
Procedia Computer Science 00 (2010) 1–10

Procedia Computer
Science

International Conference on Computational Science, ICCS 2010

Evaluation of a distributed numerical simulation optimization approach applied
to aquifer remediation

Patrı́cia A.P. Costa∗, Eduardo L.M. Garcia, Bruno Schulze, Helio J.C. Barbosa

National Laboratory for Scientific Computing (LNCC), Av. Getúlio Vargas, 333, Quitandinha, Petrópolis, RJ, Brazil

Abstract

In this paper we evaluate a distributed approach which uses numerical simulation and optimization techniques
to automatically find remediation solutions to a hypothetical contaminated aquifer. The repeated execution of the
numerical simulation model of the aquifer through the optimization cycles tends to be computationally expensive.
To overcome this drawback, the numerical simulations are executed in parallel using a network of heterogeneous
workstations. Performance metrics for heterogeneous environments are not trivial; a new way of calculating speedup
and efficiency for Bag-of-Tasks (BoT) applications is proposed. The performance of the parallel approach is evaluated.

Keywords: simulation optimization, performance evaluation, distributed computing, aquifer remediation

1. Introduction

Recently, there has been a significant increase in the capacity as well as in the availability of computing processors.
Their processing power is made available through clusters, grids, and networks of workstations (NOWs), which have
the potential of becoming powerful platforms for the simulation of problems that demand high computational power.
Some classes of applications are more appropriate to run in specific types of architectures, but there are others that
can benefit from all types of architectures. Examples of the latter include parameter sweep or any other kind of Bag-
of-Tasks (BoT) applications. However, even in these most favorable situations, the utilization of the resources is not
trivial and it becomes necessary to develop software components to make efficient use of the available resources.

In order to study a case of remediation of a contaminated aquifer through the use of simulation optimization
techniques, we developed an approach that uses a network of heterogeneous workstations to perform in parallel the
numerical simulations of the aquifer model. In this paper, this approach is presented and its performance evaluated.

The remediation strategy considered to cleanup the aquifer is pump-and-treat (PAT), one of the most commonly
applied methods for groundwater remediation [1]; it requires the removal of contaminated groundwater using extrac-
tion wells [2]. The purpose of optimal design is usually to determine how many wells to install, where the wells
should be located and what pumping rate is required from each one, while minimizing a cost function [3]. A simu-
lation model of a hypothetical aquifer system is used to predict its response to a proposed pumping strategy, and an
optimization technique automatically simulates a series of alternative pumping scenarios, selecting the best one [4].

∗Corresponding author
Email address: pcosta@lncc.br (Patrı́cia A.P. Costa)

c⃝ 2012 Published by Elsevier Ltd.

Procedia Computer Science 1 (2012) 7–16

www.elsevier.com/locate/procedia

1877-0509 c⃝ 2012 Published by Elsevier Ltd.
doi:10.1016/j.procs.2010.04.003

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82486439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.procs.2010.04.003
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

/ Procedia Computer Science 00 (2010) 1–10 2

The Genetic Algorithm (GA) [5] is used as the optimization technique. The popularity of GAs lies in their ease
of implementation and their ability to locate a global optimum. However, GAs are criticized for the large number
of calls to the numerical simulator that are often required to locate a near optimal solution. Fortunately, GAs are
embarrassingly parallel and the candidate solutions can be evaluated concurrently, in different computational nodes.

The parallel approach uses a master/worker pattern [6], where the master performs the optimization algorithm
and assigns the simulations to the workers, distributed in the available nodes. Dynamic scheduling of the simulations,
which has been shown to be essential for the efficiency of the system, is also a concern. Special attention is given to the
performance evaluation of the system. Performance metrics should allow the application developer to identify factors
affecting performance and to verify where adjustments can be made to improve it. These metrics are well established
for homogeneous, dedicated environments. However, for heterogeneous environments, they are controversial and
distinct ways of considering the different capacity of the processing elements composing the system can be found in
the literature [7, 8, 9, 10]. Since NOWs are often non-dedicated systems, we propose the use of performance metrics
to evaluate BoT applications that consider instead of the potential capacity of the system, its available capacity at the
time of the application execution.

The rest of this work is structured as follows. Section 2 shows the aquifer model. In Section 3 the optimization
technique and the characteristics of its implementation are described; experiments are conducted to demonstrate the
use of this methodology. Section 4 is dedicated to the distributed system and to performance metrics. In Section 5,
experiments that allow the analysis of the system performance are presented. Conclusions are drawn in Section 6.

2. The Aquifer Model

In order to design remediation strategies, the ability to predict future behavior of the groundwater system is
required. Here, this is accomplished with a two-dimensional simulation model of groundwater flow and contaminant
transport based on a mathematical representation of the physical system.

The contaminated aquifer is modeled by a system of partial differential equations that determine the velocity field
and then the contaminant transport, using a miscible flow model [11]. The simulator solves this system using the Finite
Element Method (FEM) and determines the quantity of contaminant removed by the extraction wells. As input data,
the model requires the parameters that define the geometry of the aquifer, the porous medium and the fluid’s physical
properties, the initial and boundary conditions of the mathematical model, the finite element mesh used to discretize
the problem, the number of installed pumping wells, their location and pumping rates. The output data consists of a
list of contaminant concentration values in each well as a function of time, which allows one to determine the volume
of removed contaminant and with that, the quality of the proposed solution.

3. Simulation Optimization

Simulation optimization is the process of finding the best values for some decision variables in a system where the
performance is evaluated based on the output of a simulation model of this system. Over the last decades, groundwater
quality control and remediation have been the focus of the optimization efforts in the subsurface literature [12, 13],
in particular, the design of PAT systems, the most frequent technique considered [14, 3, 15]. Many optimization
methods are available and recently there has been a significant growth of interest in using Genetic Algorithms (GAs)
for water resource planning and design [16]. A GA was used in this paper and its basic concepts and implementation
are described in this section.

3.1. Genetic Algorithms

GAs are a type of Evolutionary Algorithm (EA), a family of computational models inspired by the natural process
of evolution. GAs perform global search exploring simultaneously many possible regions of good performance. They
combine the generation of new individuals in regions of the search space not yet tested, being responsible for the
exploration of new areas, and in the vicinity of known good solutions, performing the so called exploitation [5].

GAs use the population genetic metaphor. Individuals are representations of a potential solution to the problem at
hand (candidate solution) and a population is a set of individuals. The underlying idea behind the technique is: given a
population of individuals, the environmental pressure causes natural selection (survival of the fittest) and this causes a

8 P.A.P. Costa et al. / Procedia Computer Science 1 (2012) 7–16

/ Procedia Computer Science 00 (2010) 1–10 3

rise in the fitness of the population, since the less fit individuals tend to die while the most fit will survive and transmit
some of its desirable traits to their offspring. Based on fitness, which defines the overall quality of the individuals,
some candidates are selected to breed the next generation by applying the reproduction operators: recombination
(also called crossover) and mutation. The new offspring can replace the old individuals according to some parental
substitution rule. This process is iterated until a stop criteria is achieved.

In this implementation, an individual has information about the number of extraction wells, their locations and
pumping rates. This information is stored in a data structure, as real numbers. The fitness of each individual is
calculated through an objective function, based on [17], that has to be minimized:

f f itness = CCE +CCT D + FCMS + VCE + VCT D + P ∗ Vres, (1)

where:
CCE = capital costs of each extraction well ($400K)
CCTD = capital costs of treatment plant and discharge piping ($0.460K per m3/day)
FCMS = fixed costs of management and sampling/analysis ($415K per year)
VCE = variable cost of electricity for well operations ($0.009K per m3/day per year)
VCTD = variable cost of treatment and discharge ($0.064K per m3/day per year)
P = penalty charged over the volume of contaminant not removed from the aquifer (Vres).

3.2. Aquifer Remediation

A hypothetical aquifer was used to test the ability and efficiency of the optimization methodology presented in
this study. Its hydrological settings are: heterogeneous, confined, and isotropic. The simulations were performed
inside a total area of 4, 000 by 8, 000 meters, with a mesh of 160 × 320 bilinear square elements, each having a size
of 25, 0 × 25.0 meters. The boundary conditions on the lower and upper sides of the domain are of constant pressure
of 50m and 0m respectively. Zero-flow boundary conditions are imposed along the left and right sides. The porosity
of the field was assumed to be 0.2 and its permeability, 100mD, except on the shaded area (Figure 1), where porosity
is 0.05 and permeability 0.1mD, yielding a variable velocity field along the 8, 000 meters of the domain. The initial
volume of contaminant within the aquifer is 60, 000 units and contaminant transport is simulated for a 5-year period.
The contaminant is divided in two plumes: the one in the right side has half of the volume of contaminant than the
one in the left (Figure 1(a)). To achieve an acceptable level of water quality, at the end of this period the amount of
contaminant must be less or equal to 0.01 units. Figure 1 describes the physical problem: the initial condition of the
aquifer is shown in Figure 1(a)), and Figures 1(b), 1(c), 1(d), 1(e), and 1(f) shows the contaminant on days 400, 700,
1100, 1400, and 1800, in a simulation done without the placement of extraction wells.

(a) Initial cond. (b) 400 days (c) 700 days (d) 1100 days (e) 1400 days (f) 1800 days

Figure 1: Hypothetical contaminated aquifer without remediation.

The pumping system allows a maximum of nine wells, each with a pumping rate chosen from a set of four
possibilities: 100, 150, 200 and 250m3/day. Wells can not be placed within the dashed area (Figure 1(a)) and they
must be at a minimum distance of 250m from each other.

P.A.P. Costa et al. / Procedia Computer Science 1 (2012) 7–16 9

/ Procedia Computer Science 00 (2010) 1–10 4

In this experiment, the optimization was executed 13 times, each time using a distinct “random seed”, a number
used to initialize a pseudorandom number generator, that is used in many steps of the GA, including the generation of
the initial population. It is expected from a GA that, starting from different initial populations, it may locate the same
set of optimal results. In each optimization, 42040 simulations were performed, divided in the following manner: 40
candidates for the initial population and 150 additional generations of 280 individuals each.

The solutions found in each of the executions achieved, with similar costs, the accepted level of water quality
using seven extraction wells. Results of remediation using one of these solutions can be observed in Figure 2. Well
locations and pumping rates are shown in Figure 2(a) (= 200m3/day and = 250m3/day). Figure 2(b) shows the
plume of contaminant after 1230 days (the amount of time needed to achieve satisfactory contaminant levels). The
volume of contaminant in the aquifer during the simulation time interval is presented in Figure 2(c) while the volume
of contaminant extracted by each of the remediation wells is pictured in Figure 2(d). The value of the fitness function
was $5, 292K (CCE = $2, 800K; CCT D = 713K; FCMS = 1, 399K; VCE = 47K9; VCT D = 333K).

(a) A remediation
solution.

(b) 1230 days

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200 1400 1600 1800

v
o
lu

m
e

o
f

co
n

ta
m

in
a
n

t
in

 a
q

u
if

er

time (days)

(c) Volume of contaminant in the aquifer

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 200 400 600 800 1000 1200 1400 1600 1800

v
o
lu

m
e

o
f

co
n

ta
m

in
a
n

t
ex

tr
a
ct

ed
 b

y
 w

el
ls

time (days)

(d) Volume of contaminant extracted by remediation
wells

Figure 2: Results of a solution found by the GA.

4. Distributed Approach

In order to search for the optimal solution, the optimization algorithm needs to evaluate, via numerical simulations,
a large number of candidate solutions. These evaluations are independent tasks - there is no communication or
dependencies among them. Applications composed of independent tasks are often referred in the literature as Bag-
of-Tasks (BoT). In this system, the simulations are solved concurrently, using machines available in a local network.
The parallel execution guarantees a reduced response time and allows for the solution of more complex computational
modeling problems.

4.1. Master/Slave Paradigm

To execute the numerical simulations in parallel, the master/slave paradigm is used. Master/slave is a simple
yet widely used technique appropriate to execute independent tasks under the centralized supervision of a control
processor [18, 6]. For BoT applications running on a network of heterogeneous computers, master-slave has been
the most common choice so far, due mainly to simplicity of implementation, tolerance to slave failures, and simple
communication topology [19]. However, it is important to note that centralized master-slave approach may affect
scalability, since the existence of a single master may become a bottleneck. This problem has been studied by many
authors [19, 20, 21]. The use of a hierarchical master/slave structure reduces this effect. Nevertheless, the standard
master/slave scheme is effective for a moderate number of processors [22].

4.1.1. Implementation
Our approach is composed by three main modules: master, worker, and simulator. The master is a Java module

that follows the steps of the optimization algorithm and is responsible for scheduling the numerical simulations to the
available workers. The worker, also a Java module, is replicated in the available computational nodes. Workers call the

10 P.A.P. Costa et al. / Procedia Computer Science 1 (2012) 7–16

/ Procedia Computer Science 00 (2010) 1–10 5

simulator and with its output they calculate the fitness function value, returning it to the master. Master and workers
communicate via Remote Method Invocation (RMI). The simulator is a Fortran sequential program that solves the
mathematical model of the aquifer, using FEM.

Before the application starts, a number of nodes are chosen by the user to initialize the workers. These nodes have
no prior knowledge of the application, but must have all necessary libraries installed. The nodes are assumed to be
part of the local network and all the necessary files are copied via SSH.

A machine in the network is chosen to become the master. The master follows the steps of the GA and at each
generation, when it has to evaluate the individuals of a given population - the computationally expensive part of the
algorithm - it partitions the population in blocks of individuals and distributes the blocks to workers. The workers
evaluate each individual of that block, calling the numerical simulator and then calculating the fitness of the individual
based on the output of the simulation model. When a worker finishes processing a block, it returns the results to the
master and receives another block, until all blocks are evaluated. At the end of each generation, the master sorts all
candidate solutions, according to their fitness, and selects the ones who will survive.

A diagram depicting the implemented approach is presented in Figure 3.

Figure 3: Implementation architecture.

4.2. Task Scheduling

Scheduling refers to the way tasks are assigned to run on the available processing elements (PEs). The number
of tasks a PE should be assigned is an important issue in parallel computing, particularly in heterogeneous systems.
In such systems, in order to obtain high performance, an application must equally distribute the load among PEs,
maximizing their utilization while minimizing the total job execution time. We want to avoid that faster PEs become
idle while waiting for slower ones to finish their tasks in places that require synchronization. In a generational GA
that happens at the end of every generation, when the master has to wait for all of computing resources to deliver the
results of their evaluations.

As seen in the literature [23, 24, 25, 26], dynamic scheduling is appropriate to achieve load balancing in hetero-
geneous or homogeneous non-dedicated environments.

In this implementation, the methods pure self-scheduling (PSS), guided self-scheduling (GSS), and factorial self-
scheduling (FSS) were made available. However, for the experiments of this paper only PSS was used. PSS partitions
the job (in this implementation, the evaluation of one population) of size N in N blocks of one task (the evaluation
of each individual), and in this way guarantees balanced workloads. One drawback of this method is the amount of
communications required, but here this is minimized as a local network is used and also because the communication
times are very small in comparison to the computation times. In [26], experiments with GAs and the aforementioned
scheduling techniques are presented.

4.3. Performance Metrics

In general, the primary purpose of parallelizing an application is to reduce the overall elapsed time to obtain the
results. However, execution time is not usually the most convenient metric by which to evaluate parallel performance.

One of the most important reasons for measuring and evaluating parallel performance is to verify how efficiently
available resources are being utilized and to discern whether actual performance improves if the parallel environment
changes, such as by using more PEs. It is usually expected that, when the number of PEs in the parallel system is

P.A.P. Costa et al. / Procedia Computer Science 1 (2012) 7–16 11

/ Procedia Computer Science 00 (2010) 1–10 6

increased, the computation time decreases or problems of larger size can be solved. The capability of a parallel system
to increase its performance with the increase in the number of PEs is called scalability. It is necessary to have a way
of evaluating parallel performance, assessing whether it is improving or not, and then identifying the factors affecting
performance and where adjustments can be made to improve it.

Measuring and evaluating performance of heterogeneous systems is not straightforward. In particular, conven-
tional techniques used for homogeneous and dedicated systems are not appropriate and must be adjusted to consider
the variation of the computing power of the different workstations. In this section, we look at traditional ways as well
as to alternative ways of measuring and evaluating the parallel performance of a heterogeneous system.

4.3.1. Speedup and Efficiency
Common techniques for evaluating parallel performance have often been speedup and efficiency. Speedup (S) is a

dimensionless metric that measures the performance gain obtained by the parallel implementation of an application,
while efficiency (E) measures the fraction of time for which the PEs are usefully employed, denoting the effective
utilization of computing resources. They are mathematically given by

S =
T1

TP
and E =

S
P
, (1)

where P is the number of PEs, T1 is the total elapsed time of an execution using one PE, and TP is the total elapsed
time using P PEs.

In an ideal parallel system using P PEs, with computation evenly decomposed into P tasks, and running on a
homogeneous and dedicated environment, speedup is equal to P and efficiency is equal to one. In practice, ideal
behavior is not achieved because while executing a parallel algorithm, the PEs spend some time performing tasks
which are not central to the computations of the main algorithm, such as: synchronization, communication, task
scheduling, and additional processing, not necessary when using only one PE. The time spent with these peripheral
computations denotes its overhead.

4.3.2. Related Work
The traditional parallel metrics above are popular ones but for heterogeneous systems they are also controversial,

since in a heterogeneous environment the different capacity of the PEs must be considered [7, 8, 9, 10]. Although it is
easy to measure the total elapsed time for a parallel execution (TP), we need to define which single PE should be used
to calculate T1 and evaluate speedup. Several approaches have been reported in the literature. Yero and Henriques
[19] present a work where the execution time of the fastest machine in the system is used for T1. On the other hand,
according to Colombet e Desbat [7], when using different PEs, the speedup can no more be implicitly relative to the
execution time on one PE, but must be expressed explicitly relative to the execution time on certain PEs, because
they are no longer identical. Ramos-Hernández and Tokhi [8] define a virtual PE whose performance characteristics
correspond to the average characteristics of all computers in the cluster.

Zhang and Yang [9] and Michailidis and Margaritis [27] also evaluate speedup comparing total parallel elapsed
time to elapsed time on the fastest PE, but they use the concept of power weight to determine efficiency. The power
weight of a PE refers to its computing power relative to the fastest PE in a system and its value is less than or equal
to one. The potential power of the heterogeneous system is the sum of the power weights of all PEs in the system.
Efficiency is then calculated as speedup divided by the total potential power.

Crowl [10] suggests the concept of linear speed, which uses the amount of work done per unit time instead of
elapsed time. In this technique, one compares the actual amount of work done per unit time by the whole system with
the potential amount of work that could be done by the system, the latter calculated as the sum of the amount of work
that could be done on each PE per unit time. Post [28] proposes “linear efficiency” as an extension of linear speed as
defined by Crowl. Linear efficiency is calculated as the ratio between the actual linear speed achieved by a parallel
execution and the potential linear speed of the system.

Pastor and Orero [29] present a definition of efficiency as the ratio between the best response time achievable for
solving a specific problem in a given system and the real response time achieved during the algorithm execution. The
best response time will be obtained if the workload is evenly distributed among all of the nodes (perfectly balanced
distribution) and if there is no overhead time.

12 P.A.P. Costa et al. / Procedia Computer Science 1 (2012) 7–16

/ Procedia Computer Science 00 (2010) 1–10 7

4.3.3. Dynamic Speedup and Dynamic Efficiency
The techniques described above consider the potential power of the heterogeneous system. However, at the time

of an application execution, some of the PEs can be subject to external loads since, in practice, a heterogeneous NOW
is often a nondedicated system. Therefore, at that moment, its available and potential capacity are not the same.

We suggest, for BoT applications, a dynamic way of calculating speedup and efficiency that considers the capacity
of the system at the time of application execution. It uses an approximation for T1, called T1, calculated as the sum
of the elapsed time of all useful tasks (not overheads) performed by the parallel application. In the implemented
approach, T1 is calculated as the sum of the elapsed time of all the tasks performed by the workers, given by:

T1 =

P∑

i=1

TWi , (2)

where TWi is the elapsed time of the tasks performed by the Worker i on PE i. Using the same set of PEs, T1 will vary
for distinct executions of the application, due to factors such as sharing of computing resources and parallel program
nondeterminism. T1 considers the heterogeneity of the resources and since it is calculated at the time of application
execution, it measures the system processing power available at that moment.

We adopt the adjective dynamic when T1 is used to calculate speedup and efficiency and we denote them S
(dynamic speedup) and E (dynamic efficiency), given by:

S =
T1

TP

and E =
S
P
. (3)

Dynamic speedup and dynamic efficiency reflect only the effects of the application overheads, not those of external
loads, and therefore they are more useful to help developers to identify, within the application, factors affecting its
performance, and then to verify where adjustments need to be made.

5. Performance Experiments

In section 3.2, experiments were performed to demonstrate the efficacy of this methodology. Here, they were
conducted to verify the performance of the distributed approach.

The experiments were conducted in a heterogeneous environment. Machines with multicore processors were
used and in some cases more than one worker was installed in one machine. The application does not automatically
recognize the existence of multiple cores, but it uses a list of machines where the workers will run and, for each
worker, the corresponding port used for communication with the master. The number of workers installed in each
machine was never greater then the number of cores available in its processor.

The computers used have the following characteristics: Intel Core 2 (1.86 GHz/3 GB), Intel Pentium 4 (1.86
GHz/512 MB), Intel Pentium D (2.8 GHz/1 GB), Intel Core 2 Quad (2.5 GHz/8 GB), Dual Core AMD Opteron (2.6
GHz/64 GB), Intel Xeon (2.93 GHz/132 GB), Intel Itanium 2 (1.8 GHz/64 GB), Intel Pentium 4 (3.2 GHz/1.5 GB),
Quad-Core AMD Opteron (2.0 GHz/4 GB), Intel Xeon (1.86 GHz/1 GB), Intel Dual Core (1.8 GHz 1 GB), and Intel
Pentium D (3.2 GHz/2 GB). They are distributed in different labs at LNCC and connected via LAN. These computers
are grouped under distinct NIS (Network Information System) and run Linux-based OS brands such as: openSUSE,
Ubuntu, Mandriva, and Red Hat. This heterogeneity resembles somehow the one of a computational grid.

5.1. Scalability Experiments

Three experiments were performed: expA (with 10 workers), expB (with 20 workers), and expC (with 30 workers).
For these experiments, a set with 10 different cores was created, one from each one of the machines described above.
This set was used in expA. For expB, with 20 workers, two sets identical to the one utilized for expA were used and in
the same way, on expC, with 30 workers, three of the same set were used. This setup was chosen to allow an increase
in processing power proportional to the increase in the number of cores of each experiment, facilitating performance
analysis. In each experiment, a total of 930 simulations were executed: 30 individuals in the initial population plus 10
generations of 90 individuals, for a total of eleven jobs.

P.A.P. Costa et al. / Procedia Computer Science 1 (2012) 7–16 13

/ Procedia Computer Science 00 (2010) 1–10 8

Table 1 presents performance metrics of the three experiments. It can be seen that the total elapsed time for the
application execution decreases with the use of more cores, while speedup increases. However, efficiency decreases
in a way that was not expected. In section 4.3.1, possible causes of overhead and loss of efficiency in a parallel system
were presented. Particularly in this application, the following are possible sources of overhead: GA tasks; scheduling
of parallel evaluations, which includes: job partition in blocks of tasks, sequential accesses to block list - a critical
section, distribution of blocks of tasks to the workers, management of threads; communication between master and
workers; and idleness caused by load imbalance.

In this approach, the idle time resulting from the moments of synchronization (which happen at the end of every
generation when the master has to wait for all of computing resources to deliver the results of their evaluations) is con-
sidered the main factor that increases overhead and consequently reduces efficiency. The use of dynamic scheduling
methods minimizes the load imbalance, but since there are several moments of synchronization, 11 in this experiment,
this is still a critical issue.

of cores used 10 20 30
elapsed time for application parallel execution (TP) 56min 31min 21min
total workers processing time (

∑P
i=1 TWi = T1) 535min 533min 536min

Dynamic Speedup (S) 9.49 16.89 25.01
Dynamic Efficiency (E) 0.95 0.84 0.83

Table 1: Main performance metrics for experiments with 10, 20, and 30 cores.

Table 2 presents complementary measurements of the three experiments. Tworker max is the sum of processing time
of the worker that took more time performing evaluations and Tworker min is this sum for the worker that took less
time performing evaluations. The amount of evaluations performed within this time is in parenthesis. The minimum
and maximum amount of individuals evaluated by a worker is represented by “# of sim”. The time of one evaluation
performed by the fastest worker is Tsim min and by the slowest worker, Tsim max.

Analyzing the values shown, it can be observed that the fastest worker performed 134 evaluations in expA, but
in expB, despite proportional increase of processing power, this worker was assigned less than half of this load (62
evaluations). The slowest worker evaluated 52 individuals in expA, but on expB it performed more than half of that
load. The same kind of comparison can be made between expA and expC.

of cores used 10 20 30
Total cpu time (simulations) 530min 528min 531min

Tworker max (# of sim.) 3359.49s (103) 1875.63s (31) 1272.43s (21)
Tworker min (# of sim.) 3077.79s (93) 1398.39s (62) 923.61s (41)

max # of sim. per worker 134 62 41
min # of sim. per worker 52 31 21

Tsim min (# of sim.) 24.07s (134) 22.55s (62) 22.53s (41)
Tsim max (# of sim.) 60.05s (52) 60.50s (31) 60.59s (21)
average simulation time 34.54s 34.41s 34.58s

Table 2: Complementary measurements for experiments with 10, 20, and 30 cores.

Figures 4(a), 4(b), and 4(c) show utilization of the cores in expA, expB, and expC respectively. In the first
experiment, a high utilization of cores is achieved, but in the other two, idle time can be detected. It is also worth to
note that in expB, where two cores of each kind were used, the utilization of each pair is similar and in expC, the same
behavior can be observed for each group of three cores.

5.2. “All in One Bag” Experiment

To confirm the hypothesis that in generational GAs, despite the use of dynamic scheduling, the idle time of
processing elements at the end of each generation is still the determinant cause of increase in overhead and reduction

14 P.A.P. Costa et al. / Procedia Computer Science 1 (2012) 7–16

/ Procedia Computer Science 00 (2010) 1–10 9

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

u
ti

li
za

ti
o
n

 (
%

)

cores

Core Utilization

(a) expA

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12 14 16 18 20

u
ti

li
za

ti
o
n

 (
%

)

cores

Core Utilization

(b) expB

 0

 20

 40

 60

 80

 100

 3 6 9 12 15 18 21 24 27 30

u
ti

li
za

ti
o
n

 (
%

)

cores

Core Utilization

(c) expC

Figure 4: Cores utilization.

in efficiency, a new experiment was executed, named expD: it had the same characteristics of expC, except that the 930
evaluations were all done in one generation (“All in one Bag”), as the initial population, producing only one moment
of synchronization, instead of eleven as in expC. The efficiency increased significantly, changing from 0.83 to 0.98,
as it can be verified in Table 3, showing that the distributed system does not introduce excessive additional costs and
the application, naturally parallel, is scalable.

of cores used 30
elapsed time for application parallel execution (TP) 17min
total workers processing time (

∑P
i=1 TWi = T1) 510min

Dynamic Speedup (S) 29.44
Dynamic Efficiency (E) 0.98

Table 3: Performance metrics for expD, with only one iteration.

In order to achieve high performance in a heterogeneous parallel system, load balance is extremely necessary. Par-
ticularly in this approach, with several moments of synchronization, the idleness of PEs at the end of each generation
is the main reason for increase in overhead and consequent loss of efficiency. An alternative way to improve perfor-
mance is the implementation of an intelligent scheduling mechanism that uses information from previous iterations to
choose whether or not to assign more tasks to slower PEs when there are few individuals left to be evaluated.

6. Conclusions

This work shows an evaluation of a distributed simulation optimization approach used to automatically find reme-
diation solutions to a contaminated aquifer. To optimize the remediation solution, a GA was implemented, coupled
with a computational model of the aquifer used to evaluate the quality of the candidate solutions. A hypothetical
aquifer was used, as it contains the fundamental attributes that allows for the analysis of the implemented approach.

To test the ability and efficacy of the implemented GA, an experiment was performed, using 13 different random
seeds, and solutions that achieved, with similar costs, the accepted level of water quality with the placement of seven
wells were found in all cases, showing that even starting from different initial populations, the algorithm was able to
locate the same set of optimal results.

The executions of the numerical simulations required by the GA were done in parallel. The distributed ap-
proach, based in the master/worker pattern, dynamically schedules these simulations among the available nodes.
The scheduling mechanism used was pure self-scheduling (PSS), which guarantees balanced workloads but requires a
large amount of communication, a drawback that was minimized as a local network was used and the communication
times were small in comparison to the computation times.

Traditional performance metrics were described and the use of metrics that consider the available capacity of a
heterogeneous system at the time of an application execution, instead of its potential capacity, was proposed for BoT
applications. These suggested metrics reflect only effects of the application overheads, not those of external loads.

P.A.P. Costa et al. / Procedia Computer Science 1 (2012) 7–16 15

/ Procedia Computer Science 00 (2010) 1–10 10

Therefore, they are more useful to help developers to identify, within the application, factors affecting its performance,
and then verify where adjustments need to be made. To the best of our knowledge, the proposed metrics can be used
with any kind of BoT applications.

To analyze the performance of the distributed approach, experiments with 10, 20 and 30 cores were conducted and
the proposed metrics were used. It was observed that the application - embarrassingly parallel - is scalable, however,
due to the existence of several points of synchronization, load distribution has a critical effect upon efficiency. Despite
the use of dynamic scheduling that decreases workers idle time, improvements can still be implemented. We suggest,
as future work, the use of intelligent or adaptive scheduling techniques which use information from previous iterations
to choose whether or not to assign more tasks to slower PEs when there are few individuals left to be evaluated.

References

[1] L.-C. Chang, H.-J. Chu, C.-T. Hsiao, Optimal planning of a dynamic pump-treat-inject groundwater remediation system, Journal of Hydrology
342 (2007) 295–304.

[2] M. C. Cunha, Groundwater cleanup: The optimization perspective (a literature review), Eng. Opt 34 (2002) 389–702.
[3] M. A. J. Guan, Optimal remediation with well locations and pumping rates selected as continuous decision variables, Journal of Hydrology

221 (1999) 20–42.
[4] A. J. Shreedhar Maskey, D. P. Solomatine, Groundwater remediation strategies using global optimization algorithms, Journal of Water Re-

sources Planning and Management 128 (2002) 431–440.
[5] A. Eiben, J. Smith, Introduction to Evolutionary Computing, Springer-Verlag, 2003.
[6] T. G. Mattson, B. A. Sanders, B. L. Massingill, Patterns for Parallel Programming, Addison-Wesley, 2004.
[7] L. Colombet, L. Desbat, Speedup and efficiency of large-size applications on heterogeneous networks, Theoretical Computer Science 196

(1998) 31–44.
[8] D. Ramos-Hernández, M. Tokhi, Performance evaluation on heterogeneous systems, Microprocessor and Microsystems 25 (2001) 203–212.
[9] X. Zhang, Y. Yan, Modeling and characterizing parallel computing performance on heterogeneous networks of workstations, in: SPDP ’95:

Proceedings of the 7th IEEE Symposium on Parallel and Distributed Processing, 1995, p. 25.
[10] L. A. Crowl, How to measure, present, and compare parallel performance, IEEE Parallel Distributed Technology 2 (1) (1994) 9–25.
[11] A. Loula, E. Garcia, A. Coutinho, Miscible displacement simulation by finite elements methods in distributed memory machines, Computer

methods in applied mechanics and engineering 174 (1999) 339–354.
[12] A. S. Mayer, C. Kelley, C. Miller, Optimal design for problems involving flow and transport phenomena in saturated subsurface systems,

Advances in Water Resources 25 (2002) 1223–1256.
[13] I. M. Kalwij, R. C. Peralta, Simulation/optimization modeling for robust pumping strategy design, Ground Water 44 (2006) 574–582.
[14] C. Huang, A. S. Mayer, Pump-and-treat optimization using well locations and pumping rates as decision variables, Water Resources Research

33 (1997) 1001–1012.
[15] X. Ren, B. Minsker, Which groundwater remediation objective is better, a realistic one or a simple one?, Journal of water resources planning

and management 131 (5) (2005) 351–361.
[16] X. Cai, D. C. McKinney, L. S. Lasdon, Solving nonlinear water management models using a combined genetic algorithm and linear program-

ming approach, Advances in Water Resources 24 (2001) 667–676.
[17] Geotrans, Transport optimization hastings naval ammunition depot, Hastings Documentation Formulations (2002).
[18] O. Beaumont, A. Legrand, Y. Robert, The master-slave paradigm with heterogeneous processors, IEEE International Conference on Cluster

Computing 0 (2001) 419–426.
[19] E. J. H. Yero, M. A. A. Henriques, Speedup and scalability analysis of master-slave applications on large heterogeneous clusters, Journal of

Parallel and Distributed Computing 67 (2007) 1155–1167.
[20] F. A. Silva, H. Senger, Improving scalability of bag-of-tasks applications running on master-slave platforms, Parallel Computing 35 (2009)

57–71.
[21] A. Chronopoulos, S.P., N. Yu, Scalable loop self-scheduling schemes for heterogeneous clusters, in: Proceedings of the IEEE International

Conference on Cluster Computing, 2002.
[22] J. Brest, V. Zumer, Solving asymmetric traveling salesman problems using dynamic scheduling on a heterogeneous computing system (2000).
[23] S. Penmatsa, A. Chronopoulos, N. Karonis, B. Toonen, Implementation of distributed loop scheduling schemes on the teragrid, Parallel and

Distributed Processing Symposium, IEEE (2007) 1–8.
[24] C. Yang, K. Cheng, W. Shih, On development of an efficient parallel loop self-scheduling for grid computing environments, Parallel Com-

puting 33 (2007) 467–487.
[25] K. Cheng, C. Yang, C. Lai, S. Chang, A parallel loop self-scheduling on grid computing environments, in: Proceedings of the 7th International

Symposium on Parallel Architectures, Algorithms and Networks, 2004.
[26] P. A. P. Costa, F. J. Lima, E. L. M. Garcia, H. J. C. Barbosa, B. Schulze, Task scheduling schemes for simulation optimization in computational

grids (in portuguese), in: Anais do VI Workshop de Computação em Grid e Aplicações, 2008, pp. 61–72.
[27] Michailidis, Margaritis, Parallel text searching application on a heterogeneous cluster of workstations, in: ICPPW ’01: Proceedings of the

2001 International Conference on Parallel Processing Workshops, IEEE Computer Society, Washington, DC, USA, 2001, p. 169.
[28] E. Post, H. Goosen, Evaluating the parallel performance of a heterogeneous system, in: Proceedings of the 5th International Conference and

Exhibition on High-Performance Computing in the Asia-Pacific Region, 2001.
[29] L. Pastor, J. L. B. Orero, An efficiency and scalability model for heterogeneous clusters., in: CLUSTER ’01: Proceedings of the 3rd IEEE

International Conference on Cluster Computing, IEEE Computer Society, Washington, DC, USA, 2001, p. 427.

16 P.A.P. Costa et al. / Procedia Computer Science 1 (2012) 7–16

