®y (z) v Q4 (X)
and—Qy (2) v Qy (¥). Then the conjunction rule is simulated by two hyperresolution steps
between the ground clau§® (z)§ and these two clauses, producing the ground resolvents
Q4 (X)8 andQy, (¥)$. Next, extend) so that it mapg to Qs andy to Qy,.

Case 2. Suppose the disjunction rule is applied to the form#@)y = ¢y1 V ¥y2. An
application of the disjunction rule leads to two successor nodes one of which is chosen to
extend the branch under consideration. Without loss of generali{nlet = Xn U {1}

This case is analogous to the previous one. The disjunction rule is simulated by one
hyperresolution step followed by an application of the splitting rule. First, we derive the
ground claus€Qg(X) v Qy (¥))8. Second, we replace this clause Qy(X)é using the
splitting rule. We extend to mapg to Q.

Case 3. Suppose the existential quantification rule is applied to the formi@@y =
IYG X, Y) A d(Y)y With X = X1, ..., Xm andy = y1, ..., ¥n. Letb be a sequence of
fresh constants and let(x;) = y (x;) foreveryi, 1 <i < m, andy’(yj) = bj for everyj,
1 < j < n.ThenXuy1 is equal toX, U {¢ (Y)y', G(X, Y)y'}. By the inductive hypothesis
there is a ground claugg?)(X)$ in our clause set correspondingit@x)y . The clause set
contains the definitional clause®y (X) VG (X, f (X)) and—Qy (X) v Q, (f (X)). With two
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hyperresolution inference steps we derive ground clag@éesf (X))s andQy (f (X))s. We
extendg to mapg to itself andgp to Q. Note that thdg; are fresh constants, that g(b;) is
not yet defined. However, for each constignthere is a corresponding Skolem tefpiX)s
in both clauses we have derived. So, we define for evety< i < n, g(bj) = fi(X)3s. It
is straightforward to see that this definition yields the desired effect.

Case 4. Suppose the universal quantification rule is applied to the two fornfutag/, =
YY(G(X,Y) — oY)y andG(X,y)y2 whereyi(Xi) = y2(xi) for everyx; in X. Then
Xn+1 = Xn U {0 (Y)y2}. Again, by the inductive hypothesis, we have ground clauses
g(®)(Y)é1 andg(G)(X, )82 in Nk. By the construction of, we haveg(¢) = Qpy and
9(G) = §. The clause sel¢ also contains the clauseQ,(X) v —G(X,y) v Qg4 (y).
With a single hyperresolution inference step we de@g(y)s>. We extendg to map¢

to Qgp.

Case 5. An application of the derivation of the ‘falsum rule’ %, containing formulae
¢(X)y and—¢ (Y)Y’ leads toXpt1 = X, U {L}. Note thatp(X)y = ¢(Y)y’. By the

inductive hypothesis we have already derived ground clag&gsX)é and g(—¢)(y)s’

corresponding t@(X)y and—¢(y)y’, respectively. Note thats = yé'. Sinceg is in

negation normal formyp (X) has to be an atomic formuR(X). Thus,g(¢)(X)s§ = P(X)$.

The clause set under consideration contains a definitional cta@sg,(y) v —=P(y). A

single hyperresolution step with this clausg¢)(y)§’ = Q-¢(¥)§’ andg(¢)(X)é =

P(X)$ leads to the derivation of the empty clause.

Thus we have proved that each application of a tableaux rule can be simulated by
one or two inference steps &™P. Therefore, every tableaux derivation for GFtan
be polynomially mapped to a derivation B?. [

Similarly, theR™P rules can be identified and reformulated as tableaux rules, using the
inverse of the mapping, cf. Fig. 2

Theorem 7.4. There is a polynomial simulation &"P for GF1~ by a moderate extension
of the tableaux system blitzet al (1999.

Proof. Itis necessary to add a simplification rule to the tableaux calculus which simulates
positive factoring. O

8. Generalization

From the analysis in the previous sections, particularly the investigation of the behaviour
of R™ on GFI" clauses inSection 4 it is not difficult to observe that the results can
be strengthened to cover a larger class than GREk long as the inferred clauses have
the same syntactic structure as before, i.e. are uni-nodes and bi-nodes, and the grouping
restriction is preserved. In this section we mention some ways of extending &fellits
corresponding clausal class without losing the termination property of hyperresolution.
According to the definition of GF1, the quantified variables in the formulae must be
exactly the free variables of non-guard formulae. Hyperresolution is a decision procedure
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Resolution inferences ~ Tableaux inferences
Qp(3)
P(g) s P(a), _'P(E)
~Qr(@) vV ~P(®) — I
1
v Qi
—Q,(2)V Qu(T e
_‘Q@(E) v Q(/;(y) ~r (/),( —) & 1,/)(_(()
Q0. Q1) #0), 99
where 3 =1UT
@y (5) _
~Qu(2) V Qul®) V Qu(@) NERLORZ:
Qul®) | Qu() 6(0) | U(©)
where s=tU7u
@ (5)
~Qu(z) VG(z, f(Z)) - F(G(a.y) A o(¥))
~Qp(2) VQu(f(2) G(a,b), (b
G5, 1(3), Qe(f(5)
Q,(3) )
g(s,1) - g(@,b), Vy(G(a,y) — ¢(2))
~Qu(2) V -G(Z,7) V Qs(7) o(b)
Qs(?)

Fig. 2. Simulation of hyperresolution by tableaux.

for a more general fragment, defined so that the quantified sequences of variables in the
non-guard formulae are a subset of the quantified variables.

WG X, Y) A (D) VYU (X, Y) = ¢(2)

wherez C y. The resulting clausal forms are
—Qv(X) v —=G(X.y) v Qs(2) wherezCy
Qs VIX f(X)  —QaX) Vv Q)  wheret C f(X).

If Zis the empty sequence th€y, is a propositional symbol. In general, this means that
is a closed subformula, but due to restriction (iv) in the definition of GFtmely, that the
variable sequencésandy may not be empty, it follows that is a propositional formula.

The restriction in GF1 that a guard is a single atom can be relaxed. Certain complex
guards which may include negation can be allowed. If we consider what happens in a
hyperresolution inference step then it is not difficult to see that inferences with definitional
clauses like the following produce uni-node and bi-node conclusions (after splitting).

—Qv(X) V=Go(X,¥Y) V (m)G1(X1, ¥ V- V (7)Gn(Xn, V) V Qp(D
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whereX;i CX,y; CY(L <i <n), XNy =@ andz C y. An essential condition is that
each of the atom§; (.. .), where 0< i < n, satisfy the grouping restriction (as suggested
by the notation) and the clause includes at least one guggdx, y). This ensures that the
conclusion is a ground clause. On the first-order level, this means we can allow formulae
of the form:

VY((Go(X, ) A (m)G1(X1, Y1) A -+ A (7)Gn(Xn. Yn)) = ¢(2D),

whereX; CX,y; CY (1 <i <n), XNy =¢andz Cy. Note that due to the restrictions
of the positions of quantified and free variables in GRfie equivalent formula does not
belong to the fragment, although it is a guarded formula.

VY((Go(X,Y) = (mU1(X1, Y1) = (- = (7)GnXn, Yn) = ¢(2)..))).

Disjunctions in the guard expression are permitted provided none of the atoms are negated:
VY((G1(X1, Y1) V -V Gn(Xn, V) — ¢(2),

whereXx = X1 U---UXp, YV=Y1U-- Uy, XNy =@, andz < y;N---NY,. The

corresponding clause set includes clauses of the following form:
—Qv(X) vV =Gi(Xi,Y;) V Qg(2).

Such formulae fall outside the GF and the loosely GF.

As the introduced negative literal in a clause associated with an existentially quantified

formula contains all the variables of the clause we can be much more permitting in this
case:

Y(F A ¢(2),

where F is any Boolean combination of atonds (X1, V,), ..., Gn(Xn, ¥,)- Again, the
Gi(---) are required to satisfy the grouping restriction. Clausification produces clauses of
the form:

=Q3(X) vV (m)Gi, iy, fiy (X)) V-V (2)Gipy Kipys iy (X))
=Q3(X) vV Qu(9(X)),
where 1<ij <nforeachl< j <m,andX =X1U---UXn.
Other generalizations are conceivable, but this is the subject of ongoing work. At this
stage we have the following results.

Theorem 8.1. Let ¢ be a formula in the above extension -1~ and let N be the
corresponding clause set. Then:

1. AnyR™P derivation from N terminates.

2. If T is afair derivation from N theffi) If N(= Np), N1, ... is a path with limit N,
Noo is saturated up to redundandyi) ¢ is satisfiable if and only if there exists a path
in T with limit Ny, such that N, is satisfiable(iii) ¢ is unsatisfiable if and only if
for every path N= Np), Ny, ... the clause seu)j Nj contains the empty clause.

Proof. Termination follows fronirheorem 4.3since all derived clauses from the formulae
in the extensions of GF1by hyperresolution with splitting are either uni-nodes or bi-
nodes. O
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Theorem 8.2. Let¢ be a satisfiable formula in the above extension. A finite modes for
can be constructed on the basisR¥®.

Similarly, as in the previous section (add Nivelle et al, 2000, macro inferences in
R™P (for N) can be identified and reformulated as tableaux inference rules, providing a
sound and complete tableaux decision procedure for the extension.

Finally we note:

Theorem 8.3. Hyperresolution and factoring without splitting is a sound, complete and
terminating inference procedure for the clausal classes associatedG#tlr and the
considered extension.

Proof. Soundness and completeness is proveRabinson(1969 if factoring includes
positive and negative factoring. Otherwise, soundness and completeness follows from
Bachmair and Ganzing€1994 2001). Termination follows fromTheorems 4.2nd8.1,

since all derived clauses by hyperresolution without splitting are formed from uni-node
and bi-node literals appearing in the correspond®ffj derivation tree. O

9. Related work

Related CalculiApart from the semantic tableaux calculudotz et al.(1999, whose
relationship toR™P was considered iSection 7 there are other inference calculi closely
related toR™P. These include resolution with maximal selection of negative literals,
hypertableaux and its descendants. These connections are useful since, not only do they
present new perspectives, they also allow the interchange of search pruning mechanisms
between the different inference systems, and, more practically, make available a larger
array of provers for automating reasoning about problems formulated in GF1

We already mentioned resolution with maximal selection of negative liteBalshmair
and Ganzinger2001) which has been used in a translation-based approach to modal
logic and description logic reasoningd Nivelle et al. 2000 Hustadt and Schmigdt
1999 2000ab). Resolution with maximal selection of negative literals can be viewed as
hyperresolution with positive factorin@achmair and Ganzinge2001), and thus amounts
to the same aB™P (with or without splitting).

Hypertableauxwas introduced byBaumgartner et ak1996. Given a finite setN of
input clauses and a selection functinthe hypertableaux procedure generates a literal
tree and at each stage of the derivation every open branch is a partial representation of a
potential model foN. Initially the hypertableaux consists of a single node marked open.

In subsequent steps a hypertableaux is obtained from a literal tt®e attaching child
nodes to the open branch selected3in T. The child nodes are

Arom, ..., Amom,—Biom,...,—Bphom,

if(i) C=-Byv---v-aB,Vv ALV Apisaclause fronN, 0 < m, n, (ii) o is a most
general substitution such that the minimal Herbrand model of the set of (universal closures
of the) literals in the selected branch satisfies (the universal closug efj - - - A Bpo,

and (iii)  is a substitution foiCo such that the positive literals i@o0 do not share
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variables.C is called the extending clause, ands called a purifying substitution. The
new branches with negative leaves are immediately marked ‘closed’.

The close link between hypertableaux and hyperresolution with splitting is evident. A
drawback of hypertableaux is the guessing of the purifying substitution. For the clausal
classes considered in the previous sections all hyperresolvents are ground, which implies
that the purifying substitution is always the identity substitution. That is, for our application
hypertableaux and hyperresolution with splitting are essentially the same. Consequently,
the results foR™P are also true for hypertableaux. Therefore, hypertableaux also provides
a decision procedure and model building procedure for Gé&iid the considered extension.

(So do the descendants of hypertableaBaumgartner1998 2000 for that matter.) For
practical considerations the link betweB#® and hypertableaux allows us to transfer
several improvements of hypertableaux discusseBanmgartner et al(1996. These
include factorization and level cut. Factorization has the effect that different branches
represent disjoint partial models. This can be achieved in our case by modification of the
splitting rule to: if the clause sé¥l contains a ground clausg, v C, then the resolution
refutation is performed independently dhuU {C1} and N U {—=Cy, C2}. The level cut
improvement corresponds to branch condensing used in SPABBIdnbach2001) or
backjumping used in tableaux methodd$ugtadt and Schmidt1998. (On the side we
remark that hyperresolution with splitting avoids the ‘memory management’ problem of
hyperresolution highlighted iBaumgartner et 311996)

A resolution based decision procedure for the full GF without equality is presented
by de Nivelle and de Rijkg2003. Their method uses ordered resolution with a non-
liftable ordering that is incomplete in general, but complete for the GF. To deal with the
loosely GF without equality a combination of this method with a non-trivial modification of
hyperresolution is useanzinger and de Nivelld999 describe a decision procedure for
the guarded and loosely GF with equality based on ordered paramodulation with selection.

Related Clausal Classes8Ve have already referred to the related clausal classes
associated with modal and description logics. A related class is the encoding in clausal
form of the extended multi-modal log¢m) (N, U, —) (de Nivelle et al,200Q Hustadt and
Schmidf 20008 and the corresponding description logdCBp (Hustadt and Schmigdt
20003. This class is subsumed by the clausal clasSaiftion 3

Other clausal classes decidable by hyperresolution are investigafedrimller et al.
(2001 andLeitsch(1993 and include the classé2VD andKPOD. A set of clausedN
belong toPVD (positive variable dominated) if for every clau€ein N, the following
conditions hold: (i) The variables in the positive part®fre a subset of the variables of
the negative part of. (ii) The maximal term-depth of each variable in the positive part of
C is smaller or equal to the maximal term-depth of the same variable in the positive part
of C.

A set of clausedN belongs taCPOD (Krom positive occurrence dominated) if: (i) All
clauseC in N are Krom, i.e|C| < 2. (ii) For every variablex contained in the positive
part of a claus€, the number of occurrences »fin the positive part o€ is smaller than
the number of occurrences »fin the negative part of.

Obviously, the sets of clauses we obtain from GFarmulae in general do not satisfy
condition (ii) of the definition ofPVD nor do they satisfy condition (i) of the definition
of KPOD. For PVD the syntactic restrictions on the class imply that during a derivation
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by hyperresolution the depth of the conclusions does not incréasmiller et al, 2003,
Leitsch 1993. This is unlike the case for GF1For CPOD the term depth of conclusions
may increase during a derivatiohdjtsch 1993. However, essential foCPOD is the
restriction of clauses to Krom formi@| < 2), which does not apply to clauses originating
from the definitional form of GF1 formulae.

Termination forPVD and CPOD is shown in terms of an atom complexity measure
u, defined as a function from atoms to natural numbers with the following properties: (i)
w(A) < n(Ao) for all atomsA and all substitutions:, (ii) for all natural number& and
any finite signatureX it is true that for all atoms\, the set{ Ao | o € 00, u(Ac) < k} is
finite, whereoy is the set of all ground substitutions ovEr (iii) w« is extended to literals
by u(A) = u(—=A), and to clauses by ({L1, ..., Lp}) = max{u(Li) | 1 <i < n}. Our
complexity measure does not have the second property. It is open whether decidability of
the classes considered in this paper can be formalized in this framework.

10. Conclusion and further work

The presented work is a continuation of ideas and techniques developtusiadt
and Schmidt(1999 2000ab) for extended propositional modal logics, making use of
concepts introduced inutz et al.(1999. We have considered the use of hyperresolution as
a decision procedure for guarded formulae in Gt well as extensions of this fragment.
We have also considered the use of hyperresolution for automatically building models
and analysed the close relationship to tableaux approaches. The latter can be exploited to
extract a tableaux system for the extension of GHiscussed irBection 8 An advantage
of using hyperresolution is in the availability of a number of theorem provers which can
be used without adaptation as decision procedures for Gl the considered extension
(for example, FDPLL, OTTER, PROTEIN, SPASS, and Vampire).

Currently we are looking into defining an abstract atom complexity measure in analogy
to Leitsch(1993 which would generalize the specific complexity measures and orderings
used in the termination proofs presented in this paper awi@ iNivelle et al (2000 and
Hustadt and SchmidiL999 2000ab). We are also attempting to define a larger solvable
class which would accommodate more formulae outside the GF and the loosely GF.
Further, it would be of interest whether it is possible to extend the approach to the entire
GF, possibly by using blocking conditions in the spirit@nzinger et al(1997).
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