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Abstract

This paper investigates the use of hyperresolution as a decision procedure and model builder
for guarded formulae. In general, hyperresolution is not a decision procedure for the entire guarded
fragment. However we show that there are natural fragments of the guarded fragment which can be
decided by hyperresolution. In particular, we prove decidability of hyperresolution with or without
splitting for the fragment GF1− and point out several ways of extending this fragment without losing
decidability. As hyperresolution is closely related to various tableaux methods the present work is
also relevant for tableaux methods. We compare our approach to hypertableaux, and mention the
relationship to other clausal classes which are decidable by hyperresolution.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In Andréka et al.(1998, 1995) Andréka, van Benthem and Nem´eti investigate whether
there exist natural fragments of first-order logic extending the modal fragment which
corresponds to basic modal logic (via the relational translation) sharing some or all of
the properties of modal logics, including decidability, Craig interpolation, bisimulation
invariance, Beth definability, the finite model property, and preservation under submodels.
They show that the guarded fragment (GF) shares, indeed, all these properties with the
basic modal logicK. Various extensions of the GF have been proposed and analysed
with respect to these properties. The most well-known extension is the loosely GF,
introduced inAndréka et al.(1998), and shown decidable inGanzinger and de Nivelle
(1999) and Grädel (1999b). Decidability has also been shown for the guarded fixpoint
logic (Grädel, 1999a) and a monadic fragment of GF2 with transitive guards (Ganzinger
et al., 1999). The decision procedures for the GF and the various extensions exploit
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different approaches: the finite model property, ordered resolution, alternating automata, or
embeddings into monadic second-order logic. This is an interesting contrast to approaches
in the literature on decidable modal logics and description logics, where tableaux-based
decision procedures are predominantly used for testing satisfiability (see for example
Donini et al., 1996; Goré, 1999).

In Lutz et al. (1999), Lutz, Sattler and Tobies investigate whether tableaux-based
decision procedures exist for subclasses of the GF. They introduce a subclass of the GF,
in particular, of the fragment GF1 which was introduced inAndréka et al.(1995). This
subclass is called GF1−, and is obtained by restricting the way the variables may occur
in guards. A formulaϕ belongs to GF1 if any quantified subformulaψ of ϕ has the form
∃y(G(x, y) ∧ φ(y)) or ∀ y(G(x, y)→ φ(y)). In formulae of GF1− the atomsG(x, y) in
guard positions need to satisfy an additional grouping condition. This grouping condition
is important for termination in the tableaux procedure of Lutz et al.

In this paper we continue this line of investigation. However we exploit the
close correspondence between tableaux-based decision procedures and hyperresolution
combined with splitting which has been demonstrated for extended modal logics (de
Nivelle et al., 2000; Hustadt and Schmidt, 2000b) and for description logics (Hustadt
and Schmidt, 1999, 2000a). By using a structure preserving transformation of guarded
formulae into clausal form we can recast the method of Lutz et al. in the framework
of hyperresolution. The motivation for this shift in perspective is our interest in the
applicability of resolution and hyperresolution methods as decision procedures.

Generally, hyperresolution is not a decision procedure for the entire GF. A simple
example is provided by the guarded formulap(y) ∧ ∀x(p(x) → ∃z(p(z) ∧ �)) with
clausal form{p(a),¬p(x) ∨ p( f (x))}, for which hyperresolution does not terminate.
In contrast, inde Nivelle et al.(2000) and Hustadt and Schmidt(2000b) it is proved
that hyperresolution with splitting is a decision procedure for a first-order encoding of
the extended modal logicK(m)(∩,∪,�). SemanticallyK(m)(∩,∪,�) is defined by the
class of frames in which the accessibility relations are closed under intersection, union and
converse. In this paper we focus on the question as to whether the results forK(m)(∩,∪,�)
can be extended to a generalized first-order logic fragment, for example, to the class
GF1−, and possibly to extensions of this class. Because the method of proving termination
used inde Nivelle et al.(2000) andHustadt and Schmidt(2000b) does not generalize to
GF1−, we investigate a different argument which is adapted fromLutz et al.(1999). This
argument takes into consideration the form of the derived clauses and crucially depends
on the grouping restriction in the definition of GF1−. In the setting of hyperresolution it is
immediately clear that the termination result can be extended to a larger class of guarded
formulae than the class GF1− identified in Lutz et al. Thus, we obtain more general results
than those previously known.

A problem closely related to the satisfiability problem is the problem of generating
(counter-)models. It is well-known that hyperresolution can be employed with dual
purpose, namely, as a reasoning method and a Herbrand model builder (Fermüller et al.,
2001). Therefore, another topic in this paper is the use of hyperresolution as a procedure
for automatically constructing Herbrand models for GF1− and the considered extension.
The paper also considers how the method relates to other inference methods such as
hypertableaux (Baumgartner et al., 1996), and how the work fits in with previous work
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on using hyperresolution as a decision procedure for first-order classes (Fermüller et al.,
2001; Leitsch, 1993).

The structure of the paper is as follows. Some preliminary definitions are given in
Section 2. Section 3defines the fragment GF1− and describes the clausal normal form
into which GF1− formulae are conveniently translated. The hyperresolution calculus
is described inSection 4and decidability of GF1− is shown. The topic ofSection 5
is model building.Section 6presents results on the computational properties of the
decision procedure and the size of generated models.Section 7analyzes and characterizes
the precise relationship between the hyperresolution calculus and the semantic tableaux
method of Lutz et al. Generalizations of the results for GF1− to a larger class of formulae
are sketched inSection 8. The final section summarizes the contributions of this paper and
concludes with some thoughts on further work.

2. Preliminaries

First-order variables are denoted byx, y, z, terms are denoted bys, t,u, constants by
a,b, functions by f, g,h, predicate symbols byP, Q,G, p,q, r , atoms byA, B, literals
by L, clauses byC, formulae byϕ, φ, ψ, ϑ , α, β and sets of clauses byN.

An over-line indicates a sequence, for example,x denotes a finite sequence of variables
ands denotes a finite sequence of terms. Ifs = (s1, . . . , sn) then f (s) denotes a sequence
of terms of the formfk(s1, . . . , sn). If s andt are sequences of terms thens ⊆ t means that
every term ins also occurs int . By definition,s = t iff s ⊆ t andt ⊆ s. The union of the
terms ins andt is denoted bys∪ t .

For any sequences of terms (or formulaφ) by var(s) (or var(φ)) we denote the set of
variables that occur freely ins (orφ). We also writeφ(x) to indicate that the free variables
occurring inφ are all and only those inx, regardless of the order they appear inφ and
duplication of variables is possible.

An expressionis a term, an atom, a literal or a clause. An expression is calledfunctional
if it contains a constant or a function symbol, andnon-functional, otherwise. The set of
all free variables occurring in an expressionE, or in a set of expressionsN, is denoted
asV(E) or V(N). An expression is calledground if it contains no variables. For sets of
expressions|N| denotes thecardinalityof the setN.

Clausesare disjunctions of literals, i.e.C = L1∨L2∨· · ·∨Ln, they can also be regarded
as multisets. As usual the symbols∨ and¬ denote disjunction and negation, respectively.
A positive(resp.,negative)clause contains only positive (resp., negative) literals. A clause
is callednon-positiveif it contains at least one negative literal. A clause which consists of
only one literal is called aunit clause. The empty clause is denoted by⊥. A split component
of a clauseC∨D is a subclauseC such thatC andD do not have any variables in common,
i.e. arevariable disjoint. A clause which cannot be split further is called amaximally split
clause. Two formulae or clauses are said to bevariantsof each other if they are equal
modulo variable renaming. Variant clauses are assumed to be equal.

A clauseC is calledrange-restrictediff every variable occurring in the positive literals
of C occurs also in the negative literals ofC.
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The(term) depthdp(t) of a termt is inductively defined as follows: (i) ift is a variable
or a constant then dp(t) = 1, and (ii) if t = f (t1, . . . , tn), then dp(t) = 1+ max({dp(ti ) |
1 ≤ i ≤ n}). The term depthdp(L) of a literal is defined to be the maximal depth of its
argument terms and theterm depthdp(C) of a clause is defined as the maximal term depth
of the literals occurring inC.

We assume that a fixed finite signatureΣ , i.e. a countable set of predicate symbols,
a countable set of function symbols and a countable set of variables is given. With each
predicate and each function symbol we associate a natural numbern called the arity of the
symbol. Given a set of clausesN, the Herbrand universeHU(ΣN ) over the signatureΣN

of N is the set of all ground terms built from the function and constant symbols inΣN . If
there are no constants in the signature, a special constant symbol is introduced so that the
HU(ΣN ) is not empty.

A first-orderinterpretationfor a signatureΣN is a structureM = 〈M, ·I 〉, whereM is
a non-empty set and·I is aninterpretation functiondefined over the predicate symbols, the
function symbols and the constant symbols. As usual·I assigns ann-ary relation overM
to ann-ary predicate symbol, ann-ary function fromMn → M to n-ary function symbols,
and an element ofM to constant symbols.

An assignmentg for M is a mapping from the set of variables intoM. Given an
assignmentg if x is a variable andm ∈ M, thengx

m(x) = m andgx
m(y) = g(y) for any

variabley different fromx. Analogously, ifx1, . . . , xn are variables andm1, . . . ,mn are
elements ofM, theng[x1,...,xn]

[m1,...,mn](xi ) = mi for everyi , 1 ≤ i ≤ n andg[x1,...,xn]
[m1,...,mn](y) = g(y)

for any y /∈ {x1, . . . , xn}. Given an interpretationM and an assignmentg for M, the
interpretation function can be extended to all terms byxI

i = g(xi ) and f (t1, . . . , tn)I =
f I (t I

1 , . . . , t
I
n ). The satisfiability relation� is defined as

M, g � �
M, g � ⊥
M, g � P(t1, . . . , tn) iff (t I

1 , . . . , t
I
n ) ∈ PI

M, g � ¬ϕ iff M, g � ϕ

M, g � ϕ1 ∧ ϕ2 iff M, g � ϕ1 andM, g � ϕ2
M, g � ∃xiϕ iff M, gxi

m � ϕ for somem ∈ M.

If there exists an interpretationM and an assignmentg such thatM, g � ϕ, for a formula
ϕ overΣN , thenϕ is satisfiableandM satisfiesϕ.

A Herbrand interpretation His a set of ground atoms. By definition a ground atom
A is true in the interpretationH if A ∈ H and it is false in the interpretationH if
A /∈ H , � is true in all interpretations and⊥ is false in all interpretations. The truth
value of the binary logical connectives∨ and∧ is defined as follows: a conjunction of
two ground atomsA andB is true in the interpretationH iff both A andB are true inH
and respectively, a disjunction of ground atoms is true inH iff at least one ofA or B is
true in the interpretation. The truth value of a formula depends on the truth value assigned
to its atomic subformulae. A clauseC is true in an interpretationH iff for all ground
substitutionsσ there is a literalL in Cσ which is true inH . If an expression is true in an
interpretationH thenH is referred to as aHerbrand modelof the expression.
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3. The fragment GF1−−−

In the language of GF1− everyn-ary predicate symbolP is associated with a unique
pair(i , j ) of positive integers such that 0< i , j , andi + j = n, which is called thegrouping
of the predicate symbol. Often we writeP(i, j ) to makeP’s grouping explicit.

The set of formulae in GF1− is defined to be the smallest set satisfying the following
conditions:

(i) � and⊥ are GF1− formulae,
(ii) if P is ann-ary predicate symbol andx is a sequence ofn variables, thenP(x) is a

GF1− formula,
(iii) if φ andψ are GF1− formulae then so are¬φ, φ ∧ ψ, φ ∨ ψ, and
(iv) if φ(y) is a GF1− formula,G(i, j ) is a predicate symbol with grouping(i , j ), andx, y

are non-empty variable sequences of lengthi and j with no variables in common,
then the following formulae are GF1− formulae.

∃y(G(i, j )(x, y) ∧ φ(y)) ∀ y(G(i, j )(x, y)→ φ(y))
∃x(G(i, j )(x, y) ∧ φ(x)) ∀ x(G(i, j )(x, y)→ φ(x)).

Note how the role ofx andy may be interchanged in the guard.
Grouping is a global condition of predicate symbols, so that all occurrences of a

predicate symbol in a guard position must satisfy the given grouping of the predicate
symbol. Occurrences of atoms in guard positions such that (iv) is satisfied are said tosatisfy
the grouping restriction.

Examples of GF1− formulae are the following.

q(x, y)∧ ∃x, y(r1(z, z, x, y) ∧ p(x, y)), p(x, y)∧ p(y, x),
∀xy(r2(x, y, z)→ (p(x, y)∧ ∃z(r2(x, y, z)∧ q(z, z)))).

The grouping of the predicate symbolsr1 and r2 is (2,2) and (2,1), respectively,
while for the remaining predicate symbols the grouping is immaterial. Free variables in
GF1− formulae are implicitly existentially quantified. Note that making the existential
quantification ofx andy explicit in the second example would result in a formula which
is not in GF1− (it would still be a guarded formula though). Other examples of guarded
formulae which do not belong to GF1− are∀xy(q(x, x, y) →⊥)) and∀xy(p(x, y) →
∃zp(y, z)).

The (guarded) quantifier depthgqd(ϕ) of a formulaϕ in GF1− is defined as follows:
(i) gqd(�) = gqd(⊥) = gqd(P(x)) = 0, (ii) if φ andψ are GF1− formulae then
gqd(¬φ) = gqd(φ) and gqd(φ ∧ ψ) = gqd(φ ∨ ψ) = max(gqd(φ),gqd(ψ)), and (iv)
if x is a non-empty sequence of variables and∃xφ and∀ xφ are GF1− formulae, then
gqd(∃xφ) = gqd(∀ xφ) = 1+ gqd(φ), independent of the number of variables inx.

We assume that all formulae are in negation normal form, i.e. negation is pushed inwards
to occur only in front of predicate symbols. Furthermore, we assume that occurrences of
� and⊥ are respectively replaced by appropriate tautologous and contradictory formulae.
This assumption is not crucial; it is made to simplify the clausal class associated with
GF1− and consequently the proofs are slightly more elegant. Short reflection will convince
the reader that the transformation to negation normal form does not take us outside the
boundaries of GF1−. The transformation of GF1− formulae into clausal form makes use
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of structural transformation, also known as definitional form transformation or renaming
(cf. e.g.Baaz et al., 1994; Hustadt and Schmidt, 2000b; Plaisted and Greenbaum, 1986).
The fundamental idea is the replacement of particular subformulae by atoms with new
predicate symbols. This renaming preserves satisfiability and unsatisfiability.

To present the particular form of renaming we use, we need to define the notion of
position of a (sub)formula within a formula. Apositionis a word over the natural numbers.
The set Pos(ϕ) of positions of a given formulaϕ is inductively defined as follows: (i) the
empty wordε is in Pos(ϕ), (ii) for 1 ≤ i ≤ n, iλ ∈ Pos(ϕ) if ϕ = ϕ1 � · · · � ϕn and
λ ∈ Pos(ϕi ) where� is a first-order operator. Ifλ ∈ Pos(ϕ), thenϕ|ε = ϕ andϕ|iλ = ϕi |λ
whereϕ = ϕ1 � · · · � ϕn.

The renaming associates with each elementλ of Pos(ϕ) a predicate symbolQλ and a
literal Qλ(x1, . . . , xn), wherex1, . . . , xn are the free variables ofϕ|λ, and the symbolQλ

does not occur inϕ. Two symbolsQλ and Qλ′ are equal only ifϕ|λ andϕ|λ′ are variant
formulae. Thedefinition of Qλ is the formula:

Defλ(ϕ) = ∀x1 . . . xn(Qλ(x1, . . . , xn)→ ϕ|λ).
Thedefinitional formDef�(ϕ) of ϕ is inductively defined by:

Def∅(ϕ) = ϕ and
Def�∪{λ}(ϕ) = Def�(ϕ[Qλ(x1, . . . , xn) �→ λ]) ∧ Defλ(ϕ),

whereλ is maximal in�∪{λ}. (Here,ϕ[A �→ λ] denotes the formula obtained by replacing
the subformula at positionλ in ϕ with A.)

Theorem 3.1 (e.g.Plaisted and Greenbaum, 1986). Let ϕ be a first-order formula. For
any� ⊆ Pos(ϕ), Def�(ϕ) can be computed in polynomial time, andϕ is satisfiable iff
Def�(ϕ) is satisfiable.

Corollary 3.1. For any given GF1− formula ϕ and any� ⊆ Pos(ϕ), Def�(ϕ) can be
computed in polynomial time, andϕ is satisfiable iffDef�(ϕ) is satisfiable.

We denote the result of the transformation of a first-order formulaϕ to clausal form
by Cls(ϕ). We assume that in this transformation the free variables ofϕ are treated as
existentially quantified and are replaced by distinct Skolem constants.

The use of structural transformation prior to the conversion to clausal form has two
major advantages.

1. If a first-order formula is translated directly to its clausal form Cls(ϕ), the size of
Cls(ϕ) can be exponential in the size ofϕ. If � is the set of all positions of (non-
atomic) subformulae ofϕ, then the size of Cls(Def�(ϕ)) is linear in the size ofϕ.

2. The application of structural transformation considerably simplifies the form of
clauses that are obtained fromϕ.

In the case of GF1−, we require that� contains the positions of all non-atomic
subformulae of the formula under consideration with the exception of implications and
conjunctions immediately below quantifiers. The transformation maps GF1− formulae to
guarded formulae in a certain form, which, when clausified, render clauses satisfying the
schematic presentation ofFig. 1. The non-positive clauses are referred to asdefinitional



L. Georgieva et al. / Journal of Symbolic Computation 36 (2003) 163–192 169

Fig. 1. Schematic clausal form for GF1− formulae.

clauses. The symbolQϕ is a new symbol introduced for the subformulaϕ indicated in
the index. ThusQϕ can be thought of as the name for the subformulaϕ. To simplify our
presentation, we assume that ifϕ is an atomic formulaP(x), then the symbolQϕ stands for
the predicate symbolP. By definition, we letG(x, y) represent eitherG(x, y) or G(y, x). a
stands for a sequence of constants, andf (x) is a sequence of termsfk(x1, . . . , xn), where
the arguments of each of thefk are exactly the elements ofx.

Theorem 3.2. Supposeϕ is anyGF1− formula. Let N be the set of clauses obtained from
ϕ by negation normal form transformation, the above renaming and clausification. Then,
(i) any clause in N has one of the forms inFig. 1, (ii) the conversion ofϕ to N can be
performed in linear time, and (iii)ϕ is satisfiable iff N is satisfiable.

4. Hyperresolution for GF1−−−

To decide GF1− we use a calculusRhyp of positive hyperresolution combined with
splitting.

Positive hyperresolution resolves positive clauses with a non-positive clause always
producing a positive conclusion or the empty clause. More precisely, a hyperresolvent is
derived according to the following rule:

C1 ∨ A1 . . . Cn ∨ An ¬An+1 ∨ · · · ∨ ¬A2n ∨ D

(C1 ∨ · · · ∨ Cn ∨ D)σ

where (i)σ is the most general unifier such thatAiσ = An+iσ for any i , 1 ≤ i ≤ n,
and (ii) Ci ∨ Ai and D are positive clauses, for anyi , 1 ≤ i ≤ n. The premise
¬An+1 ∨ · · · ∨ ¬A2n ∨ D is referred to as thenegativepremise and all the other premises
in the resolution rule are referred to aspositivepremises. Hence, the positive premises of a
hyperresolution inference step have to be positive clauses.

Factors are generated by the positive factoring rule:

C ∨ A1 ∨ A2

(C ∨ A1)σ
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whereC is a positive clause andσ is the most general unifier ofA1 andA2. Factoring is not
required for the completeness of our decision procedure, but it helps to avoid applications
of splitting to clauses containing duplicate literals.

The splitting rule is similar to disjunction elimination in semantic tableaux.

N ∪ {C1 ∨ C2}
N ∪ {C1} | N ∪ {C2}

whereC1 andC2 are variable disjoint. That is, if the clause setN contains a clauseC
which can be split into variable disjoint clausesC1 andC2. The original clause becomes
redundant and the resolution refutation is continued independently onN∪{C1} or N∪{C2}.

A derivationfrom a set of clausesN is a finitely branching treeT with root N. The tree
is expanded either by adding a successor nodeN′′ to one of the leaf nodesN′ of the tree
such thatN′′ = N′ ∪ {C} whereC is either a factor or a hyperresolvent of clauses inN′ or
by adding two successor nodesN′ ∪{C} andN′ ∪{D} to a leaf nodeN′ ∪{C∨D} whereC
andD are variable disjoint. A derivationT is arefutationif for every pathN = N0, N1, . . .

the clause set
⋃

j Nj contains the empty clause. A derivationT from N is calledfair if
for any pathN = N0, N1, . . . in the treeT , with limit N∞ = ⋃

j
⋂

k≥ j Nk, it is the case
that each clauseC that can be deduced from non-redundant premises inN∞ is contained
in some setNj .

The calculus is compatible with a general notion of redundancy (Bachmair and
Ganzinger, 1994, 2001).

Theorem 4.1 (Bachmair and Ganzinger, 1994; Bachmair et al., 1993). Let T be a fair
Rhyp derivation from N. If N, N1, . . . is a path with limit N∞, then N∞ is saturated up
to redundancy. Furthermore, N is satisfiable if and only if there exists a path in T with
limit N∞ such that N∞ is satisfiable.

Theorem 4.2 (Bachmair and Ganzinger, 1994; Bachmair et al., 1993). Let T be a fair
Rhyp derivation from N. N is unsatisfiable if and only if for every path N= N0, N1, . . .

the clause set
⋃

j Nj contains the empty clause.

We restrict our attention to derivations generated by strategies such that the positive
premises of any hyperresolution step are positive ground unit clauses. For GF1− this can be
achieved by performing suitable splitting and factoring inferences before hyperresolution
inferences. Furthermore, we assume that no inference step is performed twice with the
same premises. Since we are able to prove termination of any such derivation for sets of
GF1− clauses, any such strategy is fair.

For the classes of clause sets we consider in this paper the positive premises are always
ground, in particular, because we use splitting, the positive premises are always groundunit
clauses, and the conclusions are always positive ground clauses. Crucial for termination is
that the unit clauses are always eitheruni-nodeor bi-node. These are notions inspired by
Lutz et al.(1999), and are defined next. The intuition underlying these notions is that the
uni-nodes represent the vertices and bi-nodes the edges in a bidirectional tree. Uni-node
clauses can be viewed as local constraints and bi-node clauses as transitional constraints.

A (multi-)set{t1, . . . , tn} (or sequencet = (t1, . . . , tn)) of ground terms is called auni-
nodeiff either eachti , 1 ≤ i ≤ n, is a constant, or there exists a predicate symbolQ and
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a sequence of ground termss, such that eachti , 1 ≤ i ≤ n, has the formfQ(s), where
fQ is a function symbol associated withQ. A uni-nodeX2 is called adirect successorof
a uni-nodeX1 iff there is a predicate symbolQ such that for each elementt of X2 there is
a function symbolfQ, associated withQ, andt = fQ(s), wheres is a sequence of exactly
the elements ofX1. A (multi-)set (or sequence) of ground terms is called abi-nodeiff it
can be presented as a unionX1 ∪ X2 of two non-empty disjoint uni-nodesX1 andX2 such
thatX2 is a direct successor ofX1. A ground literal is auni-node(bi-node) iff the set of its
arguments is a uni-node (bi-node). A clause is auni-node(bi-node) iff it is a unit clauseL
and the set of the arguments ofL is a uni-node (bi-node). The empty clause⊥ is a special
type of uni-node without direct successors.

The sets{a,a,b}, {hQ(a,b)}, {hQ(a,b), gQ(a,b)}, {hQ(a,b), gQ(a,b), fQ(a,b)}
are examples of uni-nodes, while examples of bi-nodes are{a,b,hQ(a,b)} and
{a,b, gQ(a,b),hQ(b,a)}. Here, Q is assumed to be a symbol introduced for an
existentially quantified subformula andfQ, gQ andhQ are function symbols associated
with the same predicate symbolQ. Observe that both{gQ(a,b)}{hQ(b,a)} are direct
successors of{a,b}. The set{a, fQ(a,b)} is neither a uni-node nor a bi-node.

Lemma 4.1. Suppose a finite signature is given.

1. The cardinality of any uni-node and any bi-node is finitely bounded.
2. For any given uni-nodes, the number of uni-nodes, and bi-nodes, of the formG(s, t)

is finitely bounded.
3. Every uni-node clause has a bounded number of direct successors, which are uni-

nodes.

Proof. In order to prove property 1 we use the definition of a uni-node (above) and the
assumption that the signature is finite. LetX be a uni-node. Then by definition either each
element inX is a constant or each element has the formti = fQ(s), for a fixeds and a fixed
predicate symbolQ. By assumption the signature is finite, thus there are only finitely many
distinct elements in the uni-nodeX which are constants. The number of distinct terms inX
which have the formti = fQ(s) is bounded by the number of function symbols associated
with the predicate symbolQ. The cardinality of a bi-node is finite, too, because it is the
disjoint union of two uni-nodes.

In the proof of 2 we use the definition of a uni-node and property 1. AssumeG(s, t)
is a uni-node. Then by definition of a uni-node, either all thesi in s and all t j in t are
constants, or there exists a sequence of ground termsu such that all termssi , t j have the
form fQ(u), where fQ is a function symbol associated with predicate symbolQ. Since
the number of constants as well as the number of function symbolsfQ associated with
predicate symbolQ is finite, and sinces is given, the number of uni-nodesG(s, t) is finitely
bounded. AssumeG(s, t) is a bi-node, andt is a direct successor ofs. By definition any
direct successor of a uni-node sequence (set) of termss is of the form{ f 1

Q(u), . . . , f n
Q(u)},

for somen, where f 1
Q, . . . , f n

Q are function symbols, associated with a predicate symbol
Q andu = s, andu is non-empty. So by the same argument as before, the number of direct
successors ofs is finitely bounded, sinces = u is given. In the case wheres is a direct
successor oft , eachsi in s has the formfQ(u)with t = u. Since the number of possibilities
of forming t givenu is finitely bounded, the result follows. This proves property 2.
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Property 3 follows from properties 1 and 2 and by the definitions of a uni-node and a
bi-node. �
It is worth noting that without a restriction on the depth of terms, the number of uni-nodes
is not finitely bounded for a finite signature. Thus, an important result for the proof of
termination isLemma 4.4which proves the existence of a term depth bound for inferred
clauses.

What are the properties of inferred clauses and inferences inRhyp? We note that except
for one positive ground unit clause,N contains only definitional clauses which are non-
positive and non-ground. The negative premise of a resolution inference step is always
a definitional clause inN, and maximally split conclusions of most resolution inference
steps are uni-nodes. The exceptions are inferences with definitional clauses of the form
¬Qψ(x) ∨ G(x, f (x)), which produce bi-node conclusions. As factoring is applied only
to positive clauses, and positive clauses in anyRhyp derivation for GF1− clauses (more
generally, for any range restricted set of clauses) are always ground, factoring has the effect
of eliminating duplicate literals in ground clauses. For this reason no special consideration
is given to factoring inference steps in subsequent proofs.

Lemma 4.2. In anyRhyp derivation from N:

1. The negative premise of any inference step is a definitional clause while at least one
of the positive premises is a uni-node.

2. All derived clauses are either empty or positive ground clauses which can be split
into positive ground unit clauses of the form: Qψ(s) or G(s, f (s)), wheres is a
uni-node. That is, maximally split conclusions are either uni-nodes or bi-nodes.

3. If Qψ(s) or G(s) are uni-nodes occurring in the derivation, then all terms ins have
the same depth. IfG(s, t) is a bi-node occurring in the derivation andt is a direct
successor ofs, then all terms ins have the same depth d and all terms int have the
same depth d+ 1.

Proof. The proof is by induction over an arbitrary derivation. In the first step of the
derivation there is only one possible positive premise, namely the ground unit clause
Qϕ(a), which is a uni-node. Since all arguments ofQϕ(a) are constants, they have the
same depth. The inductive hypothesis is that properties (1)–(3) hold for the premises and
conclusions of the firstn inference steps in any path of the derivation.

In the inductive step we consider inference stepn + 1. Consider the resolution steps
where the negative premise is a definitional clause introduced for an existentially quantified
GF1− formula. Assume that the positive premiseQψ(s) is a uni-node. There are two
possibilities. (i) The negative premise is a clause¬Qψ(x) ∨ Qφ( f (x)). The argument
set of the conclusionQφ( f (s)) is a sequence of termsfk(s1, . . . , sn), wheres1, . . . , sn are
exactly the elements ofs and fk is associated withQψ . This means that the conclusion
of this resolution step is a uni-node. Furthermore, if all terms ins have the same depth,
then also all the terms inf (s) have the same depth. (ii) The negative premise is a
clause¬Qψ(x) ∨ G(x, f (x)). By definition, any of the function symbolsfi in f (s) is
associated withQψ . Consequently,f (s) is a direct successor ofs. Therefore the conclusion
G(s, f (s)) is a bi-node. Obviously, since all terms ins have the same depthd, all the terms
in f (s) have depthd + 1.
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Consider also hyperresolution inference steps involving a definitional clause¬Qψ(x)∨
¬G(x, y)∨Qφ(y) corresponding to universally quantified GF1− formula. The two positive
premises have the formQψ(s) andG(s, t). By assumptionQψ(s) is a uni-node.G(s, t) is
either a uni-node or a bi-node. In the first case, since the argument set of the conclusion
Qφ(t) is a subset of the argument set of the positive premiseG(s, t) the conclusion is also a
uni-node. By the inductive hypothesis, all the argument terms of the uni-nodeG(s, t) have
the same depth. This implies that also all the terms ofQφ(t) have the same depth. In the
second case, the argument set ofG(s, t) consists of two distinct uni-nodess and t , such
that one of them is a direct successor of the other. The grouping restriction ensures that
the sequences of variablesx andy have the same length as the sequences of termss andt ,
respectively. This implies that all the variables inx are instantiated with terms froms only.
Similarly for y andt , i.e. there is no variable inx (resp.y) which can be instantiated with
a term fromt (resp.s). Hence, the conclusion has the formQφ(t) wheret is a ground uni-
node. Sincet is a direct successor ofs, or vice versa, it follows by the inductive hypothesis
that all terms int have the same depth.

The remaining inference possibilities are resolution steps between a positive premise
Qψ(s) and negative premises of the form¬Qψ(x) ∨ ¬P(x), ¬Qψ(x) ∨ Qφ(y) where
y ⊆ x, or¬Qψ(x) ∨ Qφ(y) ∨ Qϑ (z) wherey, z ⊆ x. Obviously, properties 1–3 hold for
such inferences. �

Lemma 4.3. In anyRhyp derivation from N:

1. Every ground clause which is a bi-node is an instantiated guard atom of the form
G(s, t), wheres andt are uni-nodes.

2. If C and D are uni-nodes, such that D is a direct successor of C, then D is derived
from C and a bi-node.

Proof. The first property follows immediately from the case analysis in the proof of
Lemma 4.2. Inspecting all resolution inference steps we observe that every ground clause
which is a bi-node is an instantiated guard atom of the formG(s, t), wheres and t are
uni-nodes ands is a direct successor oft or vice versa. The second property is a direct
consequence ofLemma 4.2and property 1. �

The main technical lemma is the following:

Lemma 4.4. Letϕ be aGF1− formula and let N be the corresponding clause set. The term
depth of any clause in a derivation from N is bounded by one plus the guarded quantifier
depth ofϕ.

Proof. If Qψ is a predicate symbol introduced by the structural transformation ofϕ for a
subformula at positionλ in ϕ, then we can define the guarded quantifier depth gqd(Qψ)

of Qψ as gqd(ϕ|λ), i.e. gqd(Qψ) = gqd(ψ). The guarded quantifier depth of any other
predicate symbol is defined to be zero.

We define a complexity measureν(C) for uni-nodes and show for anyRhyp derivation
from N that

(i) the term depth of a positive unit clauseP(s) in the derivation does not exceed
gqd(ϕ)− gqd(P)+ 1, and
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(ii) the complexity of the conclusion of an arbitrary inference step is always smaller than
the complexity of one of the uni-node premises of the inference step.

The particular complexity measure we use, allows us to establish the required upper bound
on the term depth of clauses in the derivation.

We define a partial ordering�d on predicate symbols byS1 �d S2, if there is a
definitional clause¬Qϕ(x) ∨ C, such thatS1 = Qϕ and S2 occurs inC. Let A =
(¬)P(t1, . . . , tn) be a uni-node. Thenν(A) = (gqd(P),dp(A), P), that is, the complexity
measure ofν(A) of A is given by the ordered tuple consisting of the guarded quantifier
depth of the predicate symbol ofA, the term depth ofA, and the predicate symbol ofA.
For the empty clause we defineν(⊥) = (0,0, tt)wherett is a new symbol which is smallest
with respect to�d. We compare complexity measures by the lexicographic combination�
of >N,>N, and�d.

To prove (ii) it would actually be sufficient if the complexity measure of a uni-nodeA
would consist of the predicate symbol ofA alone. However, the additional components
of ν(A) as defined above allow further interesting observations aboutRhyp-derivations
from N.

The proof proceeds by induction over the number of inference steps in the derivation
from N. In the base case, as yet no inference steps have been performed and the only
positive uni-node inN is the unit clauseQϕ(a) of term depth 1. Since gqd(Qϕ) = gqd(ϕ),
Qϕ(a) satisfies the upper bound of gqd(ϕ)−gqd(Qϕ)+1 = 1 on the term depth of positive
uni-nodes in the derivation.

The inductive hypothesis is that properties (i) and (ii) hold for the firstn inference
steps of the derivation. We consider inference stepn + 1. If this inference step is the
derivation of the empty clause from two positive uni-nodesQψ(s) and Q¬ψ(s), and the
definitional clause¬Q¬ψ(x) ∨ ¬Qψ(x), thenψ is an atom. Since dp(Q¬ψ(s)) ≥ 1, we
haveν(Q¬ψ(s)) = (0,dp(Q¬ψ(s)), Q¬ψ) � (0,0, tt) = ν(⊥). So, the inference step
satisfies property (ii).

Consider the derivation ofQφ(t) from Qψ(s) and¬Qψ(z) ∨ Qφ(x) wherex ⊆ z and
t ⊆ s. The negative premise of this inference step is a definitional clause introduced for a
conjunction, that is,ψ = φ ∧ ϑ . Therefore, gqd(Qψ) = gqd(Qφ). Let gqd(Qψ) be dq.
Let the term depth ofQψ(s) be dt . By Lemma 4.2all terms ins have the same depth.
Sincet ⊆ s it follows that the term depth ofQφ(t) is alsodt . Thus, if property (i) holds
for Qψ(s) then it also holds forQφ(t). Furthermore, it follows fromQψ �d Qφ that
ν(Qψ(s)) = (dq,dt , Qψ) � (dq,dt , Qφ) = ν(Qφ(t)). The case involving an inference
step with a definitional clause of the form¬Qψ(z) ∨ Qφ(x) ∨ Qϑ(y) introduced for a
disjunctive subformula ofϕ is similar to the previous case.

Next we consider the derivation ofQφ( f (s)) from Qψ(s) and¬Qψ(x) ∨ Qφ( f (x)).
The negative premise of this inference step is a definitional clause introduced for an
existentially quantified subformula∃x(A ∧ φ(y)) of ϕ. By the definition of the guarded
quantifier depth of predicate symbols, gqd(Qψ) = gqd(Qφ) + 1. On the other hand,
dp(Qφ( f (s))) = dp(Qψ(s)) + 1. If Qψ(s) satisfies property (i), that is, dp(Qψ(s)) ≤
gqd(ϕ)− gqd(Qψ)+ 1, then also

dp(Qφ( f (s))) = dp(Qψ(s))+ 1
≤ gqd(ϕ)− gqd(Qψ)+ 2 = gqd(ϕ)− gqd(Qφ)+ 1.
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Thus, property (i) also holds forQφ( f (s)). Concerning property (ii) we observe that
gqd(Qψ) > gqd(Qφ) implies

ν(Qψ(s)) = (gqd(Qψ),dp(Qψ(s)), Qψ) = (gqd(Qφ)+ 1,dp(Qψ(s)), Qψ)

� (gqd(Qφ),dp(Qψ(s))+ 1, Qφ) = (gqd(Qφ),dp(Qφ( f (s))), Qφ)

= ν(Qφ( f (s))).

Therefore, property (ii) holds for this inference step.
The argument for inference steps with negative premises of the form¬Qψ(x) ∨

G(x, f (x)) is similar to the previous case. Let the positive premise beQψ(s) with term
depthdt . Note thatG is not a predicate symbol introduced during the structure transfor-
mation ofϕ. So gqd(G) = 0. Furthermore, the definitional clause under consideration has
been introduced for an existentially quantified subformula ofϕ. Thus, gqd(Qψ) ≥ 1. If
Qψ(s) satisfies property (i), that is, dp(Qψ(s)) ≤ gqd(ϕ)− gqd(Qψ)+ 1, then

dp(G(s, f (s))) = dp(Qψ(s))+ 1 ≤ gqd(ϕ)− gqd(Qψ)+ 2
≤ gqd(ϕ)+ 1 = gqd(ϕ)− gqd(G)+ 1.

Obviously, gqd(Qψ) > gqd(G) = 0. It follows that

ν(Qψ(s)) = (gqd(Qψ),dp(Qψ(s)), Qψ)

� (0,dp(Qψ(s))+ 1,G) = (gqd(G),dp(G(s, f (s))),G).
Therefore, property (ii) holds for this inference step.

Finally, consider the derivation ofQφ(t) from unit clausesQψ(s), G(s, t), and the
definitional clause¬Qψ(x) ∨ ¬G(x, y) ∨ Qφ(y). It follows from Lemma 4.2(3) that
dp(G(s, t)) ≤ dp(Qψ(s)) + 1. So, dpQφ(t) ≤ dp(Qψ(s)) + 1. Since the definitional
clause under consideration has been introduced for a universally quantified subformula of
ϕ we have that gqd(Qψ) = gqd(Qφ)+ 1. If Qψ(s) satisfies property (i), then

dp(Qφ(t)) ≤ dp(Qψ(s))+ 1 ≤ gqd(ϕ)− gqd(Qψ)+ 2 = gqd(ϕ)− gqd(Qφ)+ 1.

Concerning the complexity ofν(Qφ(t)) andν(Qψ(s)) we obtain

ν(Qψ(s)) = (gqd(Qψ),dp(Qψ(s)), Qψ) = (gqd(Qφ)+ 1,dp(Qψ(s)), Qψ)

� (gqd(Qφ),dp(Qφ(t)), Qφ) = ν(Qφ(t)).

This concludes the proof of properties (i) and (ii) for all inference steps and clauses in an
arbitrary derivation fromN. �

The considerations in the proof allow the following additional observations:

• If G is a predicate symbol of a guard atom inϕ, and{Qψ1, . . . , Qψn } is the set of all
predicate symbols such thatN contains a clause of the form¬Qψi (x) ∨ G(x, f (x))
or¬Qψi (x)∨¬G(x, y)∨Qφ(y), then the term depth of any bi-nodeG(s, t) occurring
in a derivation fromN is bounded from above by max({gqd(ϕ) − gqd(Qψi ) + 1 |
1 ≤ i ≤ n}).

• If a uni-nodeQψ(s) with term depthdt is used as a premise in an inference step
with a uni-node conclusionQφ(t) with term depth greater thandt , then gqd(Qψ) >

gqd(Qφ).
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It is interesting to compareLemma 4.4with the corresponding results for the modal
logic K(m)(∩,∪,�) in de Nivelle et al.(2000) andHustadt and Schmidt(2000b). Theorem
7.3 in de Nivelle et al.(2000) states that the depth of any clause derived from the
translation of aK(m)(∩,∪,�) formulaϑ in negation normal form using resolution with
maximal selection (or hyperresolution) is bounded by the number of diamond (existential)
subformulae inϑ . Because the clausal form of the particular translation ofK(m)(∩,∪,�)
formulae are instances of GF1− clauses, one might expect, in analogy, that the term depth
of any clause in a derivation from Cls(Def�(ϕ)) for a GF1− formulaϕ in negation normal
form is bounded by the number of existentially quantified subformulae inϕ. The following
example shows that this bound is too tight.

ϕ = R(x, x) ∧ ∀y(R(x, y)→ ∀z(R(y, z)→ ∃u(R(z,u) ∧ P(u)))).

The corresponding clause setN contains the following clauses:

(1) Q0(a)
(2) ¬Q0(x) ∨ R(x, x)
(3) ¬Q0(x) ∨ ¬R(x, y) ∨ Q1(y)
(4) ¬Q1(x) ∨ ¬R(x, y) ∨ Q2(y)
(5) ¬Q2(x) ∨ R(x, f (x))
(6) ¬Q2(x) ∨ P( f (x)).

We obtain the following derivation byRhyp from N.

[(1), (2)] (7) R(a,a)
[(1), (7), (3)] (8) Q1(a)
[(8), (7), (4)] (9) Q2(a)
[(9), (5)] (10) R(a, f (a))
[(9), (6)] (11) P( f (a))
[(1), (10), (3)] (12) Q1( f (a))
[(8), (10), (4)] (13) Q2( f (a))
[(13), (5)] (14) R( f (a), f ( f (a)))
[(13), (6)] (15) P( f ( f (a)))
[(12), (14), (4)] (16) Q2( f ( f (a)))
[(16), (5)] (17) R( f ( f (a)), f ( f ( f (a))))
[(16), (6)] (18) P( f ( f ( f (a)))).

Here, [(1), (7), (3)] denotes that the negative premise (3) is resolved with the two positive
premises (1) and (7).

The guarded quantifier depth ofϕ is 3. ByLemma 4.4the term depth of clauses in any
derivation fromN is bounded by gqd(ϕ)+ 1 = 4. This is obviously the case. However,ϕ
contains only one existentially quantified subformula. A tighter bound on the term depth
of derived clauses based solely on the number of existentially quantified subformulae of a
GF1− formula is not possible.

The example formulaϕ also shows that GF1− allows the formulation of a form of
‘local reflexivity’ which means it shares some properties with the fragment of first-logic
corresponding to the propositional modal logicKT, which is characterized by the class
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of reflexive frames. In fact,Lemma 4.4describes one of these properties, namely, that the
term depth of derived clauses is linear in the number of universal and existential quantifiers
in the input formula.

Lemma 4.5. Letϕ be a formula inGF1− and let N be the corresponding clause set. The
number of clauses derivable from N is finitely bounded.

Proof. By Lemma 4.2(2) all derived clauses are ground clauses. ByLemma 4.4there
is an upper bound on the term depth of these derived clauses. Since there are only
boundedly many ground clauses up to a given term depth, the derivation must eventually
terminate. �

Now, we can state the main theorem of this section.

Theorem 4.3. Letϕ be aGF1− formula and let N be the corresponding clause set. Then:

1. AnyRhyp derivation from N terminates.

2. If T is a fair derivation from N then (i) If N(= N0), N1, . . . is a path with limit N∞,
N∞ is saturated up to redundancy. (ii)ϕ is satisfiable if and only if there exists a path
in T with limit N∞ such that N∞ is satisfiable. (iii)ϕ is unsatisfiable if and only if
for every path N(= N0), N1, . . . the clause set

⋃
j Nj contains the empty clause.

Proof. This is a consequence ofLemmas 4.1–4.5, Corollary 3.1andTheorems 3.2, 4.1
and4.2. �

The decision procedure we have presented looks very similar to the decision procedures
based on refinements of resolution using maximal selection of negative literals for
expressive modal logics and description logics, which are described inde Nivelle et al.
(2000) andHustadt and Schmidt(1999, 2000a,b). The main difference is the way in which
we prove termination. In the proofs ofde Nivelle et al.(2000), for instance, an ordering
is defined under which all conclusions of inference steps are smaller than every premise,
while here this is only true for uni-node premises (with introduced predicate symbols). In
the case of guarded formulae an ordering on all clauses would not work because predicate
symbols can occur in guard and non-guard positions and consequently such an ordering
would be cyclic. In addition, we cannot rely solely on the well-foundedness property of the
ordering on the complexity measure, but also have to exploit the type of the conclusions
obtained in the derivation. The proofs in this section extend to the generalizations of GF1−
discussed in theSection 8.

5. Model building for GF1−−−

It is well-known that hyperresolution, like tableaux methods, can be used to construct
models for satisfiable formulae (Fermüller et al., 2001). In the present application ifRhyp

terminates without having produced the empty clause then it takes no extra effort to
construct a model. A model is given by the set of ground unit clauses in an open branch of
the derivation tree.
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Theorem 5.1. Assume thatϕ is a formula inGF1−. Let N be the clausal form ofDef�(ϕ),
and let N∞ denote the saturation of N byRhyp. Let H be the set of positive ground unit
clauses in N∞. If N∞ does not contain the empty clause, then H is a model of N∞ and N.

Proof. In order to prove thatH is a model ofN∞ we have to show that every ground
instance of a clause inN∞ is true inH .

The maximally split conclusions of the resolution derivation leading toN∞ are positive
ground unit clauses byLemma 4.2, and are true inH , because by definitionH contains
the positive ground unit clauses inN∞. The remaining clauses inN∞ are the definitional
clauses which were already present inN. We consider a ground instanceCσ of such a
definitional clause.Cσ has the form¬A1σ ∨ · · · ∨¬Anσ ∨ B1σ ∨ · · · ∨ Bmσ , with n > 0
andm ≥ 0.

Case 1. Assume that there exists ani , 1 ≤ i ≤ n, such thatAiσ /∈ H . Then¬Aiσ is true
in H and, therefore,Cσ is true inH .

Case 2. Assume thatAiσ ∈ H for all i , 1 ≤ i ≤ n. We have to show that there exists a
j , 1 ≤ j ≤ m, such thatBj σ ∈ H . SinceAiσ ∈ H we have thatAiσ ∈ N∞ for everyi ,
1 ≤ i ≤ n. Thus a hyperresolution inference ofC with positive premisesA1σ, . . . , Anσ is
possible. Since each clause inN is range restricted, the conclusionB1σ ∨· · ·∨ Bmσ of the
inference step is ground. Due to the application of splitting one of theBj σ , 1 ≤ j ≤ m,
has been added to the clausal set. As we do not use any form of redundancy elimination, a
clause that is once generated is never deleted. (It is straightforward to see that, even if we
allow subsumption or other forms of redundancy elimination,Bjσ still persists.) So,Bj σ

is an element ofN∞ and, therefore, also an element ofH . ThusCσ is true inH .

Therefore, we have proved thatH is a model ofN andN∞. �

Corollary 5.1. A finite model for every satisfiable formula inGF1− can be constructed on
the basis ofRhyp.

Proof. Let ϕ be a satisfiable formula in GF1− with free variablesx1, . . . , xk. Let N be
the clausal form of Def�(ϕ), let N∞ denote the saturation ofN by Rhyp, and letH be the
Herbrand model ofN∞. Furthermore, leta1, . . . ,ak be the Skolem constants introduced
for the free variables ofϕ in the transformation ofϕ to clausal form. We construct an
interpretationM as follows. The domainM of M contains all ground terms inN∞. There
are only finitely many ground terms inN∞, thus the domainM is finite. Note thatϕ
contains no constant or function symbols. The interpretationPI of a predicate symbol of
arity n is defined by(t1, . . . , tn) ∈ PI iff P(t1, . . . , tn) ∈ N∞ for all t1, . . . , tn in M.

Next we prove that there exists an assignmentg such thatM, g � ϕ. The proof is by
induction over the structure ofϕ starting with its atomic subformulae. We show that ifψ
is a subformula ofϕ with free variablesx1, . . . , xn and there exist termst1, . . . , tn such
that Qψ(t1, . . . , tn) is in N∞, thenM, g � ψ for any assignmentg with g(xi ) = ti , for
everyi , 1 ≤ i ≤ n. Then, sinceQϕ(a1, . . . ,ak) is in N∞, we know thatM, g � ϕ for the
assignmentg with g(xi ) = ai , for everyk, 1 ≤ i ≤ k.

Base case. Consider an atomic subformulaψ = P(x1, . . . , xn). Assume that there is a
ground unit clauseP(t1, . . . , tn) in N∞, wheret1, . . . , tn are ground terms. By construction
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t1, . . . , tn are also elements ofM and by definition ofPI , (t1, . . . , tn) ∈ PI . Thus,
M, g � ψ for anyg with g(xi ) = ti , 1 ≤ i ≤ n.

Supposeψ has the form¬α with free variablesx1, . . . , xn. Sinceϕ is in negation normal
form, α is an atomic formulaP(x1, . . . , xn). We assume that there are termst1, . . . , tn
such thatQψ(t1, . . . , tn) ∈ N∞. As a consequence, we have that¬Qψ(x1, . . . , xn) ∨
¬Qα(x1, . . . , xn) ∈ N andQψ(t1, . . . , tn) ∈ N∞. ThenQα(t1, . . . , tn) is not an element
of N∞, since otherwise we would be able to deduce the empty clause. So, by definition of
PI , (t1, . . . , tn) /∈ PI . Let g be any assignment withg(xi ) = ti for all i , 1 ≤ i ≤ n. Then,
M, g � α and thereforeM, g � ψ.

Inductive hypothesis. If ω is a strict subformula of some subformulaψ of ϕ with free
variablesx1, . . . , xn and there exist termst1, . . . , tn such thatQω(t1, . . . , tn) is in N∞,
thenM, g � ω for any assignmentg with g(xi ) = ti , for everyi , 1≤ i ≤ n.

Inductive step. In the inductive step we look at a subformulaψ of ϕ with free variables
x1, . . . , xn. We assume there exist termst1, . . . , tn such thatQψ(t1, . . . , tn) is in N∞. We
want to show thatM, g � ψ for any assignmentg with g(xi ) = ti , for everyi , 1 ≤ i ≤ n.

Case 1. Supposeψ has the formα1 ∧ α2. Then

¬Qψ(z1, . . . , zn) ∨ Qα1(x1, . . . , xm) ∈ N
¬Qψ(z1, . . . , zn) ∨ Qα2(y1, . . . , yk) ∈ N

Qψ(t1, . . . , tn) ∈ N∞
where{z1, . . . , zn} = {x1, . . . , xm} ∪ {y1, . . . , yk}. We assume without loss of generality
that z1, . . . , zn, x1, . . . , xm, and y1, . . . , yk are the free variables ofψ, α1, and α2,
respectively. Letσ be the substitution{z1/t1, . . . , zn/tn}. Then alsoQα1(x1, . . . , xm)σ and
Qα2(y1, . . . , yk)σ are inN∞, sinceN∞ is saturated underRhyp. Let g1 be any assignment
with g1(xi ) = xiσ for everyi , 1 ≤ i ≤ m and letg2 be any assignment withg2(yj ) = yj σ

for every j , 1 ≤ j ≤ k. By the inductive hypothesis,M, g1 � α1 andM, g2 � α2. Now, let
g be any assignment withg(zi ) = zi σ = ti , for everyi , 1 ≤ i ≤ n. Note thatg coincides
with g1 andg2 on the free variables ofα1 andα2, respectively. Thus,M, g � α1 ∧ α and
M, g � ψ.

Case 2. The case thatψ has the formβ1 ∨ β2 is analogous to the previous case.

Case 3. Consider a universally quantified subformulaψ = ∀ y(G(x, y) → φ(y)). We
assume there are termst1, . . . , tn such thatQψ(t1, . . . , tn) is in N∞. N and N∞ also
contains

¬Qϕ(x1, . . . , xn) ∨ ¬G(x1, . . . , xn, y1, . . . , ym) ∨ Qφ(y1, . . . , ym).

Let s1, . . . , sm be arbitrary elements ofM. First, assume that the ground unit clause
G(t1, . . . , tn, s1, . . . , sm) is in N∞. Then, we can deriveQφ(s1, . . . , sm). By the inductive
hypothesis, any assignmenth with h(yj ) = sj for every j , 1 ≤ j ≤ m, M,h � φ holds.

In addition, forg′′ = h[x1,...,xn]
[t1,...,tn] , we haveM, g′′ � G(x, y) as well asM, g′′ � φ. Again,

M, g′′ � G(x, y) → φ(y). Second, assume thatG(t1, . . . , tn, s1, . . . , sm) is not in N∞.
ThenM, g′′ � G(x1, . . . , xn, y1, . . . , ym). So,M, g′′ � G(x, y) → φ(y). Taking both
cases together we see that for any assignmentg with g(xi ) = ti for everyi , 1 ≤ i ≤ n,
M, g � G(x, y)→ φ(y) and, therefore,M, g � ψ.
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Case 4. Consider an existentially quantified subformulaψ = ∃y(G(x, y) ∧ φ(y)). We
assume that there are termst1, . . . , tn such thatQψ(t1, . . . , tn) ∈ N∞. N andN∞ contain
also the definitional clauses forQψ , that is

¬Qψ(x1, . . . , xn) ∨ G(x, f (x)) ∈ N and
¬Qψ(x1, . . . , xn) ∨ Qφ( f (x)) ∈ N.

SinceN∞ is saturated underRhyp, also

Qφ( f1(t1, . . . , tn), . . . , fm(t1, . . . , tn)) and
G(t1, . . . , tn, f1(t1, . . . , tn), . . . , fm(t1, . . . , tn))

are inN∞. Let g be any assignment withg(xi ) = ti for everyi , 1 ≤ i ≤ ti . Furthermore,
let g′ be g[y1,...,ym]

[ f1(t1,...,tn),..., fm(t1,...,tn)]. By the inductive hypothesis,M, g′ � Qφ(y) and
M, g′ � G(x, y). Thus,M, g � ∃yG(x, y) ∧ Qφ(y) and, therefore,M, g � ψ. �

6. Some upper bounds

By considering the ground constraints inRhyp derivation trees it is possible to estimate
the maximal computational space requirements for derivations inRhyp and to determine
the maximal size of Herbrand models.

Lemma 6.1. Letϕ be aGF1− formula and N the corresponding set of clauses. LetΣ be
the signature of N, let s be the size ofΣ , let a be the maximum of (i) the maximal arity
of function symbols in N and (ii) the maximal arity of predicate symbols in N. The space
requirements of uni-node or bi-node clauses up to term depth d overΣ is of the order of
magnitude adsdad

.

Proof. In a similar way as inde Nivelle and de Rijke(2003) we calculate the number of
significant symbols (i.e. all symbols other than brackets and ’,’) of each uni-node depending
on its term depth. Leta1 and a2 be the maximal arity of any of the function symbols
and any of the predicate symbols, respectively. Then by definitiona = max(a1,a2). By
assumption the maximal number of significant symbols of a uni-node clause of term depth
1 is 1+ a2 ≤ 1+ a. The maximal number of significant symbols of a uni-node clause of a
term depth 2 is 1+a2(1+a1) ≤ 1+a+a2. The maximal size of a uni-node clause of term
depth 3 is 1+a2(1+a1(1+a1)) ≤ 1+a(1+a+a2) ≤ 1+a+a2+a3. Thus the maximal
size of a uni-node of term depthd is smaller than 1+· · ·+ad = (ad+1−1)/(a−1) ≤ d·ad,
whena > 1. Then the number of uni-nodes of depthd can be estimated bysd·ad

, wheres
stands for the total number of function symbols plus the total number of constant symbols
plus the total number of predicate symbols. Then the space requirements for uni-nodes up
to term depthd over a finite signature of sizes is bounded bysd·ad · ad.

The size of the bi-node clauses depends on the number of free variables of each
subformula. Letm stand for the maximal number of free variables of each quantified
subformula ofϕ. Then each bi-node clause of term-depthd consists ofm uni-nodes of
term-depthd − 1 anda2 − m uni-nodes of term-depthd. Hence the maximal number of
significant symbols of a bi-node clause over a signature of a bounded sizes is bounded by
sd·ad + s(d−1)·ad−1

, which in turn is bounded by 2sd·ad
. �
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Because the maximal term depth in derivations is linear in the sizen of ϕ (Lemma 4.4),
the space requirements of uni-node or bi-node clauses overΣ is of the order of magnitude
ansnan

.

Lemma 6.2. Letϕ be aGF1− formula and N the corresponding set of clauses. Let s and
a be as in the previous lemma. Then the maximal size of the model ofϕ, constructed by
the conclusions of theRhyp derivation, is of the order of magnitude ansnan

, where n is the
length ofϕ.

Proof. The model of any satisfiable GF1− formulaϕ is constructed from the conclusions
in theRhyp derivation. We estimate the size of the model depending on the maximal number
of ground unit clauses which could be in it. The result follows then byLemmas 4.4and
6.1. �

Therefore:

Theorem 6.1. Letϕ be a satisfiable formula inGF1−.

1. A finite model forϕ can be constructed on the basis ofRhyp.

2. The size of the model is at most double exponential in the length ofϕ.

In Georgieva et al.(2001) we consider complexity issues in more depth. More
specifically, we describe a polynomial space decision procedure of optimal worst-case
space and time complexity for GF1−. We also consider the problem of minimal Herbrand
model generation for GF1−, discuss various approaches to this problem and compare their
space complexities.

7. Semantic tableaux versus RhypRhypRhyp

Next, we investigate the relationship between resolution and tableaux proof systems for
GF1−. We describe a tableaux proof system for GF1−, which is abstracted fromLutz et al.
(1999), and show thatRhyp polynomially simulates the tableaux proof system for GF1−,
and vice versa.

Given two proof systemsA andB, the systemA polynomially simulatesthe proof
systemB if there is a functiong, computable in polynomial time, that maps proofs inB for
any given formulaϕ to proofs inA for ϕ. A systemA polynomially simulates derivations
(as well as proofs) of a systemB if there is a functiong, computable in polynomial time,
such that for any formulaϕ, g maps derivations fromϕ in B to derivations inA fromϕ (de
Nivelle et al., 2000).

For a GF1− formula ϕ in negation normal form with free variablesx = x1, . . . , xn

let ϕ{x/a}, wherea = a1, . . . ,an, denote the formula obtained fromϕ by replacing all
occurrences ofxi by ai for everyi , 1 ≤ i ≤ n. A derivation forϕ in the tableaux method
of Lutz et al.(1999) is a finitely branching treeT with root {ϕ{x/a}}. In the following we
write X, ϕ instead ofX ∪ {ϕ}. The tree is expanded by adding one or two successor nodes,
consisting of sets of formulae, to one of the clash-free leaf nodes of the tree according to the
tableaux rules described below. A leaf node contains aclashiff it contains the formula⊥,
otherwise it isclash-free. A leaf node iscompleteiff no successor nodes can be added to
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it by one of the tableaux rules. The derivation terminates if either all leaf nodes contain a
clash or there is a complete leaf node.

Derivation of falsum:
X, φ,¬φ

X, φ,¬φ,⊥

Conjunction:
X, φ ∧ ψ

X, φ ∧ ψ,φ,ψ
provided that{φ,ψ} !⊆ X.

Disjunction:
X, φ ∨ ψ

X, φ ∨ ψ,φ | X, φ ∨ ψ,ψ
provided that{φ,ψ} ∩ X = ∅.

Existential quantification:
X, ∃y(G(a, y) ∧ φ(y))

X, ∃y(G(a, y) ∧ φ(y)),G(a,b), φ(y/b)
provided b is a sequence of fresh constants and there are no constantsc such that
{G(a, c), φ(y/c)} ⊆ X.

Universal quantification:
X,∀y(G(a, y)→ φ(y)),G(a,b)

X,∀y(G(a, y)→ φ(y)),G(a,b), φ(y/b)
provided thatφ(y/b) !∈ X.

Theorem 7.1 (Lutz et al., 1999). A formulaϕ in GF1− is satisfiable iff the rules can be
used to construct a tableaux which contains a branchB such that the endpoint ofB is a
complete and clash-free set of formulae.

Theorem 7.2 (Lutz et al., 1999). For a signature of bounded arity the tableaux algorithm
can be implemented to run in polynomial space.

Before proving the simulation results formally, we illustrate the idea by an example
showing the tableaux and resolution derivations for the GF1− formula

ϕ = ∀x(r (x, y, z)→ p(x)) ∧ ∃x(r (x, y, z) ∧ ¬p(x)).

Tableaux derivation forϕ:

X1 = {∀x(r (x,a,b)→ p(x)) ∧ ∃x(r (x,a,b)∧ ¬p(x))}
X2 = X1 ∪ {∀x(r (x,a,b)→ p(x)), ∃x(r (x,a,b)∧ ¬p(x))}
X3 = X2 ∪ {r (c,a,b),¬p(c)}
X4 = X3 ∪ {p(c)}
X5 = X4 ∪ {⊥}.

The endpoint of the branch contains a clash. Since no alternative tableau can be constructed
for X1, the original formula is unsatisfiable.
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The corresponding resolution derivation starts from the clausal setN, obtained fromϕ
after a renaming of each non-atomic subformula with the exception of implications and
conjunctions immediately below quantifiers.

Def�(ϕ) = Q∧(y, z)∧
∀y, z(Q∧(y, z)→ (Q∀(y, z) ∧ Q∃(y, z)))∧
∀y, z(Q∀(y, z)→ ∀x(r (x, y, z)→ p(x)))∧
∀y, z(Q∃(y, z)→ ∃x(r (x, y, z) ∧ ¬p(x)))

N = {Q∧(a,b),
¬Q∧(y, z) ∨ Q∀(y, z),
¬Q∧(y, z) ∨ Q∃(y, z),
¬Q∀(y, z) ∨ ¬r (x, y, z)∨ p(x),
¬Q∃(y, z) ∨ r ( f (y, z), y, z),
¬Q∃(y, z) ∨ ¬p( f (y, z))}.

Resolution derivation forϕ:

N1 = N
N2 = N1 ∪ {Q∀(a,b)}
N3 = N2 ∪ {Q∃(a,b)}
N4 = N3 ∪ {r ( f (a,b),a,b)}
N5 = N4 ∪ {p( f (a,b))}
N6 = N5 ∪ {⊥}.

The clause setN6 contains the empty clause. Since the branch on whichN6 occurs is the
only one in our derivation, the formulaϕ is unsatisfiable.

The correspondence between the tableaux derivation and the resolution derivation is
straightforward. Letg be the function that maps the constantc in the tableaux derivation
to the term f (a,b) in the resolution derivation. All other terms in the tableaux derivation
are mapped to themselves. Furthermore,g maps subformulae ofϕ to predicate symbols in
N such thatg(P(x)) = P if P(x) is atomic, andg(ψ) = Qψ otherwise. Then

Q∧(a,b) = g(ϕ)(x, y){x/a, y/b}
Q∃(a,b) = g(∃x(r (x, y, z)∧ ¬p(x)))(y, z){y/a, z/b}
Q∀(a,b) = g(∀x(r (x, y, z)→ p(x)))(y, z){y/a, z/b}
r ( f (a,b),a,b) = g(r (x, y, z))(x, y, z){x/g(c), y/a, z/b}
p( f (a,b)) = g(p(x))(x){x/g(c)}.

For every formulaϑ in the tableaux derivation there is a ground unit clauseC generated in
theRhyp derivation such thatg(ϑ)(x)δ = C, wherex are the free variables ofC andδ is a
suitable substitution.

Extending the simulation results ofde Nivelle et al.(2000) andHustadt and Schmidt
(2000a) we prove that:

Theorem 7.3. There is a polynomial simulation of the tableaux system ofLutzet al. (1999)
for GF1− byRhyp.

Proof. We show thatRhyp simulates the tableaux derivation stepwise. Letϕ be a formula
in GF1− and let (X1, . . . , Xn) be a branch in the tableaux derivation starting fromϕ.
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Then there exists a branch(N1, . . . , Nk) in the Rhyp derivation for some 2n ≥ k ≥ n
starting fromN and a functiong such that for every formulaϑ(x)γ in Xn whereϑ(x) is a
subformula ofϕ andγ is a substitution which maps the free variablesx of ϑ to constants
there exists a ground unit clauseg(ϑ)(x)δ in Nk whereδ(xi ) = g(γ (xi )) for everyxi in x,
with g(ϑ(x)γ ) = g(ϑ)(x)δ.

The proof is by induction onn, which stands for the length of the branch in the tableaux
derivation.

Base case. If n = 1 then the tableaux consists of the single nodeX1 = {ϕγ } with
γ = {x/a}. We assume without loss of generality that in the clausal form transformation,
we have used the same constant symbolsa to instantiate the free variables in Def�(ϕ).
Thus, the functiong maps these constant symbols to themselves. The clause setN =
Cls(Def�(ϕ)) contains one ground clause, namelyQϕ(a). We letk = 1 andN1 = N, and
g mapsϕ to Qϕ .

Inductive step. Suppose that the result holds for a derivation of lengthn, that is, if
(X1, . . . , Xn) is a branch in the tableaux derivation fromϕ, then there exists a branch
(N1, . . . , Nk) in theRhyp derivation for some 2n ≥ k ≥ n from N and a functiong such
that for every formulaϑ(x)γ in Xn, whereϑ(x) is a subformula ofϕ andγ is a substitution
which maps the free variablesx of ϑ to constants there exists a ground unit clauseg(ϑ)(x)δ
in Nk, whereδ(xi ) = g(γ (xi )) for everyxi in x, with g(ϑ(x)γ ) = g(ϑ)(x)δ.

We show that the claim holds also for derivations of lengthn + 1. The proof is by case
analysis of the tableaux rule applied to the endpointXn of the branch.

Case 1. Suppose the conjunction rule is applied to the formulaϑ(z)γ = φγ1 ∧ψγ2 in Xn

whereγ1 andγ2 map the free variables ofφ andψ to constants. The branch is extended by
the successor nodeXn+1 = Xn∪{φγ1, ψγ2}. By the inductive hypothesis there is a branch
in theRhyp derivation with endpointNk and a functiong such that there exists a ground
unit clauseg(ϑ)(z)δ with g(ϑ)(z)γ = g(ϑ)(z)δ, whereδ(zi ) = g(γ (zi )) for everyzi in z.
Sinceϑ is a non-atomic formula,Nk also contains the definitional clauses¬Qϑ (z)∨Qφ(x)
and¬Qϑ (z)∨Qψ (y). Then the conjunction rule is simulated by two hyperresolution steps
between the ground clauseQϑ (z)δ and these two clauses, producing the ground resolvents
Qφ(x)δ andQψ(y)δ. Next, extendg so that it mapsφ to Qφ andψ to Qψ .

Case 2. Suppose the disjunction rule is applied to the formulaϑ(z)γ = φγ1 ∨ ψγ2. An
application of the disjunction rule leads to two successor nodes one of which is chosen to
extend the branch under consideration. Without loss of generality, letXn+1 = Xn ∪ {φγ1}.
This case is analogous to the previous one. The disjunction rule is simulated by one
hyperresolution step followed by an application of the splitting rule. First, we derive the
ground clause(Qφ(x) ∨ Qψ(y))δ. Second, we replace this clause byQφ(x)δ using the
splitting rule. We extendg to mapφ to Qφ .

Case 3. Suppose the existential quantification rule is applied to the formulaϑ(x)γ =
∃y(G(x, y) ∧ φ(y))γ with x = x1, . . . , xm andy = y1, . . . , yn. Let b be a sequence ofn
fresh constants and letγ ′(xi ) = γ (xi ) for everyi , 1 ≤ i ≤ m, andγ ′(yj ) = bj for every j ,
1 ≤ j ≤ n. ThenXn+1 is equal toXn ∪ {φ(y)γ ′,G(x, y)γ ′}. By the inductive hypothesis
there is a ground clauseg(ϑ)(x)δ in our clause set corresponding toϑ(x)γ . The clause set
contains the definitional clauses¬Qϑ(x)∨G(x, f (x)) and¬Qϑ(x)∨Qφ( f (x)). With two
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hyperresolution inference steps we derive ground clausesG(x, f (x))δ andQφ( f (x))δ. We
extendg to mapG to itself andφ to Qφ . Note that thebi are fresh constants, that is,g(bi ) is
not yet defined. However, for each constantbi there is a corresponding Skolem termfi (x)δ
in both clauses we have derived. So, we define for everyi , 1 ≤ i ≤ n, g(bi ) = fi (x)δ. It
is straightforward to see that this definition yields the desired effect.

Case 4. Suppose the universal quantification rule is applied to the two formulaeϑ(x)γ1 =
∀y(G(x, y) → φ(y))γ1 andG(x, y)γ2 whereγ1(xi ) = γ2(xi ) for every xi in x. Then
Xn+1 = Xn ∪ {φ(y)γ2}. Again, by the inductive hypothesis, we have ground clauses
g(ϑ)(y)δ1 andg(G)(x, y)δ2 in Nk. By the construction ofg, we haveg(ϑ) = Qϑ and
g(G) = G. The clause setNk also contains the clause¬Qϕ(x) ∨ ¬G(x, y) ∨ Qφ(y).
With a single hyperresolution inference step we deriveQφ(y)δ2. We extendg to mapφ
to Qφ .

Case 5. An application of the derivation of the ‘falsum rule’ toXn containing formulae
φ(x)γ and¬φ(y)γ ′ leads toXn+1 = Xn ∪ {⊥}. Note thatφ(x)γ = φ(y)γ ′. By the
inductive hypothesis we have already derived ground clausesg(φ)(x)δ and g(¬φ)(y)δ′
corresponding toφ(x)γ and¬φ(y)γ ′, respectively. Note thatxδ = yδ′. Sinceϕ is in
negation normal form,φ(x) has to be an atomic formulaP(x). Thus,g(φ)(x)δ = P(x)δ.
The clause set under consideration contains a definitional clause¬Q¬φ(y) ∨ ¬P(y). A
single hyperresolution step with this clause,g(¬φ)(y)δ′ = Q¬φ(y)δ′ and g(φ)(x)δ =
P(x)δ leads to the derivation of the empty clause.

Thus we have proved that each application of a tableaux rule can be simulated by
one or two inference steps ofRhyp. Therefore, every tableaux derivation for GF1− can
be polynomially mapped to a derivation byRhyp. �

Similarly, theRhyp rules can be identified and reformulated as tableaux rules, using the
inverse of the mappingg, cf. Fig. 2.

Theorem 7.4. There is a polynomial simulation ofRhyp for GF1− by a moderate extension
of the tableaux system ofLutzet al. (1999).

Proof. It is necessary to add a simplification rule to the tableaux calculus which simulates
positive factoring. �

8. Generalization

From the analysis in the previous sections, particularly the investigation of the behaviour
of Rhyp on GF1− clauses inSection 4, it is not difficult to observe that the results can
be strengthened to cover a larger class than GF1−, as long as the inferred clauses have
the same syntactic structure as before, i.e. are uni-nodes and bi-nodes, and the grouping
restriction is preserved. In this section we mention some ways of extending GF1− and its
corresponding clausal class without losing the termination property of hyperresolution.

According to the definition of GF1−, the quantified variables in the formulae must be
exactly the free variables of non-guard formulae. Hyperresolution is a decision procedure
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Fig. 2. Simulation of hyperresolution by tableaux.

for a more general fragment, defined so that the quantified sequences of variables in the
non-guard formulae are a subset of the quantified variables.

∃y(G(x, y) ∧ φ(z)) ∀ y(G(x, y)→ φ(z))

wherez ⊆ y. The resulting clausal forms are

¬Q∀(x) ∨ ¬G(x, y) ∨ Qφ(z) wherez ⊆ y
¬Q∃(x) ∨ G(x, f (x)) ¬Q∃(x) ∨ Qφ(t) wheret ⊆ f (x).

If z is the empty sequence thenQφ is a propositional symbol. In general, this means thatφ

is a closed subformula, but due to restriction (iv) in the definition of GF1−, namely, that the
variable sequencesx andy may not be empty, it follows thatφ is a propositional formula.

The restriction in GF1− that a guard is a single atom can be relaxed. Certain complex
guards which may include negation can be allowed. If we consider what happens in a
hyperresolution inference step then it is not difficult to see that inferences with definitional
clauses like the following produce uni-node and bi-node conclusions (after splitting).

¬Q∀(x) ∨ ¬G0(x, y) ∨ (¬)G1(x1, y1) ∨ · · · ∨ (¬)Gn(xn, yn) ∨ Qφ(z)
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wherexi ⊆ x, yi ⊆ y (1 ≤ i ≤ n), x ∩ y = ∅ andz ⊆ y. An essential condition is that
each of the atomsGi (. . .), where 0≤ i ≤ n, satisfy the grouping restriction (as suggested
by the notation) and the clause includes at least one guard¬G0(x, y). This ensures that the
conclusion is a ground clause. On the first-order level, this means we can allow formulae
of the form:

∀ y((G0(x, y) ∧ (¬)G1(x1, y1) ∧ · · · ∧ (¬)Gn(xn, yn))→ φ(z)),

wherexi ⊆ x, yi ⊆ y (1 ≤ i ≤ n), x ∩ y = ∅ andz ⊆ y. Note that due to the restrictions
of the positions of quantified and free variables in GF1− the equivalent formula does not
belong to the fragment, although it is a guarded formula.

∀ y((G0(x, y)→ ((¬)G1(x1, y1)→ (· · · → ((¬)Gn(xn, yn)→ φ(z)) . . .)))).

Disjunctions in the guard expression are permitted provided none of the atoms are negated:

∀ y((G1(x1, y1) ∨ · · · ∨ Gn(xn, yn))→ φ(z)),

wherex = x1 ∪ · · · ∪ xn, y = y1 ∪ · · · ∪ yn, x ∩ y = ∅, andz ⊆ y1 ∩ · · · ∩ yn. The
corresponding clause set includes clauses of the following form:

¬Q∀(x) ∨ ¬Gi (xi , yi ) ∨ Qφ(z).

Such formulae fall outside the GF and the loosely GF.
As the introduced negative literal in a clause associated with an existentially quantified

formula contains all the variables of the clause we can be much more permitting in this
case:

∃y(F ∧ φ(z)),
where F is any Boolean combination of atomsG1(x1, y1), . . . ,Gn(xn, yn). Again, the
Gi (· · ·) are required to satisfy the grouping restriction. Clausification produces clauses of
the form:

¬Q∃(x) ∨ (¬)Gi1(xi1, fi1(x)) ∨ · · · ∨ (¬)Gim(xim, fim(x))
¬Q∃(x) ∨ Qφ(g(x)),

where 1≤ i j ≤ n for each 1≤ j ≤ m, andx = x1 ∪ · · · ∪ xn.
Other generalizations are conceivable, but this is the subject of ongoing work. At this

stage we have the following results.

Theorem 8.1. Let ϕ be a formula in the above extension ofGF1− and let N be the
corresponding clause set. Then:

1. AnyRhyp derivation from N terminates.
2. If T is a fair derivation from N then(i) If N(= N0), N1, . . . is a path with limit N∞,

N∞ is saturated up to redundancy.(ii) ϕ is satisfiable if and only if there exists a path
in T with limit N∞ such that N∞ is satisfiable.(iii) ϕ is unsatisfiable if and only if
for every path N(= N0), N1, . . . the clause set

⋃
j Nj contains the empty clause.

Proof. Termination follows fromTheorem 4.3, since all derived clauses from the formulae
in the extensions of GF1− by hyperresolution with splitting are either uni-nodes or bi-
nodes. �
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Theorem 8.2. Let ϕ be a satisfiable formula in the above extension. A finite model forϕ

can be constructed on the basis ofRhyp.

Similarly, as in the previous section (andde Nivelle et al., 2000), macro inferences in
Rhyp (for N) can be identified and reformulated as tableaux inference rules, providing a
sound and complete tableaux decision procedure for the extension.

Finally we note:

Theorem 8.3. Hyperresolution and factoring without splitting is a sound, complete and
terminating inference procedure for the clausal classes associated withGF1− and the
considered extension.

Proof. Soundness and completeness is proved inRobinson(1965) if factoring includes
positive and negative factoring. Otherwise, soundness and completeness follows from
Bachmair and Ganzinger(1994, 2001). Termination follows fromTheorems 4.3and8.1,
since all derived clauses by hyperresolution without splitting are formed from uni-node
and bi-node literals appearing in the correspondingRhyp derivation tree. �

9. Related work

Related Calculi.Apart from the semantic tableaux calculus ofLutz et al.(1999), whose
relationship toRhyp was considered inSection 7, there are other inference calculi closely
related toRhyp. These include resolution with maximal selection of negative literals,
hypertableaux and its descendants. These connections are useful since, not only do they
present new perspectives, they also allow the interchange of search pruning mechanisms
between the different inference systems, and, more practically, make available a larger
array of provers for automating reasoning about problems formulated in GF1−.

We already mentioned resolution with maximal selection of negative literals (Bachmair
and Ganzinger, 2001) which has been used in a translation-based approach to modal
logic and description logic reasoning (de Nivelle et al., 2000; Hustadt and Schmidt,
1999, 2000a,b). Resolution with maximal selection of negative literals can be viewed as
hyperresolution with positive factoring (Bachmair and Ganzinger, 2001), and thus amounts
to the same asRhyp (with or without splitting).

Hypertableauxwas introduced byBaumgartner et al.(1996). Given a finite setN of
input clauses and a selection functionS, the hypertableaux procedure generates a literal
tree and at each stage of the derivation every open branch is a partial representation of a
potential model forN. Initially the hypertableaux consists of a single node marked open.
In subsequent steps a hypertableaux is obtained from a literal treeT by attaching child
nodes to the open branch selected byS in T . The child nodes are

A1σπ, . . . , Amσπ,¬B1σπ, . . . ,¬Bnσπ,

if (i) C = ¬B1 ∨ · · · ∨ ¬Bn ∨ A1 ∨ · · · Am is a clause fromN, 0 ≤ m,n, (ii) σ is a most
general substitution such that the minimal Herbrand model of the set of (universal closures
of the) literals in the selected branch satisfies (the universal closure of)B1σ ∧ · · · ∧ Bnσ ,
and (iii) π is a substitution forCσ such that the positive literals inCσπ do not share
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variables.C is called the extending clause, andπ is called a purifying substitution. The
new branches with negative leaves are immediately marked ‘closed’.

The close link between hypertableaux and hyperresolution with splitting is evident. A
drawback of hypertableaux is the guessing of the purifying substitution. For the clausal
classes considered in the previous sections all hyperresolvents are ground, which implies
that the purifying substitution is always the identity substitution. That is, for our application
hypertableaux and hyperresolution with splitting are essentially the same. Consequently,
the results forRhyp are also true for hypertableaux. Therefore, hypertableaux also provides
a decision procedure and model building procedure for GF1− and the considered extension.
(So do the descendants of hypertableaux (Baumgartner, 1998, 2000) for that matter.) For
practical considerations the link betweenRhyp and hypertableaux allows us to transfer
several improvements of hypertableaux discussed inBaumgartner et al.(1996). These
include factorization and level cut. Factorization has the effect that different branches
represent disjoint partial models. This can be achieved in our case by modification of the
splitting rule to: if the clause setN contains a ground clauseC1 ∨ C2 then the resolution
refutation is performed independently onN ∪ {C1} and N ∪ {¬C1,C2}. The level cut
improvement corresponds to branch condensing used in SPASS (Weidenbach, 2001) or
backjumping used in tableaux methods (Hustadt and Schmidt, 1998). (On the side we
remark that hyperresolution with splitting avoids the ‘memory management’ problem of
hyperresolution highlighted inBaumgartner et al., 1996.)

A resolution based decision procedure for the full GF without equality is presented
by de Nivelle and de Rijke(2003). Their method uses ordered resolution with a non-
liftable ordering that is incomplete in general, but complete for the GF. To deal with the
loosely GF without equality a combination of this method with a non-trivial modification of
hyperresolution is used.Ganzinger and de Nivelle(1999) describe a decision procedure for
the guarded and loosely GF with equality based on ordered paramodulation with selection.

Related Clausal Classes.We have already referred to the related clausal classes
associated with modal and description logics. A related class is the encoding in clausal
form of the extended multi-modal logicK(m)(∩,∪,�) (de Nivelle et al., 2000; Hustadt and
Schmidt, 2000b) and the corresponding description logicALBD (Hustadt and Schmidt,
2000a). This class is subsumed by the clausal class ofSection 3.

Other clausal classes decidable by hyperresolution are investigated inFermüller et al.
(2001) andLeitsch(1993) and include the classesPVD andKPOD. A set of clausesN
belong toPVD (positive variable dominated) if for every clauseC in N, the following
conditions hold: (i) The variables in the positive part ofC are a subset of the variables of
the negative part ofC. (ii) The maximal term-depth of each variable in the positive part of
C is smaller or equal to the maximal term-depth of the same variable in the positive part
of C.

A set of clausesN belongs toKPOD (Krom positive occurrence dominated) if: (i) All
clausesC in N are Krom, i.e.|C| ≤ 2. (ii) For every variablex contained in the positive
part of a clauseC, the number of occurrences ofx in the positive part ofC is smaller than
the number of occurrences ofx in the negative part ofC.

Obviously, the sets of clauses we obtain from GF1− formulae in general do not satisfy
condition (ii) of the definition ofPVD nor do they satisfy condition (i) of the definition
of KPOD. ForPVD the syntactic restrictions on the class imply that during a derivation
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by hyperresolution the depth of the conclusions does not increase (Fermüller et al., 2001;
Leitsch, 1993). This is unlike the case for GF1−. ForKPOD the term depth of conclusions
may increase during a derivation (Leitsch, 1993). However, essential forKPOD is the
restriction of clauses to Krom form (|C| ≤ 2), which does not apply to clauses originating
from the definitional form of GF1− formulae.

Termination forPVD andKPOD is shown in terms of an atom complexity measure
µ, defined as a function from atoms to natural numbers with the following properties: (i)
µ(A) ≤ µ(Aσ) for all atomsA and all substitutionsσ , (ii) for all natural numbersk and
any finite signatureΣ it is true that for all atomsA, the set{Aσ | σ ∈ σ0, µ(Aσ) ≤ k} is
finite, whereσ0 is the set of all ground substitutions overΣ , (iii) µ is extended to literals
by µ(A) = µ(¬A), and to clauses byµ({L1, . . . , Ln}) = max{µ(Li ) | 1 ≤ i ≤ n}. Our
complexity measure does not have the second property. It is open whether decidability of
the classes considered in this paper can be formalized in this framework.

10. Conclusion and further work

The presented work is a continuation of ideas and techniques developed inHustadt
and Schmidt(1999, 2000a,b) for extended propositional modal logics, making use of
concepts introduced inLutz et al.(1999). We have considered the use of hyperresolution as
a decision procedure for guarded formulae in GF1− as well as extensions of this fragment.
We have also considered the use of hyperresolution for automatically building models
and analysed the close relationship to tableaux approaches. The latter can be exploited to
extract a tableaux system for the extension of GF1− discussed inSection 8. An advantage
of using hyperresolution is in the availability of a number of theorem provers which can
be used without adaptation as decision procedures for GF1− and the considered extension
(for example, FDPLL, OTTER, PROTEIN, SPASS, and Vampire).

Currently we are looking into defining an abstract atom complexity measure in analogy
to Leitsch(1993) which would generalize the specific complexity measures and orderings
used in the termination proofs presented in this paper and inde Nivelle et al.(2000) and
Hustadt and Schmidt(1999, 2000a,b). We are also attempting to define a larger solvable
class which would accommodate more formulae outside the GF and the loosely GF.
Further, it would be of interest whether it is possible to extend the approach to the entire
GF, possibly by using blocking conditions in the spirit ofGanzinger et al.(1997).
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