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SUMMARY

The presence of foreign DNA in the cytosol of
mammalian cells elicits a potent antiviral interferon
response. Recently, cytosolic DNA was proposed
to induce the synthesis of cyclic GMP-AMP (cGAMP)
upon binding to an enzyme called cGAMP synthase
(cGAS). cGAMP activates an interferon response by
binding to a downstream receptor called STING.
Here, we identify natural variants of human STING
(hSTING) that are poorly responsive to cGAMP
yet, unexpectedly, are normally responsive to DNA
and cGAS signaling. We explain this paradox by
demonstrating that the cGAS product is actually a
noncanonical cyclic dinucleotide, cyclic [G(20-50)
pA(30-50)p], which contains a single 20-50 phospho-
diester bond. Cyclic [G(20-50)pA(30-50)p] potently
activates diverse hSTING receptors and, therefore,
may be a useful adjuvant or immunotherapeutic.
Our results indicate that hSTING variants have
evolved to distinguish conventional (30-50) cyclic
dinucleotides, known to be produced mainly by
bacteria, from the noncanonical cyclic dinucleotide
produced by mammalian cGAS.

INTRODUCTION

Recognition of pathogen-derived nucleic acid is a major mecha-

nism by which innate immune responses are initiated in

mammals (Barbalat et al., 2011). Several families of germ-line-

encoded nucleic acid sensors have been described, including

the Toll-like receptors and RIG-I-like receptors (Palm and Medz-

hitov, 2009; Takeuchi and Akira, 2010). Upon binding nucleic

acids, these sensors initiate signaling cascades that lead to the

production of cytokines and other immune effector proteins

that provide host defense.
C

The cytosolic presence of foreign double-stranded DNA

(dsDNA) triggers a potent antiviral response dominated by the

production of type I interferons (IFNs) (Ishii et al., 2006; Stetson

and Medzhitov, 2006). An endoplasmic-reticulum-resident host

protein called stimulator of IFN genes (STING; also called

TMEM173, MITA, ERIS, and MPYS) was shown to be required

for IFN response to cytosolic dsDNA (Ishikawa and Barber,

2008; Ishikawa et al., 2009; Sun et al., 2009; Zhong et al.,

2008). Bacterially derived second messenger molecules called

cyclic dinucleotides (CDNs) can also induce an IFN response

(McWhirter et al., 2009) that depends on STING (Jin et al.,

2011a; Sauer et al., 2011). CDNs are secreted or released into

the cytosol by certain bacterial pathogens (Barker et al., 2013;

Woodward et al., 2010) and bind directly to STING (Burdette

et al., 2011). Previously, we identified a mutant allele of mouse

STING (mSTING), encoding an alanine in place of arginine 231

(R231A), that abolished responsiveness to CDNs but did not

appreciably affect the IFN response to cytosolic dsDNA (Bur-

dette et al., 2011). Thus, although the IFN responses to both

cytosolic CDNs and dsDNA require STING, the responses to

these chemically distinct ligands can be genetically uncoupled.

Two recent papers (Sun et al., 2013; Wu et al., 2013) unified

our understanding of the cytosolic response to CDNs and DNA

by proposing that the cytosolic presence of dsDNA leads

to the production of a CDN, cyclic GMP-AMP (cGAMP), by a

DNA-dependent sensor enzyme called cGAMP synthase

(cGAS). cGAMP was shown to bind and activate STING, but it

remained unclear how the mSTING R231A mutant could still

initiate responses to dsDNA while lacking responsiveness to

CDNs. Therefore, we sought to investigate the mechanism by

which cGAS activates STING.

RESULTS AND DISCUSSION

Our previous work (Burdette et al., 2011; Sauer et al., 2011)

focused primarily on mSTING, and it is not yet clear whether all

human STING (hSTING) variants can respond to CDNs (Conlon

et al., 2013; Jin et al., 2011b). In agreement with previous reports
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Figure 1. Variable Responsiveness of

hSTING Variants to Cyclic Dinucleotides

Maps to Arginine 232

(A) THP-1 cells were transduced with vectors

encoding an shRNA targeting STING or a control

shRNA. Then, cells were stimulated with cyclic

di-GMP (cdG), dsDNA, cyclic di-AMP (cdA),

polyinosine:cytosine (p(I:C)), or Sendai virus, and

the induction of human interferon-b messenger

RNA was assessed by qRT- PCR.

(B) Western blotting confirmed that knockdown of

STING was effective.

(C) HEK 293T cells were transfected with the

indicated amounts of various mouse (m) or

human (h) STING expression plasmid and then

stimulated 6 hr later by transfection with syn-

thetic cdG (5 mM). GT denotes the null

I199N allele of STING from Goldenticket (Gt)

mice. STING activation was assessed with the

use of a cotransfected IFNb-luciferase reporter

construct.

(D) Gt (STING-null) macrophages were trans-

duced with retroviral vectors encoding the

indicated STING alleles and were stimulated

48 hr later by transfection with cdG (5 mM) or

dsDNA 70-mer oligonucleotide (0.5 mg/ml). IFNb

induction was measured by qRT-PCR. ND, not

detected.

(E) Binding assay of STING to 32P-cdG.

STING proteins were expressed in HEK 293T

cells, and cell lysates were subjected to UV

crosslinking with 32P-cdG and resolved by

SDS-PAGE. Binding was quantified by autoradiography. Western blots of cell lysates with an anti-STING polyclonal antibody confirmed similar expression of

the various STING proteins.

(F) Responsiveness of mSTING to cGAMP is affected by mutations of R231. The indicated mutants were tested as in (C).

Data are representative of at least three independent experiments and are presented as the mean. Error is represented as SEM. ***p < 0.0001, **p < 0.005.

See also Figure S1.
(Sun et al., 2013;Wu et al., 2013), we found that the humanTHP-1

cell line responds robustly to CDNs in a manner dependent on

STING (Figures 1A and 1B). We cloned an hSTING allele from

THP-1 cells and compared its amino acid sequence to the previ-

ously widely studied reference allele (NP_938023.1, denoted

here as hSTINGREF) (Ishikawa and Barber, 2008) (Figure S1).

We found that hSTINGREF and hSTINGTHP-1 differ at four amino

acid positions. Notably, hSTINGTHP-1 encodes an arginine (R)

at position 232, corresponding to R231 in mSTING; in contrast,

hSTINGREF encodes a histidine (H) at position 232. We decided

to test the functionality of individual STING alleles by expressing

these alleles in human embryonic kidney (HEK) 293T cells that

lack endogenous STING. As previously observed (Burdette

et al., 2011), overexpression of mSTING in HEK 293T cells in-

duces ligand-independent activation of an IFNb-luciferase

reporter construct, but expression of lower amounts of mSTING

renders HEK 293T cells responsive to CDNs (Figure 1C). Simi-

larly, HEK 293T cells overexpressing hSTINGREF spontaneously

activated an IFNb-luciferase reporter (Figure 1C). However, un-

like mSTING, cells expressing low amounts of hSTINGREF were

poorly responsive to stimulation with cyclic di-GMP (cdG) (Fig-

ure 1C). In contrast, cells expressing hSTINGTHP-1 were respon-

sive to cdG and exhibited �10-fold induction of the IFN-lucif-

erase reporter, similar to what is seen with mSTING (Figure 1C).
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HEK 293T cells expressing STING do not respond to stimula-

tion by dsDNA, presumably because of the lack of expression of

cGAS (Sun et al., 2013) or perhaps other dsDNA sensors. There-

fore, to test whether the hSTING variants could respond to

dsDNA stimulation, we transduced cGAS+ STING-null (Golden-

ticket) (Sauer et al., 2011) macrophages with hSTING expression

vectors. Even the hSTINGREF variant that responds poorly to

CDNs conferred responsiveness to dsDNA (Figure 1D). There-

fore, hSTINGREF phenocopies mSTINGR231A and uncouples

responsiveness to CDNs and dsDNA (Burdette et al., 2011).

Consistent with the above results with hSTING variants, an

R231H mutant of mSTING responded poorly to CDNs, as did

R232A or R232H variants of hSTINGTHP-1 (Figure S2A). Thus,

R231 and R232 appear critical for responsiveness to CDNs in

mSTING and hSTING, respectively. Introduction of an H232R

mutation in hSTINGREF was not sufficient to restore responsive-

ness to CDNs; indeed, we found that a second substitution

(G230A) was also required (Figure S3). All the variant STING

alleles that we tested bound cdG (Figures 1E and S2B) (Huang

et al., 2012; Ouyang et al., 2012; Yin et al., 2012), consistent

with the fact that residues 230 and 232 are located in loops

that cover, but do not form, the CDN binding pocket.

Importantly, mSTINGR231A also failed to respond to chemically

synthesized cGAMP (Figure 1F) (Kellenberger et al., 2013). This



Figure 2. STING Variants Are Responsive to

cGAS

(A) HEK 293T cells were transfected with the

indicated STING alleles and with human and

mouse cGAS (WT and GS > AA mutants) (Sun

et al., 2013) as indicated. STING activation was

assessed by a cotransfected IFNb-luciferase re-

porter construct.

(B) HEK 293T cells were transfected with the

indicated STING alleles and with a mammalian

expression vector encoding a cGAMP synthase

(DncV) from V. cholerae. STING activation was

assessed as in (A).

(C) In vitro enzymatically generated products of

rWspR, rDncV, and rcGAS were transfected into

digitonin permeabilized HEK 293T cells express-

ing the indicated mouse and hSTING proteins.

Chemically synthesized cdG and cGAMP were

included as controls. STING activation was

assessed as in (A) and (B). Data are representative

of at least three independent experiments and are

presented as mean. Error is represented as SEM.

See also Figures S2 and S3.
observation raised the question of whether R231A or R232H

variants of STING would respond to the cGAS enzyme that is

believed to activate STING via the production of cGAMP. Sur-

prisingly, we found that human or mouse cGAS expression

robustly activated hSTINGREF and mSTINGR231A variants (Fig-

ure 2A). We considered several explanations for this puzzling

result. One possibility is that the response was due simply to

the overexpression of the cGAMP synthase in mammalian cells;

however, overexpression of DncV, a bacterial cGAMP synthase

from V. cholerae (Davies et al., 2012), did not activate hSTINGREF

or mSTINGR231A but did activate wild-type mSTING and

hSTINGTHP-1 (Figure 2B). An alternative hypothesis is that

cGAS might activate STING by a direct physical interaction

and in a manner independent of cGAMP production. However,

this explanation also appears to be incorrect. As previously

demonstrated (Sun et al., 2013), the overexpression of catalyti-

cally deadmutantsof humanormousecGAS (GS>AA;Figure2A)

failed to activate STING variants, arguing that cGAS signaling

depends on the production of a second messenger rather than

on a direct physical interaction with STING. To confirm this inter-

pretation, we produced the enzymatic product of cGAS by

providing ATP, guanosine triphosphate (GTP), and dsDNA to

purified recombinant cGAS in vitro. As a negative control, dsDNA

(required to stimulate cGAS activity) was omitted from a parallel

reaction. Then, the resulting cGAS products were purified and
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transfected into HEK 293T cells ex-

pressing STING variants. In contrast to

synthetic cGAMP, the cGAS product

was able to activate hSTINGREF and

mSTINGR231A (Figure 2C). This experi-

ment provides evidence against a model

in which cGAS activates hSTINGREF via

a direct physical interaction.

cGAS is structurally homologous to

another innate immune sensor called
oligoadenylate synthase that produces a noncanonical oligoa-

denylate polymer containing 20-50 phosphodiester bonds (Kran-

zusch et al., 2013; Sun et al., 2013). Therefore, we hypothesized

that cGASmight not produce a canonical CDN as previously pro-

posed (Sun et al., 2013; Wu et al., 2013) but, instead, might pro-

duce a CDN containing 20-50 phosphodiester bond(s) that could
stimulate variant STING alleles. Such a noncanonical CDNwould

have a mass identical to the canonical 30-50 phosphodiester-
linked CDN, and, thus, the two products would not have been

easy to distinguish by previously published mass spectrometric

analyses of the cGAS product (Sun et al., 2013; Wu et al., 2013).

We tested our hypothesis by providing radiolabelled a-32P-GTP

or a-32P-ATP to recombinant purified cGAS or V. cholerae DncV

and analyzing the products by thin-layer chromatography (TLC).

As reported previously, DncV can produce some cyclic di-AMP

(cdA) when provided with only ATP and some cdG when pro-

vided with only GTP but prefers to make cGAMP when provided

with both ATP and GTP (Davies et al., 2012) (Figure 3A). cGAS

requires both ATP andGTP substrates, and the resulting product

migrates significantly differently than any of the canonical CDNs

produced by DncV, suggesting that cGAS produces a nonca-

nonical CDN (Figure 3A).

We analyzed the cGAS and DncV products by specific

nuclease digestion. The cGAS product is partially cleaved by

nuclease P1, which selectively digests 30-50 phosphodiester
1, May 30, 2013 ª2013 The Authors 1357



Figure 3. cGAS Produces a Noncanonical

Cyclic Dinucleotide

(A) Purified recombinant WspR, DncV, or cGAS

were mixed with a-32P-ATP or a-32P-GTP and the

indicated unlabeled nucleotides. Reactions were

mixed with TLC running buffer, and nucleic acid

species were resolved on a polyethylenimine (PEI)

cellulose TLC plate.

(B) WspR, DncV, or cGAS products labeled with

a-32P-GTP were digested with nuclease P1 or

snake venom phosphodiesterase (SVPD) and

resolved on a PEI cellulose TLC plate.
linkages (Pino et al., 2008), suggesting that the cGAS product

contains at least one 30-50 phosphodiester linkage (Figure 3B).

Nuclease P1 digestion is incomplete, given that it does not

lead to the generation of GMP, in contrast to what is observed

upon treatment of the DncV product with nuclease P1 (Fig-

ure 3B). As a control, digestion of the cGAS or DncV products

with snake venom phosphodiesterase, which cleaves both

20-50 and 30-50 phosphodiester linkages (Pino et al., 2008), led

to complete digestion (Figure 3B). Altogether, these results

suggest that the cGAS product might also contain a 20-50 phos-
phodiester linkage.

To identify the nature of the cGAS product and, in particular,

ascertain the regiochemistry of the phosphodiester linkages,

we analyzed the cGAS product by nuclear magnetic resonance

(NMR) spectroscopy (Figures 4A and S4). These results indicate

that the product of cGAS is a noncanonical CDN containing a

single 20-50 phosphodiester linkage and that its chemical struc-

ture is assigned as cyclic [G(20-50)pA(30-50)p] (Figure 4B; see

Extended Discussion). This second messenger appears to be a

robust activator of STING. A recently published crystallographic

and enzymatic study of cGAS independently identified this non-

canonical CDN as the product of cGAS (Gao et al., 2013) but did

not address its unique signaling properties. Our results demon-

strating the unique ability of cyclic [G(20-50)pA(30-50)p] to stimu-

late diverse hSTING alleles may explain why cGAS synthesizes

this unusual molecule. Although the bacterial cGAMP synthase

DncV is also a distant homolog of OAS1 and cGAS (Davies

et al., 2012), our IFNb-luciferase reporter and TLC data strongly

suggest that DncV produces a canonical CDN with two 30-50

linkages (Figure 4B). It remains to be determined whether any

bacterial enzymes produce noncanonical CDNs or whether non-

canonical CDNs are unique to mammals.

We identified the R231A mutant of mSTING after a thorough

site-directed mutagenesis of STING (Burdette et al., 2011). We

were surprised to discover that the corresponding arginine

(R232) is a site of natural polymorphism in hSTING. It is

tempting to speculate that the R232H variant of hSTING may

confer a selective advantage by reducing responses to bacte-

rial CDNs while still retaining responsiveness to endogenous

noncanonical CDNs produced by cGAS in response to viral

dsDNA. Indeed, although the production of type I IFNs is essen-
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tial for the control of most viruses, type I

IFNs have often been found to be detri-

mental in the response to bacterial infec-

tions (Monroe et al., 2010). It is not yet
clear why the R231A and R232H STING variants can be stimu-

lated by the noncanonical CDN and not by the canonical CDNs.

An explanation awaits high-resolution structures of these vari-

ants bound to cyclic [G(20-50)pA(30-50)p].
CDNshavebeenproposed tobeuseful as vaccine adjuvants or

immunotherapeutics (Chen et al., 2010). In addition, a synthetic

STING activator, DMXAA, has been tested in human clinical trials

as a chemotherapeutic agent. DMXAA was not found to be

effective in humans, most likely because it is unable to stimulate

hSTING (Conlon et al., 2013). In this context, our results may be

significant because they suggest that noncanonical 20-50 linked
CDNsmight have clinical value as potent pan-agonists of diverse

STING variants, including those variants that respond poorly to

canonical CDNs or DMXAA.

EXPERIMENTAL PROCEDURES

Mice and Cell Lines

THP-1 cells were grown in RPMI 1640 supplemented with 10% fetal bovine

serum (FBS), penicillin-streptomycin, and L-glutamine. HEK 293T cells were

grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

10% FBS, penicillin-streptomycin, and L-glutamine. GP2 retroviral packaging

cell lines were maintained in DMEM supplemented with 10% FBS, penicillin-

streptomycin, and L-glutamine. Animal protocols were approved by the

University of California, Berkeley, Animal Care and Use Committee.

STING Knockdown

Knockdown of hSTING (clone ID NM_198282.1-901s1c1) was achieved with

pLKO.1 (The RNAi Consortium). The sequence for the knockdown of hSTING

is 50-GCA GAG CTA TTT CCT TCC ACA, which corresponds to 50-CCG GGC

AGA GCT ATT TCC TTC CAC ACT CGA GTG TGG AAG GAA ATA GCT CTG

CTT TTT G forward oligo and 50-AAT TCA AAA AGC AGA GCT ATT TCC

TTCCACACTCGAGTG TGGAAGGAAATAGCTCTGC reverse oligo. Oligos

were annealed and cloned into AgeI and EcoRI digested pLKO.1 (Addgene)

and retrovirally transduced into THP-1 cells in parallel with scramble small

hairpin RNA (shRNA) control constructs. Stable cell lines were selected with

puromycin. THP-1 cells were differentiated with 1 mg/ml PMA for 24 hr. Cells

were allowed to rest for 24 hr and then restimulated for 6 hr with the indicated

ligands. IFNb induction was measured by quantitative RT-PCR (qRT-PCR) as

described below.

Cell Stimulation and Reagents

Bone marrow macrophages and HEK 293T cells were stimulated with

Lipofectamine 2000 (Invitrogen). Unless otherwise specified, cdG, cdA,

poly(I:C), and vaccinia virus 70-mer DNA were prepared as described



Figure 4. cGAS Produces a Cyclic Dinucle-

otide Containing a 20-50 Phosphodiester

Linkage

(A) 1H-31P HMBC of HPLC-purified cGAS product

acquired at 600 MHz and 50�C. Critical through-
bond correlations for the phosphodiester bonds

are indicated. An NMR-elucidated structure of the

cGAS product is also shown.

(B) Chemical structures of canonical cGAMP,

cyclic [G(30-50)pA(30-50)p] (left), and noncanonical

cGAMP, cyclic [G(20-50)pA(30-50)p] (right) are

shown.

See also Figure S4.
previously (Burdette et al., 2011) and used at similar concentrations. Sendai vi-

rus was purchased from Charles River Laboratories. cGAMP was synthesized

as previously described (Kellenberger et al., 2013).

Cloning, Mutagenesis, and Plasmids

The THP-1 STING allele was amplified from complementary DNA (cDNA) with

50 hSTING HindIII (50-ATC GAA GCT TCC ACC ATG CCC CAC TCC AGC CTG)

and 30 hSTING NotI (50-ATC GGC GGC CGC TCA GGC ATA GTC AGG CAC

GTC ATA AGG ATA AGA GAA ATC CGT GCG GAG AG). The resulting PCR

product was cloned into pCDNA3 with HindIII-NotI digestion. THP-1 STING

was amplified and cloned into MSCV2.2 with the 30 primer listed above and

50 hSTING XhoI (50-ATC GCT CGA GCC ACC ATG CCC CAC TCC AGC

CTG) and XhoI-NotI digestion. IFNb-luciferase, TK-Renilla, and mSTING plas-

mids were used as previously described (Burdette et al., 2011). Mutations in

hSTING were introduced with a QuikChange Site-Directed Mutagenesis Kit

(Stratagene). cDNA clones corresponding to mouse and human cGAS (MGC

Fully Sequenced Human MB21D1 cDNA: accession, BC108714.1 and clone

ID, 6015929; EST Fully Sequenced Mouse E330016A19Rik cDNA: accession,

BC145653.1 and clone ID, 40130956) were obtained from Open Biosystems

and correspond to those described previously (Sun et al., 2013; Wu et al.,

2013). Mouse cGAS was amplified from cDNA clones with an N-terminal flag

tag with forward oligo 50-mcGAS-KpnI (50-ATC GGG TAC CCC ACC ATG

GAT TAC AAG GAT GAC GAT GAC AAG GAA GAT CCG CGT AGA AGG)
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and reverse oligo 30-mcGAS-NotI (50-ATC GGC

GGC CGC TCA AAG CTT GTC AAA AAT TGG).

Likewise, hcGAS was amplified with forward oligo

50-hcGAS-flag-KpnI (50-ATC GGG TAC CCC ACC

ATGGAT TACAAGGATGACGATGACAAGCAG

CCT TGG CAC GGA AAG G) and reverse 30-
hcGAS-NotI (50-ATC GGC GGC CGC TCA AAA

TTC ATC AAA AAC TGG AAA C). Both PCR prod-

ucts were cloned into pcDNA3 at KpnI and NotI re-

striction enzyme sites. DncV was amplified with

DncV forward BamHI (50-GCA TGG ATC CGC

CAC CAT GAC TTG GAA CTT TCA CCA G) and

DncV reverse NotI (50-GCA TGC GGC CGC TCA

GCC ACT TAC CAT TGT GCT GC) and cloned

into pCDNA3 with BamHI and NotI. For cloning

into MSCV2.2, DncV was amplified with DncV for-

ward XhoI (50-GCA TCT CGA GCC ACC ATG ACT

TGG AAC TTT CAC CAG) and DncV reverse NotI.

Resulting DNA was cloned into MSCV 2.2

digested with XhoI-NotI. Constructs for bacterial

mcGAS overexpression were constructed as fol-

lows. N-terminal His6-SUMO tag amplified by

PCR with His6 SUMO NcoI (50-TAA TAA GGA

GAT ATA CCA TGG GCA GCA GCC) and His6

SUMO SalI (50-GAA TTC GTC GAC ACC AAT

CTG TTC TCT GTG AGC) off of a pCDF-Duet2

template (a gift from the M. Rape lab) and cloned
into pET28a with NcoI and SalI to make pET28a-H6SUMO. Full-length mcGAS

was PCR amplified from themouse cDNA clone described above with mcGAS

forward SalI (50-GAT GTC GAC ATG GAA GAT CCG CGT AGA AGG ACG) and

mcGAS reverse XhoI (50-ATC CTC GAG TCA AAG CTT GTC AAA AAT TGG

AAA CC) and cloned into pET28a-H6SUMO with SalI and XhoI to make

pET28a-H6SUMO-mcGAS that expresses full-length mcGAS fused to an

N-terminal His6 SUMO tag.

cGAS Product Purification and Structural Characterization

The cGAS product (prepared in vitro as described below) was purified with

reverse-phase high-performance liquid chromatography (HPLC) on an Agilent

1260 Infinity HPLC equipped with an Agilent Polaris C18-A column (5 mm,

250 mm 3 10 mm, 180 Å). Purification conditions included a 100% to 0%

gradient of solvent A over 20 min at 50�C and a flow rate of 5 ml/min, solvent

A being 100 mM ammonium acetate in water at pH 7 and solvent B being

acetonitrile. Purified elution fractions were evaporated multiple times in order

to remove excess ammonia.

Resonance assignments were made with COSY, 1H-13C HSQC, NOESY,
1H-13C HMBC, and 1H-31P HMBC.

The characterization of cGAS product is as follows. 1H NMR (900 MHz,

D2O, 50�C, d): 8.44 (s, 1), 8.42 (s, 1), 8.03 (s, 1), 6.31 (s, 1), 6.09 (d, 1, J =

8 Hz), 5.75 (m, 1), 5.18 (m, 1), 4.93 (s, 1), 4.74, 4.62, 4.59 (d, 1, J = 12 Hz),

4.55 (s, 1), 4.38 (m, 1), 4.33 (d, 1, J = 12 Hz), 4.28 (d, 1, J = 12 Hz); 31P {1H
1, May 30, 2013 ª2013 The Authors 1359



decoupled} NMR (600 MHz, D2O, 50�C, d): (all resonances are singlets)�0.96,

�1.86; HRMS (m/z): [M-H+] calculated for C20H23N10O13P2, 673.0927; found,

673.0909. [M + Na+ � 2H+] calculated for C20H22N10O13P2Na, 695.0746;

found, 695.0728.

Luciferase Assay

HEK 293T cells were plated in TC-treated 96-well plates at 0.5 3

106 cells ml�1. The next day, the cells were transfected with indicated con-

structs, along with IFN-b firefly luciferase and TK-Renilla luciferase reporter

constructs. After stimulation for 6 hr with the indicated ligands, the cells

were lysed in passive lysis buffer (Promega) for 5 min at 25�C. The cell lysates

were incubated with firefly luciferase substrate (Biosynth) and the Renilla lucif-

erase substrate coelenterazine (Biotium), and luminescence was measured on

a SpectraMax L Luminescence Microplate Reader (Molecular Devices). The

relative IFNB expression was calculated as firefly luminescence relative to

Renilla luminescence. Statistical differences were calculated with an unpaired

two-tailed Student’s t test with the use of Prism 5.0b software (GraphPad).

In Vitro Cyclic Dinucleotide Synthesis

In vitro DncV reactions were carried out in 20 mM Tris-Cl (pH 8), 20 mM

Mg(OAc)2, 10% glycerol, and 1 mM dithiothreitol, 0.1 mg/ml BSA. Reactions

contained 250 mM GTP and 250 mM ATP or 125 mM GTP and 125 mM ATP,

as indicated in the figures. In addition, 33 nM a-32P-GTP (3,000 Ci/mmol, Per-

kinElmer) or 33 nM a-32P-ATP (3,000 Ci/mmol, PerkinElmer) was included in

reaction where indicated. Reactions were started by the addition of 1 mM

purified DncV protein. In vitro cGAS reactions were carried out in 40 mM

Tris-Cl (pH 7.5), 100 mM NaCl, and 10 mM MgCl2. Cold nucleotide and

a-32P-GTP was at the same concentrations as in DncV reactions. Reactions

were started by the addition of 200 nMpurified cGAS.Where indicated, herring

testes DNA (Sigma-Aldrich) was added to reactions at a final concentration of

0.1 mg/ml. WspR reactions were performed as described previously (Burdette

et al., 2011). Reactions were incubated for 1 hr at 37�C, boiled for 5 min at

95�C, and spun for 10 min at 13,000 rpm. Reactions were removed and mixed

1:5 with TLC running buffer (1:1.5 [v/v] saturated NH4SO4 and 1.5 M KH2PO4

[pH 3.6]) and spotted on polyethylenimine cellulose TLC plate (Sigma-Aldrich).

Following solvent migration, the TLC plate was exposed to a phosphorimager

screen and imaged with a Typhoon scanner. For in vitro product transfection

into HEK 293T cells, reactions were scaled up, radiolabeled nucleotide was

omitted, and the concentration of ATP and GTP was increased to 2 mM.
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