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ABSTRACT 

Using the simple vehicle of tridiagonal Toeplitz matrices, the question of whether 
one must pivot during the Gauss elimination procedure is examined. An exact 
expression for the multipliers encountered during the elimination process is given. It is 
then shown that for a prototype Helmholtz problem, one cannot guarantee that 
elimination without pivoting is stable. 

1. MULTIPLIERS IN GAUSS ELIMINATION 

It has been conjectured that when Gauss elimination is applied to the 
linear algebraic systems resulting from discretizations of Helmholtz-type 
differential equations [l], the elimination process may proceed without the 
need for pivoting for small enough grid sizes. The main goal of this note is to 
show that in general this conjecture is false. This is not a question of the 
near-singularity of the matrix in the case of the frequency parameter w being 
near an eigenvalue of the discrete Laplacian operator. The results below apply 
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most particularly to the case where w is well away from such an eigenvalue, so 
that the matrix in question is not even approximately singular. The vehicle we 
use is that of tridiagonal Toeplitz matrices, and the need for pivoting is 
studied by examining the multipliers encountered when the elimination 
process proceeds without pivoting. 

Consider the Toephtz tridiagonal matrix 

a b 
c a b 

0) 

C a b 
c a_ 

When a # 0 this matrix is singular only if 4bc > a2 and cos[ jr/( n + 11 = 
- a/2(bc) ‘I2 for some integer j between 1 and n. If a = 0, the matrix is also 
singular whenever n is odd. It is easily shown, e.g. by induction, that if we 
attempt to reduce this matrix to upper bidiagonal form without any pivoting, 
then the multiplier mi encountered when we use the ith row to eliminate the 
(j + 1, j) element of (1) satisfies the difference equation 

c 
mi = 

a - mi_lb ’ 
j=1,2,...,n-1; m,=O, 

where n is the dimension of the matrix (1). Further, it can be shown, e.g. 
again by induction, that these multipliers may be expressed in the form 

mi=cE. ,-l/Ei, j=1,2,3 ,..., n-l, (3) 

where the Ei’s satisfy the linear recurrence relation 

Ei - aEi_l + bcEi_2 ? 0, i=2,3,...,n-1; 

E,=l, E,=a. 

Substituting Ei = A’ in (4) yields that 

(4) 
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Then, using the initial conditions E, = 1 and E, = a yields 

Ai+’ - h’,f’ 

J%= 1;1,-h, ’ j=O,l,Z ).... 

Then, from (3) 

X(-h’ 2 
mi=c~~+~_h~+~’ j=1,2,3 ,..., n-l. 

Letting A, = exp(a + p) and A, = exp( - (Y + fi), we are easily led to 

mi = 
sinh[aj] 

sinh[cu(i+l)] ’ 
j=1,2,3 ,..., n-l, (5) 

where 

coshcu= a 
2( bC)1’2 . 

(6) 

Equations (5) and (6) are valid for general complex a, b, and c. 
For a, b, c real there are three cases to consider. The first case is when 

bc > 0 and 4bc > u2. In this case CY is imaginary and (5) (6) become 

c l/2 
mi = ( 1 sin[Pi] 

b sin[Ni+l)l 

and 

cosp= a 
2( bc)1’2 ’ 

(7) 

(8) 

Now the angle j3 is real. The second case is when bc > 0 and a2 > 4bc, for 
which (5), (6) apply with (Y real The third case is that of bc =C 0, for which 
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(Y = y - in-/% with y real. Then (5), (6) become 

sinh[ yi] 
b 1/2 for i even’ 

I I 

cosh[y(j + l)] 
- 
C 

mi = I cosh[yil 
sinh[y( j + l)] 

for i odd, 

and 

sinhy= a 
21bc1”2 ’ 

(10) 

The border case between the first and second case, i.e. a2 = 4bc, yields 

mi = 
c l/2 i 

0 - z i+l ’ 

(9) 

01) 

while the border case between the second and third cases, i.e. be = 0, yields 

mi=c/a. 02) 

Note that if b = 0, (1) is lower bidiagonal, while if c = 0, (1) is upper 
bidiagonal. 

We note that if the elimination proceeds without pivoting, the matrix (1) 
has the factorization 

b 
a b 

a 

m,-1 

0 

0 

1 

Ul b 

u2 

0 

b 
. . 

0 

. . 

b 

U” 
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whereu,=aandui=a-bmi_,for~=2,3,...,n.Clearlythestabilityofthe 
elimination process is controlled by the size of the multipliers mi, for if the 
mi’s are large, there will be accuracy lost in the calculation of the u,‘s. 

2. PROTOTYPE HELMHOLTZ PROBLEM 

Consider the prototype Helmholtz equation for the function U(X): 

- %x -u2u=f(x), Ocxcd, 
(13) 

u(O), u(d) given 

where w is the given constant frequency. A simple centered difference 
approximation yields a linear system with a coefficient matrix of the form (1) 
where a = 2- 02h2, b = c = - 1, and h = d /(n + 1). Here we have subdi- 
vided the interval [0, d] into n + 1 equal subintervals of length h. We have, 
for h sufficiently small, that 0 < a = 2 - 02h2 -C 2 and that bc = 1 and a2 -C 
4bc, so that (7) (8) apply. 

The eigenvalues of the operator (13) are given by s2,rr2/d 2 for s = 1,2,3,. . . . 
Now let km/d -C w =C (k + l)r/d, i.e., w2 is between the kth and (k + 1)st 
eigenvahres of (13), so that kr/( n + 1) < w h < (k + l)?r/( n + 1). Recall that n 
is the dimension of our matrix, so that we wish to examine the multipliers mi, 
1 G i G n - 1. Now as i ranges from 1 to rr - 1, (i + l)/? ranges over an interval 
at least as large as 

2(k+l)r (n-l)kr 
n+1 ’ I n+1 * 

Thus for n large, i.e. h small, (i + 1)p ranges over an interval which includes 
the first k multiples of 7~. This remains true no matter how small h becomes. 
Thus regardless of how small h is, the possibility exists that for some i, (i + l)p 
may be very close to a multiple of TIT; indeed, it may equal such a number. 
Therefore some multiplier mi, given by (7), may become arbitrarily large. 
Note that if k = 0, so that w < md [i.e., the problem (13) is positive definite], 
then /I(i + 1) < P for 1 G i G n - 1, so that the multipliers cannot become 
large. Of course, for a given w and h, the multipliers may be well behaved, 
even if w is such that our problem is indefinite. However, as indicated above, 
in general this cannot be guaranteed. 

Further insight may be gained by considering perturbations of the param- 
eter o. Suppose w and h are such that /? = 7~/( 1 + 1) exactly for some 1 such 
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that l~Z<n-1. For h small we have fi-wh=wd/(n+l) and therefore 

Therefore for h small, rr is large and 1 = O(n) = 0(1/h). For such p, we have 
m, = co. Now let us perturb the frequency w; we let 

w1= w(1+ EW’), 

where o’ = 0( 1) and E K 1, It is then easy to show that 

[ 

1 1 
mz= 1+1- (I+l)W’E I[ ( 1+0 hs+EZ+eh+; 11 (14 

and 

ml,, = 
2-(1-1)0’& 

1- lclY& 
+o E2+lae+,h+; 

i 1 
05) 

Clearly as E - 0, we have or + w, ml + co, and ml-r + 2. 
We now balance E against l/h. First, choose E = 0(h2), that is, let 

wi = w(l+ &r2). Recalling that I = 0(1/h), we have from (14), (15) 

mq&+o(;) and mr_,=2+O(h), 

so that ml_, is still bounded, while ml, which was infinite before we 
perturbed w, is now 0(1/h). Perhaps this is tolerable if h is not too small 

Now choose E= O(h), i.e. wi = w(l+ o’h). Then (14), (15) yield that 

ml=&- (I+:)hw, +0(h) and mr-l= 
2-(I-1)hw 

1- lhw’ 
+ O(h). 

If we choose o’ = 1/2d, we have that lhw’< 8, so that ml_, as well as ml is 
bounded independently of h. Thus a choice of wr = ~(1 + h/2d ) will reduce 
ml without causing a catastrophe with ml_,. 

It is easy to show that if u(x; w) is the solution of (13), then if we vary w 
we have 

u(r; or)- u(r; w) = o(w, - 0). (16) 
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Therefore, if we choose E = 0( h’), we have 

an error which is of the same order as the discretization error of the scheme 
employed above. Therefore we may reduce an infinite multiplier to one with 
magnitude of 0(1/h) by perturbing the frequency in such a manner so that 
any error introduced is of the same order as the discretization error. On the 
other hand, if we wish to reduce an infinite multiplier to one with magnitude 
of O(l), then we must perturb the frequency, and thus according to (16) the 
solution, by O(h), an error larger than the discretization error. 

3. UPWIND DIFFERENCES 

We briefly examine a second example which may also be analyzed using 
the well-known von Neumann stability theory. Consider the prototype con- 
vection-diffusion equation [2] 

1 
-% R 

-Vu,=f(r) in O<x<d, 

u(O),u(d) given; v>o. 07) 

If we approximate both u,, and u, by central difference quotients, we 
are led to a system with coefficient matrix of the form (1) with a = 
-2/Rh2, b = 1/Rh2 - V/2h, and c= 1,‘Rh2 3V/2h. Thus bc= [l- 
(RVh/2)2]/(Rh2)2. If RVh/B< 1 (i.e., the well-known [2] “cell Reynolds 
number” condition is satisfied), then bc > 0 and a2 > 4bc, so that (5), (6) 
apply and the multipliers are well behaved. (This conclusion can of course 
also be reached by noting that if RVh/2< 1, the matrix is diagonally 
dominant.) On the other hand, if RVh/2 > 1, so that the cell Reynolds 
number condition is violated, bc -C 0 and the multipliers may become large. 
This is easily seen in the limit R + cc (with V, h fixed), for which m, --) co. 

Now consider an “upwind diff erencing” scheme [2] in which u,, is 
approximated by the backward difference (ui - t+,)/h. We are then led to 
a = -2/Rh2 -V/h, b = l/Rh’, and c = 1/Rh2 +V/h. Then bc = 
(1/Rh2)2(1 + RVh) > 0 and a2 > 4bc for all R, h, and V. Therefore (5) and 
(6) apply and the multipliers are well behaved. In the limit R + co it is easy to 
show that the multipliers tend to unity. Thus, there is no cell Reynolds 
number condition when upwind differencing is used on the convection term. 
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We note that once again this conclusion may be deduced from the diagonal 

dominance of the matrix. 
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