Transcription and translation of the chloroplast atpB-gene and assembly of ATP synthase subunit β

Stefan Leu, Dvorah Weinberg and Allan Michaels

Department of Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Received 14 May 1990

In vitro transcription and subsequent translation of the cloned *Chlamydomonas* chloroplast atpB gene was used to study assembly of ATP synthase. Translation in the presence of thylakoids resulted in association of the β subunit with the membrane. The in vitro synthesized polypeptide bound to the membrane copurified with CF₁ on sucrose gradients. This provides more evidence for the self-assembly of CF₁.

Chloroplast; Translation; atpB-gene; CF₁ assembly; ATP synthase

1. INTRODUCTION

Chloroplast ATP synthase (CF₀-CF₁) couples proton translocation across the thylakoid membrane to synthesis or hydrolysis of ATP. The extrinsic part of this complex, CF₁, can be extracted from the membrane and shows Ca²⁺- and Mg²⁺-dependent ATPase activity [1]. Enzymatic properties of CF₁, the closely related mitochondrial and bacterial F₁ complexes have been extensively studied [2,3]. A heterodimer α₁/β₁ has been shown to bind nucleotides and have ATPase activity. This trimer contains one active site, while the other binding sites have regulatory functions [2,4]. Recently, Mg²⁺-dependent ATPase activity has been found in isolated β-subunit of spinach CF₁ [5].

CF₁ is composed of 5 subunits, three of which are synthesized and encoded in the chloroplast [6]. The atpB gene from *Chlamydomonas* chloroplasts has been sequenced [7] and subunit β was isolated after overexpression in *E. coli* [8]. The subchloroplast site of atpB mRNA translation is a topic of some controversy. Polyribosomes and mRNA directing synthesis of the β-subunit have been found associated with membranes in spinach and *Chlamydomonas* [9,10]. Soluble and membrane-bound polyribosomes capable of β CF₁ translation were found in pea [11]. Recently, it has been proposed that the thylakoid-bound mRNAs for CF₁ proteins are electrostatically bound to thylakoids of *Vicia faba* [12]. Thus, there may not be functional association of translation and membrane association. Investigation of mutants deficient in photophosphorylation was used to study ATP synthase assembly. Alterations in the β-subunit prevented assembly of the entire complex [13]. However, isolated β-subunit could restore photophosphorylation in chromatophores of *R. rubrum* [14]. Therefore, the β-subunit may have a central role in the activity and assembly of CF₁.

In this paper we describe the in vitro transcription/translation of the cloned atpB gene. The in vitro translated β-subunit associated with thylakoids and copurified with CF₁. This may provide more evidence for the self-assembly model of CF₁.

2. MATERIALS AND METHODS

The 2.6-kb HindIII-KpnI fragment of plasmid pB7 (a gift from Dr. N. Gillham), containing the *Chlamydomonas* chloroplast atpB gene, was directionally cloned into pT7-2. The fragment containing the atpB gene was isolated from gels of the plasmid cut with *KpnI*, blunt ends were made using the Klenow fragment of pol I (BRL) plus deoxynucleotides, phenol extracted, precipitated and then digested with HindIII to give a ~2.5 kbp fragment with a blunt end and a HindIII compatible end. The plasmid (pT7-2) was digested with *SmaI* and then with HindIII to yield a linear vector with a blunt end and a compatible HindIII overhang. Each DNA fragment was then isolated from agarose gels by a standard procedure [15]. The vector was treated with bacterial alkaline phosphatase (BRL), phenol extracted, precipitated with ethanol, and resuspended in water. Ligation of the plasmid to the insert was done in two stages. The first stage was at low T4 ligase (BRL) concentrations at room temperature for 4 h to ligate the HindIII ends. The reaction was then diluted 10-fold and incubated at 5 x concentration of T4 ligase at 15°C overnight. The entire reaction was then ethanol precipitated after the addition of carrier tRNA. The resulting plasmid was then used to transform competent cells (DH5α, BRL) [15]. Transformants were selected on solid media containing 50 µg/ml ampicillin. The resulting clones were analyzed by electrophoresis for the presence of the correct plasmid by restriction endonuclease analysis of alkaline minipreps [7,15].

The purified plasmid containing the atpB gene was linearized with restriction endonuclease EcoRI, phenol extracted, precipitated and used to produce RNA in vitro with T7 RNA polymerase as described by the supplier (BRL). After digestion with RNase free DNase (Pharmacia), the in vitro transcribed RNA was phenol-extracted, precipitated by addition of 2 vols of ethanol and analyzed by elec-
trophoresis to determine concentration and homogeneity of each preparation [15].

Chloroplast membranes were prepared from synchronous cultures of Chlamydomonas and chlorophyll determined as previously published [9]. Reticulocyte lysate translation of the in vitro transcribed RNA (25 μg/ml) in the presence or absence of thylakoids (300 μg/ml chlorophyll) was done according to the supplier (Promega) at 30°C with the Mg²⁺ and K⁺ concentrations adjusted to 1.5 and 120 mM and addition of [³⁵S]methionine (~1000 Ci/mmol, Amersham). Incorporation was measured by liquid scintillation of hot TCA-insoluble radioactivity on filter paper discs of duplicate 1 μl samples from each reaction. Post-translational thylakoid association of β CF₁ were done as follows: reactions were prepared with and without thylakoids, after 1h incubation at 30°C cycloheximide (10 μg/ml) was added to all reactions, thylakoids were added to those translations not containing membranes and incubation continued for an additional hour.

The membranes were recovered from translation reactions by centrifugation and washed in B buffer (120 mM KAc, 1.2 mM MgAc₂, 25 mM Hepes/KOH, pH 7.8). They were solubilized either for electrophoretic analysis or in 1% Triton, 10 mM EDTA, 50 mM Tris, pH 7.6, and centrifuged at 12000 x g for 5 min. The soluble material was mixed with solubilized cold thylakoids (0.5 mg chlorophyll) as carrier and used to isolate CF₁, by sucrose gradient centrifugation as published [9]. Gradient fractions (0.3 ml) were collected with an ISCO gradient fractionator and protein precipitated with addition of 1.5 ml acetone on ice for 1 h. The precipitated proteins were collected by centrifugation at 12000 x g, the pellets dried under vacuum and solubilized in electrophoresis sample buffer. Both agarose and acrylamide gel electrophoresis was done as described [15,16]. A parallel gradient of solubilized membranes was fractionated. Nitrocellulose filters containing electrophoretically separated proteins (10 μl of each sample) were probed with an antibody raised against the α/β subunits of CF₁ [9]. Bound antibodies were detected by protein A conjugated alkaline phosphatase (Sigma no. P9650) according to the protocol of Promega.

3. RESULTS

Analysis of the recombinant plasmid by agarose gel electrophoresis after restriction endonuclease digestion showed the orientation of the atpB gene relative to the T7 promoter. The plasmid was then used for in vitro transcription and the recovered RNA was analyzed by denaturing agarose gel electrophoresis. The Mₑ of the RNA produced is similar to that determined by Northern blot analysis of cellular RNA (data not shown) [17].

Translation of the atpB mRNA in the reticulocyte extract showed synthesis of polypeptides with a maximum Mₑ of about 52 kDa. Translation was neither significantly stimulated nor inhibited in the presence of photosynthetic membranes. Analysis of recovered, washed membranes showed that the β-subunit was associated with thylakoids (Figs 1, 3). Approximately 10% of the in vitro translated β-subunit was recovered with membranes as calculated from radioactivity incorporated into membranes. We have investigated post-translational association of the atpB gene product with membranes. Translation in the absence of membranes and subsequent addition of thylakoids to reactions was compared to translation in the presence of membranes. In each case the membranes were recovered and washed before electrophoretic analysis (Fig. 1). The β-subunit of CF₁ was associated with recovered membranes under both conditions. The amount of β in membranes was 1.3-fold greater co-translationally as estimated from cpm and electrophoretic analysis (Fig. 1).

We wanted to determine if the membrane-associated β was part of the CF₁ complex or bound to thylakoids in a non-specific manner. Membranes were recovered from translation reactions, solubilized in detergent and analyzed as described in section 2. The position of CF₁ polypeptides in the gradient fractions was determined by Coomassie stain and Western blots using a well-characterized antibody (Fig. 2) [9]. Some radioactive β-subunit as well as lower molecular weight products of the translation were found at the top of the gradient, while radioactivity in the gradient was coincident with the position of CF₁ (Figs 2, 3).

4. DISCUSSION

We have measured translation/assembly of the CF₁ β-subunit in a heterologous system. The translation of chloroplast mRNAs in the reticulocyte lysate results in a product pattern comparable to that of in organello and in vivo pulse labelling [16]. In spite of the
Fig. 2. The position of CF₁ in gradients of Triton-solubilized thylakoids was established by Western blot analysis (10 μl samples from fractions 1–7). The blot was probed with an antibody to the α/β-subunits of CF₁. This antibody was previously shown to be specific for the two subunits [9]. The highest amount of cross-reacting material occurred in fractions 4 and 5.

heterologous nature of the translation conditions it was possible to insert functional D₁ protein into photoinhibited thylakoids and restore PS II function [18]. The in vitro translation pattern in the reticulocyte extract is similar to that of atpB expression in E. coli [8]. In each system many premature termination products are observed.

Our previous results indicated that α/β-subunits of CF₁ were translated by rough thylakoids. We postulated that chloroplast translated subunits of CF₁ are synthesized and may exist in a transient manner unassembled in the membrane [9]. In this publication we show that β CF₁ produced from in vitro transcription/translation of the atpB gene is capable of assembly into CF₁, either by exchange with existing CF₁ or by assembly of new CF₁ from pools of the other subunits present in the membrane, as postulated in our previous work.

Both atpA and atpB genes show strict coordinate regulation in abundance, transcription and translation in the Chlamydomonas cell cycle. Their expression during the light period of the cell cycle may mainly be regulated by mRNA abundance [9]. This would indicate that coordinate synthesis of the two polypeptides is required for ATP synthase assembly.

Point mutations in the atpB gene result in cells deficient for CF₁ assembly. The mutated atpB gene was transcribed, translated, but not accumulated on the membrane. The authors concluded that subunit β is necessary for CF₁ assembly and binding to the membrane [13]. However, these results also permit the conclusion that the mutated beta subunit prevents CF₁ assembly and therefore induces high turnover of the unassembled subunits in vivo.

It has been demonstrated that the β-subunit coupled to a transit sequence is imported into isolated chloroplasts but not assembled in CF₁ [20]. Therefore, translation should take place within the chloroplast for proper assembly. It is not clear, at this time, whether translation must be associated with thylakoids [9–11]. Our results show that translation of atpB mRNA was unaffected by the presence or absence of membranes. A small increase in cotranslational association to membranes occurred compared to post-translational association. We do not know whether the post-translationally membrane-associated β-subunit is complexed in CF₁.

Recent reports have demonstrated chloroplast transformation using the atpB gene to restore autotrophic growth in deletion mutants of
Chlamydomonas [21]. In vitro assembly of mutated atpB genes in addition to chloroplast transformation can now be used to investigate the molecular basis for assembly and function of this polypeptide in CF1.

Acknowledgements: This work was supported by a grant, DCB 8607745, from National Science Foundation (USA). We would like to thank Dr N. Gillham for the cloned atpB gene.

REFERENCES