
 Procedia IUTAM   3  ( 2012 )  25 – 52 

2210-9838 © 2012 Published by Elsevier B.V. Selection and/or peer review under responsibility of Dr. Oana Cazacu.
doi: 10.1016/j.piutam.2012.03.003 

IUTAM Symposium 

Multi scale modeling of shock interaction with a cloud of particles using an
artificial neural network for model representation

C. Lua, S. Sambasivanb , A. Kapahia, and H. S. Udaykumara* 
aDepartment of Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA-52242, USA 

 
b Theoretical Division, Group T-5, MS-B284, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 

 

Abstract 

The evolution of a solid-gas mixture under the influence of a shock wave depends on particle-particle 
and particle-shock interactions; i.e. the macroscopic distribution of particles is determined by physics at 
the particle (micro)-scale. This work seeks to simulate the macro-scale dynamics of gas-solid mixtures by 
employing information accumulated from direct numerical simulations (DNS) at the micro- (i.e., particle) 
scale.  Data on the forces experienced by particles in a cloud are collected from DNS using a compressible 
Eulerian solver and provided to an artificial neural network (ANN); the simulations are performed for a 
range of control parameters, such as Mach number, particle radii, particle-fluid density ratio, position, and 
volume fraction. Beginning with a simple single stationary particle case and progressing to moving 
particle laden clouds, the ANN is trained to evolve and reproduce correlations between the control 
parameters and particle dynamics. The trained ANN is then used in computing the macro-scale flow 
behavior in a model of shocked dusty gas advection. The model predicts particle motion and other macro-
scale phenomena in agreement with experimental observations. 
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1. INTRODUCTION

Phenomena involving high-speed multiphase flows occur in dust explosions, condensation shocks, 
explosive debris transport, detonation in heterogeneous media and so on. In these flows complex 
interactions occur between the various coexisting phases, including carrier fluid-particle interactions and 
particle-particle interactions[1, 2].  Such flows are difficult to visualize (due to the wide range of length 
scales and short time scales involved); experimental measurements are difficult and expensive to obtain.  
Even where experimental data are available, yielding empirical correlations that encapsulate behavior  
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(typically drag correlations), the modeling of the mixture dynamics can lead to loss of important physics, 
i.e. the fine-scale behavior may be homogenized and diffused.  Preserving simplicity of the closure model 
(which transmits fine-scale behavior to the coarse-scale) can exact a toll on the extent to which fine-scale 
physics is captured at the coarse-scale. 

As an archetype of compressible flows of mixtures, computational modeling of shocked particle-laden 
flows has received much attention [3-8]. However, in such simulations, one must rely on empirical models 
to describe the dynamics of the particle phase; in particular empirical drag laws are employed in effecting 
particle motions in both Lagrangian [9] and Eulerian [5, 10, 11] treatment of the solid phase. Since the 
length scales of the discrete particles in a multi-material system and the time scales of response of the 
particulate phases may be vastly different from that of the bulk flow, resolving the dynamics of the 
individual components of the mixture is impossible. Therefore, some overall (averaged or homogenized) 
behavior of the multi-material mixture needs to be modeled and computed, so that resorting to empiricism 
is unavoidable. While such averaged material representations may be sufficient for many engineering 
applications, there are some physical problems where the local behavior of the material, i.e. the detailed 
interactions between the (unresolved) individual phases in the mixture can become important and can 
influence the observed global dynamics.  

An example of macroscale phenomena that reflect particle-scale dynamics can be seen in the excellent 
experiments of Boiko et al [1]. In their experiments a cloud of particles (polystyrene, average particle 
diameter  of 80 microns) is hit by a shock wave (traveling from left to right).  The overall behavior of 
the particles subjected to the shock is very interesting; in particular, for the high particle volume fraction 
case the particle distribution assumes a triangular form as illustrated in Figure 1 (b), while the low particle 
volume fraction case (figure 1(a)) does not produce a distinct structure. Boiko et al also produced a 
column of particles in a shock tube and studied the evolution of the column and its interaction with a 
planar shock. Figure 1(c) illustrates the response of a column of particles to the shock. In each case, the 
geometry of the initial particle distribution as well as the volume fraction of the initial cloud determines 
the macro-scale distribution of the particles following interaction with the shock. For example, the 
formation of the triangular structure in the case of the heavily loaded gas-solid mixture must hinge upon 
the interactions between the more densely packed particles; the physics underlying the formation of a 
triangular pattern is recovered by the ANN-based multiscale modeling scheme developed herein and is 
explained later in this paper.  

The particle motions in a macro-scale particle-fluid mixture model traditionally follow from Newton’s 
laws applied to the individual particles which are moved using models for the force transmitted to the 
individual particles by the impinging shock [2, 4, 5, 12]. This force will depend on the shock strength 

(Mach number, M), the density of the particle relative to the fluid ( p

f

), the volume fraction of the solid (

p ) and the particle size ( . The key question is: how does one determine the relationship between 
each of these parameters and the force on a given particle in the cloud?  
The route pursued in this work is to perform direct numerical simulations (viewed as in silico 
experiments) on small clusters of particles subject to a range of conditions in the parameter space defined 
above (consisting of M, , ,  to learn about and quantitatively express the behavior of 

“representative particles”. For example, one can compute the drag versus time curves for particles based 
on such simulations as a function of the above four parameters. Then one can encapsulate the dependence 
of the drag on time as well as on the parameters in the form: , which is 

conventionally the route taken in establishing experimental correlations or drag laws.  However, since the 
drag law to be derived is dependent in rather complex ways on multiple parameters, the resulting  
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Figure 1. Illustration of three cases of shock-particle cluster interactions as in the shock tube 
experiments of Boiko et al. The macro-scale cloud shape evolves differently in each case as a 
result of micro-scale interactions between the particles and the shocklets in the cloud. The incident 
shock (solid line), reflected shock (dashed line) and transmitted shock (dash-dot line) are indicated 
in each case: (a)A sparse cloud of particles evolves into a diffuse cloud of no particular shape, with 
reflected and transmitted shocks of nearly equal strength; (b) A dense cloud evolves into a 
characteristic V-shaped cloud with strong reflected shock and weak transmitted shock; (c) A dense 
column evolves into a column with clustering of particles in the fore part and dispersed particles in 
the rear of the cloud. 

(a) 

(b) 

(c) 
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manifold in the parameter space that describes the drag law can be quite difficult to obtain.  Therefore, the 
idea of employing a device to “learn” this law from a series of computational experiments becomes 
attractive. The general concept of utilizing neural architectures to learn behaviors at a given scale that can 
be transmitted to other scales opens the possibility of using artificial neural networks (ANNs) [13-15] for 
multiscale modeling.  The current approach follows the route of ANN-based learning to effect inter-scale 
communication, which has been applied in a few instances of multiscale modeling thus far [16-21].  

A particular application of artificial intelligence which closely parallels the application herein is that of 
pattern recognition or knowledge assimilation; this feature has been adopted for use in a variety of fluid 
dynamics applications [19, 20, 22, 23]. An ANN is capable of learning complicated behavior, i.e. 
effectively building a representation of functions of several variables by modifying a collection of weights 
attached to its “neurons”[15, 24]. The computational effort in ANN applications comes from the need to 
train the ANN by providing it with sufficient samples of training data, so that the ANN can adequately 
construct  the manifold (in a specified multidimensional parameter space) representing the behavior of the 
system. The number of samples required to train the ANN depends on the complexity of the behavior to 
be represented and also depends on the complexity of the ANN itself. Once the ANN is trained however, 
knowledge recovery is rather rapid, and is performed by interrogating the ANN. This work will seek to 
demonstrate these concepts by applying it to solve the problem of shock-impacted particle laden flows as 
pictured in Figure 1. The attempt is to capture macroscopically observed behaviour without empirical 
“closure” models for microscopic particle-fluid interactions. Instead the link between the particle scale 
and fluid scale is established through information assimilated by the ANN from direct numerical 
simulations (DNS) at the micro-scale. 

2.  NUMERICS AND METHODS 

2.1.  Computational set-up and limitations 

The micro-scale calculations are in the spirit of DNS, i.e. the shocked flow over an individual particle 
is fully resolved and each particle is in turn transported by integrating the forces acting on its surface; as 
such no modeling of the effect of solid on fluid or vice versa is involved. This demands that the 
computational domain be large enough to contain the incident shockwave, the cloud of particles, and 
shock transmission and reflections. In the spirit of DNS, the grid needs to be fine enough to capture 
necessary details of shock-particle interaction, particle motion, shock wave dynamics, transient forces, 
and sharp interfaces. Of course, limitations posed by computational resources and efficiency concerns 
proscribe the physical mechanisms that can be adequately treated in the simulations. Here, it is assumed 
that viscosity plays a minor role for the short (nanosecond) time durations over which a shock wave 
impinges on and transmits momentum (drag) to a particle. Most previous work [2, 25-30] has resorted to 
using drag laws as functions of Reynolds and Mach numbers. These types of drag laws do not explicitly 
define unsteady forces[31] but rather an overall drag coefficient once the shock has already passed over 
the particles. In fact, for small enough particles (i.e. in the micron-range), shock passage is rapid enough 
that viscous effects can be neglected and the Euler equations can be employed to predict forces on the 
particles; then, viscous effects come into play at much longer time scales. The inertial time scale can be 
estimated as:  

 

and the viscous time scale as: 
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where dp is the particle diameter, U  is the flow velocity, a is the speed of sound, M is the Mach 
number,  is the kinematic viscosity, and Re is the Reynolds number. The ratio between the inertial and 
viscous time scale is: 

 

 

The Reynolds number is defined as the ratio of inertial forces to viscous forces. For high speed 
compressible flows, the Reynolds number is very large. It usually lies in the range of 105 to 106 even for 
small particles. The implication is that the effects of the viscosity of a fluid would not be significant until 
the shock is already 105 to 106 particle diameters away;  thus in determining the motion of particles in the 
instants following shock impingement viscosity may be neglected and the driving force behind shocked 
particle motion is mainly inertial in origin. Therefore the micro-scale (DNS) calculations were performed 
using Euler equations. A sample result from one such DNS calculations for a cloud of 8% volume fraction 
after passage of a shock (Mach number of 1.7) is shown in Figure 2. DNS reveals the rich fine scale 
structure of the flow in the cloud, including shocklets and vorticity layers arising from barotropic 
generation mechanisms.   These intricate mechanisms at the micro-scale are to be captured and 
encapsulated in an ANN-assimilated representation of the forces acting on a representative particle in the 
cloud. 

The parameter space explored in the DNS and used to train the ANN was also limited. For the purpose 
of making comparisons, our simulations were kept fairly close to numerical calculations[5, 6, 32-35] and 
experiments performed [1, 27, 28, 33, 36-40] and published by others. As mentioned before the parameter 
space is defined by the Mach number, the particle volume fraction, the relative density of the particle to 
the fluid and the time elapsed after shock impingement. Mach numbers were set between 1.2 and 4.0,  

was kept between 100 and 3100, and  between 2.0% and 22.4% when large particle arrays were used. 
For larger particle arrays the setup is similar to the 41 particle cases (shown in Figure 3). The shock wave 
was initially placed at 5 units into the domain from the left boundary and traveled to the right. 

2.2. Governing Equations 

The governing set of  hyperbolic equations for compressible flow are solved[41]:  
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In the equations above, 
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where E is the specific total energy and e is the specific internal energy. For the Euler equations in 

Cartesian coordinates, the source term S , is set to zero. Closure for the governing equations is achieved 
by utilizing a stiffened equation of state, 

1P = e P  (4) 

where is the specific heat ratio and P is a material dependent constant. Under the assumption of an 
ideal gas, 0P =  and . For stiff fluids such as water, the specific heat ratio and the material 

 Figure 2.  Snapshot of the flowfield for an instant of time after a shock has passed through a 8% solid 
fraction cloud of particles. The reflected shock, transmitted shock and the interacting shocklets in the 
crowd are shown in the figure. 
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dependent constant would assume the values of 5.5 GPa and 6.13 GPa, respectively. For the stiffened 
equation of state, the speed of sound  is: 

P+ P
c =  (5) 

2.3. Immersed Boundary Representation and Tracking 

In the micro-scale calculations the particles are treated as embedded sharp boundaries that propagate 
through the underlying Cartesian mesh [40]. The sharp interface treatment requires continuous tracking 
and representation for the interfaces between the solid and fluid. In this work,  level set methods[42, 43] 
are used to represent the embedded objects. The value of level set field, l  , at any point is signed normal 
distance from the thl immersed object with 0l inside the immersed boundary and 0l outside.  The 
interface is implicitly determined by the zero level set field, i.e. the 0l contour represents the thl
immersed boundary. The standard narrow band[42]  level set algorithm is used to define the level set 
field. The embedded interfaces are moved using level set advection equation : 

 
. 0l

l lV
t                                                                                                                               (6)                

where lV  denotes the level set velocity field for the thl  embedded interface. A 3rd -order ENO scheme 
for spatial discretization and 3rd -order TVD Runge-Kutta time integration are used in solving the level set 
advection equation. The velocity of level set field lV  is defined only on the embedded interface (the zero 
level set contour) and is determined by force balance on each particle. The value of velocity field at the 
grid points that lie in the narrow band is determined by solving an extension equation to steady state as 
given below: 

extV . 0
                                                                                                                                      

where is any quantity such as interface velocity component ( ( )l xV  or ( )l yV ) that needs to be 

extended away from the interface. The extension velocity extV  above is given by 
( ) /ex t l l lV s ig n                                                                                                       

A reinitialization procedure is carried out after level set advection to return the l field to a signed 
distance function such that 

l 1 . The reinitialization procedure is done by solving the following 

equation to steady state  

. ( )l
l lw sign

                      
In the above, 0

0
0

( )
(( ) )

( )
l

l
l

w sign  and 0( )l is the level set field prior to reinitialization. 

Boundary Conditions on the solid-fluid interfaces 

To handle the interfacial conditions through continuity of the mass, momentum and energy fluxes 
along with material property jumps across the interface, a ghost fluid method [41, 44] is employed. In the 
ghost fluid method, this translates to suitably populating the ghost points [41, 44, 45] pertaining to each 
phase with appropriate values of all variables so that the interface conditions are satisfied. At the interface 
of a solid body immersed in a compressible flow, the following boundary conditions were applied for 
velocity, temperature and pressure fields. For no-penetration,  normal velocity: 
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n nv = U  (7) 
where Un is the center of mass velocity for the embedded rigid object. To satisfy the slip condition for 

the tangential velocity: 

1 0
tv

=
n

  and  2 0
tv

=
n

  (8) 

To satisfy the adiabatic condition: 
 

0T =
n

 (9) 

To keep the normal force balance at the solid-fluid boundary: 

1

2
s t

s n

vp = a
n R

 (10) 

whereV is the velocity vector in the global Cartesian coordinate, ˆnv = V n is the normal velocity, 

11
ˆ

tv =V t , 22
ˆ

tv =V t  are the tangential velocities in the interface referenced curvilinear coordinates, n̂, 

1̂t , 2̂t are the normal and tangential vectors, R is the radius of curvature and na is the acceleration of the 
interface; the set of boundary conditions that govern the behavior of the flow near the embedded solid 
body must be enforced by suitably populating the corresponding ghost points[41].  Details on the 
treatment of various combinations of materials in the ghost fluid framework are presented in previous 
publications [41, 46-49]. 
 
 

 
 

Figure 3. Computational domain for  simulating  shock interaction with multi-particle arrays in the 
micro-scale DNS computations. 
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2.4. Artificial Neural Network  

 The neural network used is a feed-forward, back-propagation network[13]. It possesses one 
hidden layer of neurons between the input layer and output layer. The input layer includes one bias neuron 
to facilitate different levels of activation for each hidden neuron. The last layer consists of outputs where a 
final prediction can be used to find an error in the prediction and adapt the weights to the previous layers 
allowing the ANN to learn. The basic network layout is shown in Figure 4. 

 
 

 
 
 
 The ANN must go through two important phases before it is capable of producing useful 

predictions. The first phase is the training phase where a set of data is provided and the ANN learns from 
the data. The algorithm used to learn and edit the weights for each neuron is called a back-propagation 
algorithm [15, 24]. Every neuron in the network contains the same basis function (sigmoid in the present 
case) for processing data. For most cases, there is only one output neuron that sums all its inputs to arrive 
at a final prediction. A back-propagation algorithm[13] takes the predicted values and compares it to the 
expected values (i.e. to the target output for the given inputs in the training set). Depending on the error 
between the two, the weights for each neuron is edited. The testing of the neural network is performed by 
making a random selection from the data set (until all the data are run through) and each data point is used 
to train the neural network once per cycle. When the ANN is in training, it should be learning from every 
point in a data set, otherwise learning will be biased. Every iteration step for an ANN consists of cycling 
through the total number of data points in a data set. The error produced on every iteration step can be 

Figure 4. Architecture of the ANN employed in the present work. A feed-forward back-
propagation network with  sigmoid basis function was used. 
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plotted to show a convergence curve on how the ANN is being trained. One such convergence curve for 
the training of ANN is shown in Figure 10(a). Note that as the iterations increase the learning of the ANN 
saturates and convergence is declared at a pre-specified error tolerance or maximum iteration count. 

When the training phase is complete, an artificial neural network can be tested by querying with a 
testing set of input data. The resulting output from the ANN is compared against the desired output 
corresponding to the input parameters for that testing set. The ANN is assessed to have successfully 
learned if the error produced for the testing set is below a desired tolerance. Querying an ANN at multiple 
points inside the parameter space allows testing for the robustness of the prediction from the ANN; in 
general the prediction deteriorates at the fringes of the parameter space or in regions of parameter space 
where training data are sparse.  The performance of the ANN as a function approximation device is 
illustrated in examples below.  

3. 4.  RESULTS 

3.1. Validation of the flow solver 

 The computer code employed in the present work has been extensively validated for a range of 
compressible multimaterial flow problems [46-49]. However, to ensure the reliability of the present 
calculations, the drag force for a cylinder in shocked flow was computed using the same parameters as 
Drikakis et al.[32]. The comparison of the non-dimensional drag force is shown in Figure 5.  The transient 
drag curves produced by Drikakis et al. and by the present calculations show minimal difference in peak 
magnitude, even though Drikakis et al. employed Navier-Stokes computations for rather modest Reynolds 
numbers for their calculations.  The similarity of the drag behavior for the Euler and Navier-Stokes 
computations supports the present inviscid computations for the shock-particle interaction, particularly for 
the high Reynolds numbers that apply to the particles considered by Boiko et al [1] and targeted in the 
present work.  
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3.2. Examples of ANN learning process 

3.1.1 Learning a drag law 

When a planar shock wave hits a stationary spherical particle and passes over it, the drag force on the 
particle (i.e. force exerted on the particle) changes throughout shock passage. Such drag versus time 
curves have been obtained by Tanno et al. [36] in an experimental (shock tube) setup. Empirical drag laws 
used in transporting Lagrangian particles in macro-scale simulations do not capture the transient drag 
experienced by the particle as the shock passes over it. Instead, some averaged measure of steady drag is 
available that omits the details of the shock passage. With trained ANNs, however, one can retain the 
information on the drag versus time for a wide range of parameter space. Thus, information obtained from 
experiments or computations need not be discarded; it can be learned and retained as “knowledge” by the 
ANN[50].  This does not imply that a large data set is stored. Once the ANN is trained the information on 
the drag versus time behavior is stored in the weights attached to the individual neurons in the ANN; the 
individual data sets used for training can then be discarded.  Here an ANN is trained to learn the drag 
versus time behavior for single particles and clusters. 

Single Particle 

The force on a stationary particle due to shock passage is simulated first. A grid of 500 by 250 nodes 
was used and was deemed to be adequate based on the validation case above. The initial location for the 
shock wave was set to be greater than one cylinder radius away from the cylinder. The shock was allowed 
to impact the cylinder and continue to travel and the data for horizontal (drag) force was recorded over 
time. The particle motion was computed from Newton’s law with the force acting on the particle obtained 
by integrating the pressure over the particle surface. The chosen Mach numbers allow for comparison to 
conditions used in various experiments[1, 36]. The resulting drag versus time curves at Mach numbers 

Figure 5.(a) Comparison of drag versus time curve from the present computations with the Navier-
Stokes computation of Drikakis et al. The Mach number was 1.3. (b) The flowfield developed in 
shown in the form of iso-density contours for a time instant when the shock has passed all the way 
around the cylinder. 

(b) (a) 
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ranging from 1.1 to 1.5 are shown in Figure 6(a). The ANN was trained using this data set. Following 
training the ANN was tested for a Mach number of 1.3 by predicting the drag versus time behavior and 
comparing it with a computed drag versus time curve. The drag versus time curve predicted by the neural 
network as well as the calculated transient drag curve is displayed Figure 6(b). The neural network was 
capable of matching the computed drag curve and reproduced the negative drag force at later times for the 
low Mach number cases. However, in this case, the peak value of the drag was underestimated by the 
neural network. This lack of agreement near the peak is due to the neural network’s sigmoid activation 
function and the fact that with the data evenly being distributed, a small number of data points exist near 
the peak. The resulting unbalanced set causes the neural network to spend more time fitting to the rest of 
the curve than the peak. The sharper the peak, the less likely the neural network will produce an accurate 
depiction. Several solutions including the use of radial or wavelet basis function neural networks [23, 50-
52], neural network expansion and data segmentation [13] and multi-resolution [51] exist but are left for 
future work. 

 

 
 

Multiple Particles 

The drag versus time curve for a single particle with only one interacting shock wave is fairly well 
predicted by an artificial neural network. In order to obtain a general drag curve with characteristics that 
could be applied to any particle embedded in a cloud and in a field with multiple shocklets, data was 
obtained from selected particles in an ensemble of arrangements. The particles in this case number 41 as 
illustrated in Figure 7. Simulations were performed with randomly seeded clusters of particles and by 
defining a “representative particle (RP)” embedded in the flow; much as in the case of “representative 
elementary volumes” (REVs [53, 54]) employed in volume-averaged formulations of multiphase flows. 
One way to define such representative particles is to locate them at the center of a cloud of particles; this 
avoids edge effects and wave reflections from domain boundaries. The representative particles for one 
particular case are illustrated by the outline in Figure 7(a). The boundary conditions were set to simulate a 

Figure 6. (a)  Computed drag versus time curve for shock impingement on a moving particle. The 
curves for Mach numbers in the range of 1.1 to 1.5 are shown.  The data shown comprises the 
training set. (b) Comparison of the ANN-predicted drag curve for an intermediate Mach number of 
1.3 (testing set) with the drag versus time computed by the code. 

(a) (b)
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shock tube for comparison to the works Boiko et al.[1], Tanno et al.[36] and Sun et al.[28], with the left 
edge of the domain as an inlet, the right edge an outlet, and both the top and bottom edges as reflective 
boundaries. A snapshot of the flowfield obtained can be seen in Figure 7(a). 

 

 
 
 

 
 
The drag curves for the designated RPs were extracted by the integration of pressure over the level set 

boundary; these curves are shown in Figure 7(b). The drag curves of the RPs were then averaged resulting 
in the bold curve in Figure 7(b). This averaged drag versus time curve is considered to correspond to a 
representative particle and is used to train the ANN for the particular realization depicted in Figure 6(a). 

Apart from the Mach number, the other parameters that can affect the behavior of particles in a cloud 
include the volume fraction of particles, the particle density relative to the fluid, particle shape, collisions 
between particles and viscous effects as controlled by the Reynolds number. The last three effects are not 
considered in this work as they are expected to have secondary effects in the initial phase of shock-
particle interactions.  Of the three parameters considered, namely Mach number (M), particle density ratio   
( ) and volume fraction , the effects of the  variable are much more easily verified by direct 

viewing of the flow field at the macroscale, as depicted in Figure 1. Thus, with all other parameters the 
same, the dense cloud case depicts a greater overall modulation of cloud shape in Figure 1(b) and greater 
compression of the cloud along the direction of flow in Figure 1(c). A comparison of the averaged drag 
curves (for the representative particle) for varied  can be seen in Figure 8(a) for a fixed Mach number 
and density ratio.  Figure 8(b) shows the drag for varying Mach number with fixed density ratio and . 
The next parameter examined in the simulations was the density of the particle. Most of the experimental 
models of shock-particle interactions employed spheres made of acrylic and bronze [1]. To conform to the 

Figure 7. (a) Schlieren image of the flow field and representative particles for a shocked cloud of 
particles ( p = 8%, M=2.8). (b) Drag versus time curves for the selected five particles in the array  
and the averaged drag (bold line). 

(a) (b)
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materials used in [1] the maximum  was set to 1000 and varied to a minimum value of 100. The 

behavior of drag force with respect to the variation in density is displayed in Figure 8(c). 
 
 
 
Thus, the simulations and drag-time curves obtained in this section cover the variation of the drag with 

time in a parameter space spanned by M,  and . The information stored in the trained ANN is thus a 

manifold in the multidimensional parameter space that can reproduce, upon querying with an input set (M, 

 Figure 8.(a)  Drag versus time curves for different volume fractions (for M=2.8,  =1000). The 

drag on a particle in a cloud decreases with increasing volume fraction. (b) Drag versus time 

curves for different Mach numbers ( =8%,  =1000)  Drag increases with increasing Mach 

number. (c) Drag versus time for different density ratios (M=2.8, =8%). Drag increases with 
increasing particle density. 

(a) (b)

(c) 
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 and ) the output (drag force). The issue then is how to effectively utilize this stored information in 

a macro-scale solver for particle transport. 

3.1.3 “Lifting” information from meso-scale calculations 

To utilize the correlations obtained above in multi-scale modeling, information must be lifted from the 
meso-scale. Since the time steps for advancing particles are large compared to the shock passage time 
over one particle (i.e. each macroscale grid cell containing an ensemble of particles) the drag-time 
relationship needs to be collapsed into quantities that pertain to macro-scale particle advection time scales. 
In both Lagrangian and Eulerian approaches to particle-laden flow computations at the macro-scale, there 
are two important parameters needed for particle motion. To determine the speed and position of particles 
the momentum transferred to the particles by the shock is required. Thus, information contained in the 
drag-time curve can be compressed to extract quantities of interest to the macro-scale particle transport 
scheme. When viewing a typical shocked particle drag curve (Figure 9), it is evident that there is a 
maximum value of force that is reached as the shock impinges on the particle and the drag force decays 
over time. These two characteristic values for a typical drag-time curve are maximum drag coefficient, 

and relaxation time, r. Once the drag versus time curve is established and the  and r is 
known, the total impulse delivered by the shock, It , can be computed as the area under the curve. For a 
standard drag curve (obtained from experiment or simulation), we can set r to be represented by 
exponential decay and thus the impulse would be: 

 (11) 

where It is the impulse, to is the impact time, tf is the final time,  is the maximum drag force, t is 
time, and r is the relaxation time. In macro-scale calculations, the quantity of interest is It. In addition, 
since the impulse It acts over a time characterized by r, once these two values are known, the momentum 
change of a particle hit by a shock can be calculated. These two pieces of information are all that is 
needed to quantify a particle’s trajectory in a macro-scale calculation. Thus, the ANN can be trained to 
learn these two quantities, in place of the drag-time curve, as functions of the parameter set (M,  

and ). 
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 Figure 9. Illustration of the idea of compressing information contained in the drag versus time for a 
particular point in parameter space into three pieces of information that are relevant to the macro-
scale computations. An exponential fit to the curve is employed to obtain the relaxation time , the 
maximum drag , and the total impulse  delivered by the shock to the particle. The last 
quantity is computed as the area under the exponential curve fit.

 

   

 time
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Single particle and particle clusters 

For each case presented, the quantified values for particle motion, and  to attain It were found. 
The value of It and r were found by numerical integration and fitting an exponential decay function by 
minimizing the error between the predicted drag curve and the exponential. One such fitting with the 
impulse highlighted is shown in Figure 9.  

The ANN was trained to assimilate the behavior of   ,  It for a single particle for the ensemble 
of cases covering the parameter space. As can be seen from Figure 10,  both the It and r increase with 
Mach number [34, 36].  

 

 

Figure 10. (a) ANN convergence behavior for learning the drag law for the multiple particle case. 
(b) ANN-predicted surface for the maximum drag, (c) ANN-predicted surface for the  relaxation 
time for the particle, (d) ANN-predicted surface for the impulse delivered to the particle. 



42   C. Lu et al.  /  Procedia IUTAM   3  ( 2012 )  25 – 52 

 
With multiple particles the effects of the shock wave interactions in the cluster results in a drag curve 

that is not monotonic. To ensure that the general behavior of shocked particles is accurately learned by a 
neural network, data needs to be collected from several representative particles in random placements, i.e. 
from an ensemble of realizations. The values of  and r are the two most important parameters that 
can be directly obtained from the micro-scale calculations. For particle motion that occurs in a dusty gas, 
the value of  plays a particularly important part; the ANN must learn how the , r and It varies 
with the  in a multiple particle cloud. To assimilate this behavior, 45 different cases were simulated 

covering parameter values in the range of 1.2 4.4, 2% 22%, 100 1000s
p

f

M . Each case 

had 41 particles placed in a staggered array and then randomly perturbed to simulate a dusty gas. The 
ANN was trained twice for each input set, with  and r as outputs. The training period lasted for 
5000 iterations with 25 neurons and the convergence curve is seen in Figure 10(a). In Figures 10(b-d) 
slices through the manifold relating to combinations of two parameters (while holding the third 
fixed) amongst M,  and  are shown. It is obvious that the major contributor to variations in  is 

the Mach number. The variation of  has a significant impact on  at higher Mach numbers and the 
effect of  appears to be non-monotonic at higher Mach numbers. However, from Figure 10 it is 
observed that in the case of r, both Mach number and  has significant affects, with increasing 
influence of the solid fraction at higher Mach numbers. 

At this point, it is necessary to assess the level of error associated in the predictions provided by the 
ANN. While a rigorous error analysis and uncertainty quantification is beyond the scope of this first 
attempt at effecting multi-scale coupling in the context of shocked flows via an ANN-based modeling 
technique, the reliability of predictions obtained from the ANN was evaluated. As expected, prediction 
errors were smaller in the single particle cases because of the rather simpler particle-shock interaction 
phenomena involved, resulting in a rather smooth drag-time behavior. For the single particle case, testing 
consisted of randomly selecting a single data point and removing it from the training set. The ANN would 
be reset and learn the new training set without the removed data point. After training with the remaining 
data set, the ANN was then queried for the predicted values of  and r at the test point and was then 
checked for error (with respect to the DNS output at that point). Testing by selection and removal showed 
errors all under 2%; therefore for the single particle cases the trained ANN can predict the values of the 
required outputs to accuracy of a few percent when compared to the full DNS result. For the multiple 
particle cases, the prediction errors covered a broader range and also depended on the complexity of the 
manifold being represented. Due to the complex curvature of the manifold (see Figure 10) and some areas 
of inconsistent trends, the average error for the prediction of randomly removed and tested points inside 
the ANN prediction curve for It were 7.3%. The largest error for the tested cases resulted from the Mach 
4.4 cases which are also responsible for the steep excursions on the plots of  and It. When cases 
where the Mach number was 4.0 or above was left out and tested for, errors between 12.2% and 14.6% 
occurred.  The errors in prediction of values of  for the multiple particle cases therefore ranged 
from about 7% in the center of the parameter space to about 12% at the edges of the parameter space.  It is 
likely that further improvements in prediction would result from more advanced ANN training schemes, 
such as adaptively learning in regions with large functional variations, by changing the architecture of the 
ANN itself, both in terms of the number of neurons and hidden layers and in terms of the basis function 
used in the network (for example by using wavelet bases[51] or radial bases [23] instead of the current 
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sigmoid), and by expanding the parameter space and number of samples. All of these issues are being 
addressed in current work. 

3.3. Macro-scale calculations 

Since the main idea behind using an ANN-based learning scheme is to create an “equation-free” lifting 
scheme[55, 56], it is necessary to perform macro-scale calculations that employ the information obtained 
from the ANN to effect Lagrangian particle motion. The resulting particle cloud evolution patterns can 
then be compared with experimentally observed phenomena, as in Boiko et al[1] to determine if the 
micro-scale models have provided information that can be useful in making physically correct macroscale 
predictions. In the above framework, given the Mach number,  and , the ANN can predict  and 

r. These values are then placed in a Lagrangian algorithm using Newton’s second law and the particle 
trajectory is calculated.  

The trained ANN with the correlation of Mach number,  and  to the shock-delivered impulse, It 

on a particle, can be used to predict how a shock impacted particle in a cloud will move. The result of 
using data from the ANN in combination with the Lagrangian particle advection scheme on a single 
particle inside a cloud can be seen as the solid line alongside the experimental work of Boiko et al.[1] in 
Figure 11. The symbols are directly from experiments [1], the dashed line is Boiko’s computation, and the 
solid line is from Lagrangian advection using lifted behavior learned by the ANN. As can be seen the 
trajectory of a single particle computed from the present scheme is in good agreement with experiments 
and Boiko et al’s computation using the experimentally derived (fitted) drag law.  
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 Macro-scale simulations were performed by treating the particles as point entities and advecting 
them according to Newton’s law, with the force acting on the particle drawn by querying the ANN. To 
ascertain that indeed the formation of the “V” shaped phenomenon is due to that of the variation in  
several macro-scale models were performed. They included simulations that were drag law based, with 
low , with high , and with a uniform band . The initial particle distributions for each of these cases 
(which correspond to the cases shown in Figure 1(a)-(c)) are displayed in Figure 12 as volume fraction 
contours in the macroscopic computational domain.  For the sparse dust cloud case (as in Figure 12(a) 
and 1(a)), Figure 13 shows the evolution of the particle cloud after shock impingement. In this case, 
particle dispersion occurred without a distinct pattern developing, due to a small variance in . This was 
demonstrated experimentally in Figure 1(a) drawn from Boiko’s experiments. With  and other 
parameters all the same, each particle should experience the same motion. When the density of particle is 
increased such as in Figure 1(b), a “V” phenomenon appears (as shown in Figure 14) as seen by Boiko et 
al. [1]. This phenomenon occurs only at the macro-scale when there is a wide range in . In this case the 
particles in the center of the cloud lie in a region of higher volume fraction. The particles on the periphery 
are in a region of smaller volume fraction. The peripheral particles are blown away at a faster velocity by 
the shock, while those in the center are shielded by other particles and hence move more slowly. It is this 
shielding effect that leads to the formation the triangular distribution in this case. Thus, the ANN-based 
meso-scale model that is employed in the macro-scale simulations displays behavior that is observed in 
experiments. 
 

 Figure 11.  Trajectory of an individual particle in a particle cloud. Experimental data from 
Boiko et al along with their computations based on an empirically fit drag law are shown. The 
trajectory obtained from the trained ANN for a single particle in a 3% volume fraction cloud 
is also shown in the figure. 
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 Figure 12.  Volume fraction fields for the three cases of particle cloud evolution presented. (a) 
For a sparse cloud of particles (200 particles); (b) For a dense cloud of particles (1000 particles); 
(c) For a dense column of particles. These three arrangements correspond to those employed in 
the experiments of Boiko et al. 

(a) (b)

(c) 
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Figure 13. Macro-scale behavior of the particle cloud with particles subject to drag laws derived from the 
ANN-predicted surface. This case of low volume fraction of the particles retains an amorphous particle 
cloud in agreement with Boiko et al.’s experiments [2]. 

(a) Time=0.0 (b) Time = 200.0 

(d) Time = 600.0 (c) Time = 400.0 

(e) Time = 800.0 (e) Time = 1000.0 
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(a) Time = 0.0 (b) Time = 300.0 

(d) Time = 900.0 (c) Time = 600.0 

(f) Time = 1500.0 (e) Time = 1200.0 

Figure 14. Macro-scale behavior of the particle cloud with particles subject to drag laws derived from 
the ANN-predicted surface. This case of high volume fraction of the particles leads to the formation of 
a triangular particle cloud in agreement with Boiko et al.’s experiments [2]. 
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(a) Time = 0.0 (b) Time = 300.0 

(d) Time = 900.0 (c) Time = 600.0 

(f) Time = 1500.0 (e) Time = 1200.0 

Figure 15. Macro-scale behavior of a column of particles with particles subject to drag laws derived 
from the ANN-predicted surface. This case of high volume fraction of the particles leads to the 
clustering of the particles in the fore part of the cloud and dispersal in the rear part as seen in 
experiments[2].
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4. 6.  CONCLUSIONS  

A multi-scale framework is developed for computing the dynamics of multimaterial shocked flows. 
The evolution of a cloud of particles in an ideal gas is chosen as the prototype; the macro-scale evolution 
of the cloud in this case depends on the interaction between particles and between the particles and 
shocklets in the cloud. Data on the forces experienced by particles in a cloud are collected from DNS 
using a compressible Eulerian solver and provided to an artificial neural network (ANN); the simulations 
are performed for a range of control parameters, such as Mach number, particle radii, particle-fluid 
density ratio, position, and volume fraction. The trained ANN is then used in computing the macro-scale 
flow behavior in a model of shocked dusty gas advection. The model predicts particle motion and other 
macro-scale phenomena in agreement with experimental observations. The extension of this work to other 
problems in shocked multimaterial flows (such as heterogeneous solid mixtures) is being investigated.  In 
this work the macro-scale computations were performed has been treated with less fidelity and attention 
than the micro-scale DNS calculations. There is room for improvement at the macro-scale by adopting 
high resolution solvers as in the work of Jacobs et al [57]. Improvements in the neural network 
architecture and training protocols are also part of ongoing work. 
 

Nomenclature 

 

A radius of  

B  position of 

C further nomenclature continues down the page inside the text box 

dp          diameter of particle 

p         density of particle 

f         density of fluid 

p          volume fraction of  solid 

M          Mach number 

D          Drag 

t            time 

U          flow velocity 

a            speed of sound 

         kinematic viscosity 

Re         Reynolds number 

         specific heat ratio 

l          levelset field 

Vl              levelset velocity 
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p           pressure 

e           internal energy 

u, v      velocity components 

an        acceleration 

r       relaxation time 

Cd,max maximum drag 

It             total impulse 

Acknowledgements 

       This work was sponsored (in part) by the Air Force Office of Scientific Research, USAF, 
Computational Mathematics Program (Program Manager: Dr. Fariba Fahroo) under grant/contract 
number FA9550-09-1-0146 and (in part) by the Computational Mechanics Branch (AFRL-RWPC, Eglin 
AFB, FL, Program Manager: Dr. Michael E. Nixon). 

References 

1. Boiko, V.M., Kiselev, V.P., Kiselev, S.P., Papyrin, A.N., Poplavsky, S.V., Fomin, V.M., 
Shockwave Interaction with a Cloud of Particles. ShockWaves, 1997. 7: p. 275-285. 

2. Crowe, C.T., Sommerfeld, M. and Tsuji, Y., Multiphase flows with droplets and particles. 1988. 
3. Ben-Dor, G., Mond, M., Igra, O., Martsiano, Y., A Nondimensional Analysis of Dusty Shock 

Waves in Steady Flows. KSME Journal, 1988. 2(1): p. 28-34. 
4. Kosinski, P., On Shock Wave Propagation in a Branched Channel with Particles. Shock Waves, 

2006. 15(1): p. 13-20. 
5. Kosinski, P., Numerical analysis of shock wave interaction with a cloud of particles in a channel 

with bends. International Journal of Heat and Fluid Flow, 2007. 28(5): p. 1136-1143. 
6. Saito, T., Numerical analysis of dusty-gas flows. Journal of Computational Physics, 2002. 

176(1): p. 129-144. 
7. Jacobs, G.B., et al., Compressible subsonic particle-laden flow over a square cylinder. Journal 

of Propulsion and Power, 2004. 20(2): p. 353-359. 
8. Sengupta, K., et al., Spectral-based simulations of particle-laden turbulent flows. International 

Journal of Multiphase Flow, 2009. 35(9): p. 811-826. 
9. Jacobs, G.B., et al., Implicit-explicit time integration of a high-order particle-in-cell method with 

hyperbolic divergence cleaning. Computer Physics Communications, 2009. 180(10): p. 1760-
1767. 

10. Shotorban, B., et al., Two-fluid approach for direct numerical simulation of particle-laden 
turbulent flows at small Stokes numbers. Physical Review E, 2009. 79(5). 

11. Shotorban, B., et al., A Eulerian model for large-eddy simulation of concentration of particles 
with small Stokes numbers. Physics of Fluids, 2007. 19(11). 

12. Fedorov, A.V., et al., Reflection of a shock wave in a dusty cloud. Combustion Explosion and 
Shock Waves, 2007. 43(1): p. 104-113. 



51 C. Lu et al.  /  Procedia IUTAM   3  ( 2012 )  25 – 52 

13. Fausett, L.V., Fundamentals of Neural Networks, ed. D. Fowley. 1994, Upper Saddle River, 
New Jersey, United States: Prentice-Hall. 

14. Nilsson, J., et al., Artificial Neural Networks - A Method for Optimal. Donor-Recipient 
Matching. Large Scale Simulation of Survival after Heart Transplantation. Journal of Heart and 
Lung Transplantation, 2010. 29(2): p. S29-S29. 

15. Krose, B., et al., An introduction to Neural Networks. 1996, Amsterdam, Amsterdam: The 
University of Amsterdam. 

16. Unger, J.F., et al., Coupling of scales in a multiscale simulation using neural networks. 
Computers & Structures, 2008. 86(21-22): p. 1994-2003. 

17. Jorg F. Unger, C.K., Coupling of scales in a multiscale simulation using neural networks. 
Computers & Structures, 2008. 86(21): p. 1994-2003. 

18. Ahmadi, M., et al., Estimation of the reservoir permeability by petrophysical information using 
intelligent systems. Petroleum Science and Technology, 2008. 26(14): p. 1656-1667. 

19. Giralt, F., Arenas, A., Ferre-Gine, J., Rallo, R., The simulation and interpretation of free 
turbulence with a cognitive neural system. Physics of Fluids, 2000. 12(7): p. 1826. 

20. Sahimi, M., Fractal-wavelet neural-network approach to characterization and upscaling of 
fractured reservoirs. Computers & Geosciences, 2000. 26(8): p. 877-905. 

21. Unger, J.F., et al., Neural networks as material models within a multiscale approach. Computers 
& Structures, 2009. 87(19-20): p. 1177-1186. 

22. Ghaboussi, J., et al., Autoprogressive training of neural network constitutive models. 
International Journal for Numerical Methods in Engineering, 1998. 42(1): p. 105-126. 

23. Hocevar, M., Sirok, B., Grabec, I., A Turbulent-Wake estimation using radial basis function 
neural networks. Flow, Turbulence and Combustion, 2005. 74: p. 291-308. 

24. Mehratra, K., Mohan, C.K., Ranka, S., Elements of Artificial Neural Networks. 1996, 
Cambridge: Massachusetts Institute of Technology. 

25. Igra, O., Takayama, K., Shock Tube Study for the Drag Coefficient of a Sphere in a Non-
Stationary Flow. Proc. R. Soc. Lond., 1993. 442(A): p. 231-247. 

26. Rogak, S.N., et al., Stokes Drag on Self-Similar Clusters of Spheres. Journal of Colloid and 
Interface Science, 1990. 134(1): p. 206-218. 

27. Saito, T., et al., The effect of an unsteady drag force on the structure of a non-equilibrium region 
behind a shock wave in a gas-particle mixture. Shock Waves, 2007. 17(4): p. 255-262. 

28. Sun, M., Saito, T., Takayama, K., Tanno, H, Unsteady Drag on a Sphere by Shock Wave 
Loading. Shock Waves, 2005. 14(1): p. 3-9. 

29. Tanno, H., et al., Interaction of a shock with a sphere suspended in a vertical shock tube. Shock 
Waves, 2003. 13(3): p. 191-200. 

30. Haselbacher, A., et al., Improved Drag Correlation for Spheres and Application to Shock-Tube 
Experiments. Aiaa Journal, 2010. 48(6): p. 1273-1276. 

31. Haselbacher, A., et al., Modeling of the unsteady force for shock-particle interaction. Shock 
Waves, 2009. 19(4): p. 317-329. 

32. Drikakis, D., et al., Computation of non-stationary shock-wave/cylinder interaction using 
adaptive-grid methods. Journal of Fluids and Structures, 1997. 11(6): p. 665-691. 

33. Fedorov, A.V., Kharlamova, Y.V., Khmel, T.A., Reflection of a Shock Wave in a Dusty Cloud. 
Combustion, Explosion, and Shock Waves, 2007. 43(1): p. 104-113. 

34. Saito, T., Marumoto, M., Takayama, K., Numerical Investigations of Shock Waves in Gas-
Particle Mixtures. Shock Waves, 2003. 13: p. 299-322. 

35. Saito, T., et al., Experimental and numerical studies of underwater shock wave attenuation. 
Shock Waves, 2003. 13(2): p. 139-148. 

36. Tanno, H., Itoh, K., Saito, T., Abe, A., Takayama, K., Interaction of a Shock Wave with a Sphere 
Suspended in a Verticle Tube. Shock Waves, 2003. 13(3): p. 191-200. 



52   C. Lu et al.  /  Procedia IUTAM   3  ( 2012 )  25 – 52 

37. Sommerfeld, M., The Unsteadiness of Shock-Waves Propagating through Gas-Particle 
Mixtures. Experiments in Fluids, 1985. 3(4): p. 197-206. 

38. Khmel', T.A., et al., Interaction of a shock wave with a cloud of aluminum particles in a channel. 
Combustion Explosion and Shock Waves, 2002. 38(2): p. 206-214. 

39. Igra, O., et al., Shock-Tube Study of the Drag Coefficient of a Sphere in a Nonstationary Flow. 
Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering 
Sciences, 1993. 442(1915): p. 231-247. 

40. Ben-Dor, G., et al., Shock wave reflections in dust-gas suspensions. Journal of Fluids 
Engineering-Transactions of the Asme, 2001. 123(1): p. 145-153. 

41. Sambasivan, S., Udaykumar, H.S., An Evaluation of Ghost-Fluid Methods for Strong Shock 
Interations with Immersed Solid Interfaces. 2009, University of Iowa: Iowa City. 

42. Sethian., J.A., Levelset Methods and Fast Marching Methods: Evolving Interfaces in 
computaional geometry, Fluid Mechanics, Computer Vision, and Material Science. 1999: 
Cambridge University Press. 

43. J.A.Sethian., Evolution, implementation, application of levelsets and fast marching methods for 
advancing fronts. Journal of Computational Physics., 2001. 169(2): p. 503-555. 

44. Fedkiw, R.P., et al., A non-oscillatory Eulerian approach to interfaces in multimaterial flows 
(the ghost fluid method). Journal of Computational Physics, 1999. 152(2): p. 457-492. 

45. Fedkiw, R.P., Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the 
ghost fluid method. Journal of Computational Physics, 2002. 175(1): p. 200-224. 

46. Udaykumar, H.S., et al., A sharp interface method for high-speed multi-material flows: strong 
shocks and arbitrary materialpairs. International Journal of Computational Fluid Dynamics, 
2011. 25(3): p. 139-162. 

47. UdayKumar, H.S., et al., Sharp interface simulations with Local Mesh Refinement for multi-
material dynamics in strongly shocked flows. Computers & Fluids, 2010. 39(9): p. 1456-1479. 

48. UdayKumar, H.S., et al., Ghost Fluid Method for Strong Shock Interactions Part 1: Fluid-Fluid 
Interfaces. Aiaa Journal, 2009. 47(12): p. 2907-2922. 

49. UdayKumar, H.S., et al., Ghost Fluid Method for Strong Shock Interactions Part 2: Immersed 
Solid Boundaries. Aiaa Journal, 2009. 47(12): p. 2923-2937. 

50. Bishop, C.M., Neural Networks for Pattern Recognition. 1996, USA: Oxford University Press. 
51. Bakshi, B.R., et al., Wave-Net - a Multiresolution, Hierarchical Neural Network with Localized 

Learning. Aiche Journal, 1993. 39(1): p. 57-81. 
52. Zhang, J., et al., Wavelet Neural Networks for Function Learning. Ieee Transactions on Signal 

Processing, 1995. 43(6): p. 1485-1497. 
53. Bachmat, Y., et al., Macroscopic Modeling of Transport Phenomena in Porous-Media .1. The 

Continuum Approach. Transport in Porous Media, 1986. 1(3): p. 213-240. 
54. Bear, J., et al., Macroscopic Modeling of Transport Phenomena in Porous-Media .2. 

Applications to Mass, Momentum and Energy-Transport. Transport in Porous Media, 1986. 1(3): 
p. 241-269. 

55. Chen, L., Debenedetti, P.G., Gear, C.W., Kevrekidis, I.G., From Molecular Dynamics to Coarse 
Self-Similar Solutions: A Simple Example Using Equation-Free Computation. Journal of Non-
Newtonian Fluid Mechanics, 2004. 120(1): p. 215-223. 

56. Kevrekidis, I.G., Gear, C.W., Hummer, G., Equation-Free: The Computer-Aided Analysis of 
Complex Multiscale Systems. Aiche Journal, 2004. 50(7): p. 1346-1355. 

57. Jacobs, G.B., et al., A high-order WENO-Z finite difference based particle-source-in-cell method 
for computation of particle-laden flows with shocks. Journal of Computational Physics, 2009. 
228(5): p. 1365-1379. 

 
 


