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Abstract 

Based on the weighted least square (WLS) algorithm, a unified multisensor distributed state fusion estimation 
criterion is presented in this paper, which includes the optimal weighted fusion algorithms weighted by matrices, 
scalars and diagonal matrices as the special cases. Furthermore, the corresponding optimal distributed state fusion 
Kalman predictor is presented for the multisensor linear discrete time-varying stochastic control systems with 
different measurement matrices and correlated noises. A simulation example for a tracking system with 3-sensor 
shows its effectiveness. 
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1. Introduction 

Multisensor information fusion has received considerable attentions with the development of high-tech 
fields such as military, defense and information war in recent years [1]. For Kalman filtering-based fusion, 
two basic fusion methods are centralized and distributed fusion methods, depending on whether raw data 
are used directly for fusion or not [2]. The state fusion methods also include the centralized and 
distributed Kalman filtering methods [3]. The centralized fusion method can give the globally optimal 
state estimation by directly combining the local measurement data, but its disadvantage is that it may 
require a larger computational burden. The distributed fusion method can give the globally suboptimal 
state estimation by weighting the local state estimators. This method has considerable advantages that it 
can facilitate fault detection and isolation more conveniently, and can reduce the computational burden. 
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Some results about the distributed state fusion algorithm have been presented over the past few years. The 
linear minimum variance optimal fusion estimation formula weighted by matrices was most early 
presented by Carlson [4], which considered the case that the estimation errors of each local sensors are 
uncorrelated. Hereafter, the maximum likelihood optimal fusion estimation formula was presented by Kim 
[5], with the consideration of correlated estimation errors of local sensors. However, it is required that the 
estimation errors obey normal distribution. Based on the Lagrange multiplier method and matrix 
differential calculation, the same result as that in [5] was presented by [6], considering the correlation 
between estimation errors and not requiring the normal distribution of the estimation errors. Based on the 
weighted least square (WLS) method, the unified distributed state fusion criterion is presented in this 
paper, which includes the results in [6] as the special cases. Furthermore, the corresponding optimal 
distributed state fusion N steps ahead Kalman predictor is presented for the multisensor linear discrete 
time-varying stochastic control systems with different measurement matrices and correlated noises.  

2. Problem Formulation 

Consider the multisensor linear discrete time-varying stochastic control systems 
( 1) ( ) ( ) ( ) ( ) ( ) ( )x t t x t B t u t t w tΦ Γ+ = + +                                                (1) 

( ) ( ) ( ) ( )i i iy t H t x t v t= + , 1, ,i L= L                                                   (2) 

where t  is the discrete time, ( ) nx t R∈  is the state, ( ) im
iy t R∈  is the measurement of the i th sensor, 

( ) pu t R∈ , ( ) , ( ) , ( )t B t tΦ Γ  and ( )iH t  are known matrices with compatible dimensions, ( )w t  is the 

input noise, and ( )iv t  is the measurement noise of the i th sensor.  

Assumption 1 ( ) rw t R∈  and ( ) im
iv t R∈  are correlated white noises with zero means:  

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
i

i tk
i i i

w t Q t S t
w k v k

v t S t R t
δΤ Τ

Τ

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪⎡ ⎤Ε =⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
, 1, ,i L= L                                 (3) 

where Ε  is the mathematical expectation, the superscript Τ  denotes the transpose, and 1ttδ = ,

0( )tk t kδ = ≠ , the variance and covariance matrices for ( )w t  and ( )iv t  are ( )Q t , ( )iR t  and ( )iS t ,
respectively.

Assumption 2 The measurement noises ( )iv t  and ( )jv t  are correlated, i.e.

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
i i ij

i j tk
j ij j

v t R t R t
v k v k

v t R t R t
δΤ Τ

Τ

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪⎡ ⎤Ε =⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
, 1, ,i L= L                                 (4) 

with the definition ( ) ( )i iiR t R t= .

Assumption 3 (0)x  is correlated with ( )w t  and ( )iv t , 1, ,i = L L , and (0)x μΕ = , cov (0)x P= ,

where cov  is the covariance. 
Assumption 4 ( )u t  is the known input. 
The problem is to find the local and distributed state fusion N steps ahead Kalman predictors 

ˆ ( | ) , 1, 1, ,ix t N t N i L+ ≥ = L  and ˆ( | )x t N t+  based on the measurements ( ( ), ( 1), , (0))i i iy t y t y− L

and ( ( 1), ( 2), , (0))u t u t u− − L .

3. Local Kalman Predictors 

Lemma 1 [3] For the multisensor system (1) and (2) with Assumptions 1-4, the local N steps ahead 
Kalman predictor for the i th sensor subsystem is given as follows 
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2

ˆ ˆ( | ) ( , 1) ( 1 | ) ( , ) ( 1) ( 1) , 1
t N

i i
s t

x t N t t N t x t t t N s B s u s N
+

= +

+ = Φ + + + + Φ + − − >∑                      (5) 

ˆ ˆ( 1| ) ( ) ( | 1) ( ) ( ) ( ) ( )i pi i pi ix t t t x t t B t u t K t y t+ = Ψ − + +                                           (6) 

( ) ( ) ( ) ( )pi pi it t K t H tΨ = Φ −                                                           (7) 
1( ) [ ( ) ( | 1) ( ) ( ) ( )] ( )pi i i i iK t t P t t H t t S t Q tε

Τ −= Φ − + Γ                                           (8) 

( ) ( ) ( | 1) ( ) ( )i i i i iQ t H t P t t H t R tε
Τ= − +                                                    (9) 

with the definition  
( , ) ( 1) ( 2) ( ) ,t s t t s t sΦ = Φ − Φ − Φ >L , ( , ) ns s IΦ =                                        (10) 

The optimal N steps ahead prediction error variance matrix ( | ) [ ( | ) ( | )]i i iP t N t x t N t x t N tΤ+ = Ε + +% %  is 
given by 

2

( | ) ( , 1) ( 1 | ) ( , 1) ( , ) ( 1)
N

i i
j

P t N t t N t P t t t N t t N t j t jΤ

=

+ = Φ + + + Φ + + + Φ + + Γ + − ×∑
( 1) ( 1) ( , )Q t j t j t N t jΤ Τ+ − Γ + − Φ + +                                                  (11) 

with the one step ahead prediction error variance matrix ( 1 | )iP t t+  satisfying the following Riccati 
equation  

( 1 | ) ( ) ( | 1) ( ) [ ( ) ( | 1) ( ) ( ) ( )i i i i iP t t t P t t t t P t t H t t S tΤ Τ+ = Φ − Φ − Φ − +Γ ×
1[ ( ) ( | 1) ( ) ( )] [ ( ) ( | 1) ( ) ( ) ( )] ( ) ( ) ( )i i i i i i iH t P t t H t R t t P t t H t t S t t Q t tΤ − Τ Τ Τ− + Φ − + Γ + Γ Γ                 (12) 

with the initial values ˆ (0 | 0) , (0 | 0)i ix P Pμ= = .
The N steps ahead prediction error covariance matrix is given by 

2

( | ) ( , 1) ( 1 | ) ( , 1) ( , ) ( 1)
N

ij ij
j

P t N t t N t P t t t N t t N t j t jΤ

=

+ = Φ + + + Φ + + + Φ + + Γ + −∑
( 1) ( 1) ( , )Q t j t j t N t jΤ Τ+ − Γ + − Φ + +                                                  (13) 

with the one step ahead prediction error variance matrix ( 1 | )ijP t t+  given as follows 

( 1 | ) ( ) ( | 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )ij pi ij pj pi iP t t t P t t t t Q t t K t S t tΤ Τ Τ Τ+ = Ψ − Ψ +Γ Γ − Γ −  

( ) ( ) ( ) ( ) ( ) ( )j pj pi ij pjt S t K t K t R t K tΤ ΤΓ +                           (14) 

where , 1, , ,i j L i j= ≠L , the initial value is (0 | 0)ijP P= .

4. Unified Optimal Distributed State Fusion Kalman Predictor 

Setting the local N steps ahead prediction error and variance matrix as 
ˆ( | ) ( ) ( | )i ix t N t x t N x t N t+ = + − +%                                                     (15) 

( | ) [ ( | ) ( | )]ij i jP t N t x t N t x t N tΤ+ = Ε + +% %                                                (16) 

then applying (15) yields the extended dimension form of local predictors as follows 
(0) (0) (0)ˆ ( | ) ( ) ( | )x t N t x t N x t N t+ = + − +%                                               (17) 

where we define 

1 1
(0) (0)

ˆ ( | ) ( )
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and (0) ( | )x t N t+%  has the prediction error variance matrix (0) ( | )P t N t+  as follows 

11 1
(0)

1

( | ) ( | )

( | )

( | ) ( | )

L

L LL

P t N t P t N t
P t N t

P t N t P t N t

+ +⎡ ⎤
⎢ ⎥+ = ⎢ ⎥
⎢ ⎥+ +⎣ ⎦

L

M M

L

                        (19) 

Eq. (17) can be considered as L unbiased estimations for ( )x t N+ , with the local estimation error 

( | )ix t N t+%  and the local estimation error covariance matrix ( | )ijP t N t+ . So we have the following 

measurement model 
(0) (0)ˆ ( | ) ( ) ( | )x t N t ex t N x t N t+ = + − +%                             (20) 

with the definition [ , , , ]n n ne I I IΤ = L . We have the WLS estimator (Gauss-Markov estimator) [7, 8] for 

( )x t  as 
(0) 1 1 (0) 1 (0)ˆ ˆ( | ) ( ( | ) ) ( | ) ( | )x t N t e P t N t e e P t N t x t N tΤ − − Τ −+ = + + +                          (21) 

where we define (0) 1 (0) 1( | ) [ ( | )]P t N t P t N t− −+ = + . Applying the definitions of eΤ  and (0) ( )x t N+ , we 
have

1

ˆ ˆ( | ) ( ) ( | )
L

i i
i

x t N t A t x t N t
=

+ = +∑ , (0) 1 1 (0) 1
1[ ( ), ( )] ( ( | ) ) ( | )LA t A t e P t N t e e P t N tΤ − − Τ −= + +L       (22) 

then we can easily obtain the optimal fusion error variance matrix ( | ) [ ( | ) ( | )]P t N t x t N t x t N tΤ+ = Ε + +% %
as follows 

(0) 1 1 (0) 1 (0) (0) 1 (0) 1 1( | ) ( ( | ) ) ( | ) ( | ) ( | ) ( ( | ) )P t N t e P t N t e e P t N t P t N t P t N t e e P t N t eΤ − − Τ − − Τ − −+ = + + + + +
(0) 1 1( ( | ) )e P t N t eΤ − −= +                                                                (23) 

It is easily proved that [3] 
( | ) ( | ) , 1, ,iP t N t P t N t i L+ ≤ + = L                                                   (24) 

The above derivation can be summarized as the following theorem:  
Theorem 1 Based on the L known unbiased estimations ˆ ( | ) , 1, ,ix t N t i L+ = L  for the stochastic 

vectors ( ) nx t R∈  of L sensors and the known estimation error covariance matrices 

( | ) , , 1, ,ijP t N t i j L+ = L , using the WLS method, the distributed state fusion N steps ahead Kalman 

predictor is given by  
(0) 1 1 (0) 1 (0)ˆ ˆ( | ) ( ( | ) ) ( | ) ( | )x t N t e P t N t e e P t N t x t N tΤ − − Τ −+ = + + +                               (25) 

with the optimal fusion error variance matrix as 
(0) 1 1( | ) ( ( | ) )P t N t e P t N t eΤ − −+ = +                                                     (26) 

and we have the relationship as follows 
( | ) ( | ) , 1, ,iP t N t P t N t i L+ ≤ + = L                                                  (27) 

Remark 1 Theorem 1 can directly yield the same form as that of the fusion criterion weighted by 
matrices in [6]. Under the condition of Theorem 1, the measurement error variance matrix in measurement 
model (20) is taken as 

11 1
(0)

1

( | ) ( | )

( | )

( | ) ( | )

L

L LL

trP t N t trP t N t
P t N t

trP t N t trP t N t

+ +⎡ ⎤
⎢ ⎥+ = ⎢ ⎥
⎢ ⎥+ +⎣ ⎦

L

M M

L

                       (28) 

Then we can obtain the same form as that of the fusion estimation criterion weighted by scalars in [6].  
Under the condition of Theorem 1, the measurement error matrix in measurement model (20) is taken 

as
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( ) ( )
11 1
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1

( | ) ( | )

( | )

( | ) ( | )

ii ii
L

ii ii
L LL

P t N t P t N t
P t N t

P t N t P t N t

⎡ ⎤+ +
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⎢ ⎥+ +⎣ ⎦

L
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where ( ) ( | )ii
kjP t N t+  is the ( , )i i th diagonal element of ( | )kjP t N t+ . Then we can obtain the same form 

as that of the fusion estimation criterion weighted diagonal matrices in [6]. So we can obtain the same 
conclusion as that in [3] according to the information quality of the chosen error matrix: the accuracy of 
the fusion estimation weighted by matrices is higher than that of the fusion estimation weighted by scalars, 
and the accuracy of the fusion estimation weighted by diagonal matrices is between both of them. 

5. Simulation Example 

Consider the 3-sensor target tracing system (1) and (2), where 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
100
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5.01

0

2
00
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TT

Φ ,

0

0

1

Γ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,

[ ]1 1 0 0H = , [ ]2 0 1 0H = , [ ]3 0 0 1H = , 0 0.03T =  is the sampled period, 

[ ]Τ= )()()()( 321 txtxtxtx , and )(1 tx , )(2 tx  and )(3 tx  respectively are the position, velocity and 

acceleration at time 0tT , ( ) , ( )iw t v t  are correlated white noise with zero mean and variances as 

0.16wQ = , 1 1R = , 2 2R = , 3 3.16R = , 0, , 1, , ,ijR i j L i j= = ≠L , 1 2 0S S= = , 3 0.16S = . The 

problem is to find the local and optimal distributed state fusion two steps ahead Kalman predictors 
ˆ ( 2 | ) , 1, ,ix t t i L+ = L  and ˆ( 2 | )x t t+ .

The simulation results are shown in Fig. 1 and Fig.2. The comparison curves between the state ( )x t
and the distributed state fusion two steps ahead Kalman predictor ˆ( 2 | )x t t+  are given by Fig. 1, where 
the lines denote the true value, and the curves denote the estimates. The comparison curves of traces 
between the local and distributed state fusion estimation error variance matrices are given by Fig. 2. They 
show that the accuracy of the distributed state fusion Kalman predictor is higher than that of each local 
predictor. 
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(a) The comparison curves for position                                          (b) The comparison curves for velocity 
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(c) The comparison curves for acceleration 

Fig. 1.The comparison curves between the state ( )x t  and the distributed state fusion Kalman predictor ˆ( 2 | )x t t+

0 5 0 1 0 0
0

5

1 0

1 5

t/step

Fig. 2. The comparison curves of traces between the local and distributed state fusion Kalman prediction error variance matrices

6. Conclusions 

The unified and universal distributed state fusion criterion is presented in this paper based on the 
weighted least square method, which includes the results in [6] as the special cases. It avoids the 
Lagrange multiplier method and matrix differential calculation. Meanwhile, the corresponding optimal 
distributed state fusion Kalman predictor is presented for the multisensor discrete linear time-varying 
stochastic control systems with different measurement matrices and correlated noises, based on the 
proposed optimal fusion criterion. The simulation example shows that the accuracy of the optimal 
distributed state fusion Kalman predictor is higher than that of each local predictor. 
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