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Schellekens [M. Schellekens, The Smyth completion: A common foundation for denotational
semantics and complexity analysis, in: Proc. MFPS 11, in: Electron. Notes Theor. Comput.
Sci., vol. 1, 1995, pp. 535–556], and Romaguera and Schellekens [S. Romaguera, M. Schel-
lekens, Quasi-metric properties of complexity spaces, Topology Appl. 98 (1999) 311–322]
introduced a topological foundation to obtain complexity results through the application
of Semantic techniques to Divide and Conquer Algorithms. This involved the fact that the
complexity (quasi-metric) space is Smyth complete and the use of a version of the Banach
fixed point theorem and improver functionals. To further bridge the gap between Semantics
and Complexity, we show here that these techniques of analysis, based on the theory of
complexity spaces, extend to General Probabilistic Divide and Conquer schema discussed by
Flajolet [P. Flajolet, Analytic analysis of algorithms, in: W. Kuich (Ed.), 19th Internat. Colloq.
ICALP’92, Vienna, July 1992; Automata, Languages and Programming, in: Lecture Notes in
Comput. Sci., vol. 623, 1992, pp. 186–210]. In particular, we obtain a general method which
is useful to show that for several recurrence equations based on the recursive structure
of General Probabilistic Divide and Conquer Algorithms, the associated functionals have a
unique fixed point which is the solution for the corresponding recurrence equation.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In [13], M. Schellekens introduced the theory of complexity (quasi-metric) spaces in order to provide a topological
foundation for the complexity analysis of algorithms. Application of these spaces to the complexity analysis of Divide and
Conquer Algorithms were given in Section 4 of [13]. This forms part of the programme to bridge Complexity and Semantics,
a research challenge posed at the IFIP2000 International Conference on Exploring New Frontiers of Theoretical Informatics.
This topic has since be the focus of various conferences. S. Romaguera and M. Schellekens obtained in [10] several quasi-
metric properties of the complexity spaces which are interesting from a computational point of view, via the analysis of the
so-called dual complexity (quasi-metric) space. In particular, the (dual) complexity space is Smyth complete. Moreover, the
dual complexity space can be modelled as a (quasi-)normed semilinear space as it is shown in [11]. Further contributions
to the study of the mathematical structure of this space may be found in [4,9,12].
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Throughout this paper the letters N and ω will denote the set of natural numbers and nonnegative integer numbers,
respectively. Our basic references for quasi-uniform and quasi-metric spaces are [2] and [6].

Following the modern terminology, by a quasi-metric on a set X we mean a nonnegative real valued function d on X × X
such that for all x, y, z ∈ X : (i) d(x, y) = d(y, x) = 0 ⇔ x = y; and (ii) d(x, y) � d(x, z) + d(z, y).

A quasi-metric space is a pair (X,d) such that X is a (nonempty) set and d is a quasi-metric on X .
If d is a quasi-metric on X , then the function ds defined on X × X by ds(x, y) = d(x, y) ∨ d(y, x), for all x, y ∈ X , is a

metric on X .
M.B. Smyth presented in [15] and [16] a topological framework for denotational semantics based on theory of com-

plete (and totally bounded) quasi-uniform and quasi-metric spaces. This study was continued, among other authors, by Ph.
Sünderhauf [18] and H.P.A. Künzi [5]. The following notion and characterization will be enough for our purposes here.

A sequence (xn)n in a quasi-metric space (X,d) is said to be left K-Cauchy [7,8] if for each ε > 0 there is n0 ∈ N such
that d(xn, xm) < ε whenever m � n � n0. A quasi-metric space (X,d) is Smyth complete if and only if every left K-Cauchy
sequence is convergent with respect to the topology induced by the metric ds [10].

As usual, by a recurrence equation (a recurrence relation, or simply a recurrence) we mean an equation that defines a
sequence recursively: each term of the sequence is defined as a function of the preceding terms. If T (n), n ∈ N, is the nth
term of the sequence, then the recurrence equation will be simply denoted by T . By a solution of T we mean a function f
defined on N and that satisfies the recurrence equation for all n ∈ N.

A typical example of a recurrence equation is the equation which specifies the factorial function f given by f (0) = 1,
and f (n) = nf (n − 1) for all n ∈ N.

This recurrence equation of course determines the factorial sequence (n!)n . As such the solution of the equation is a
function f : ω → N.

The theory of Complexity Spaces, that we will recall next, relies on an adaptation of techniques of Denotational Semantics
to the context of Complexity Theory. Denotational Semantics is an approach which allows the formalization of the mean-
ings of programming languages by constructing mathematical objects (called denotations) which describe the meanings of
expressions from the languages. This enables one to specify the way in which programs, written in the programming lan-
guage under consideration, compute in an unambiguous way. In the absence of Denotational Semantics, i.e., the case where
programming languages are specified in natural language, ambiguities arise and different programmers may implement the
language in different ways. Hence there is no guarantee on portability of software. Denotational semantics originated in
the work of D. Scott and C. Strachey in the 1960’s. As originally developed by Strachey and Scott, denotational semantics
provided the denotation (meaning) of a computer program as a function that mapped inputs to outputs (see [14,17]). To give
denotations to recursively defined programs, Scott proposed working with continuous functions between domains, specifi-
cally complete partial orders. A main tool in Denotational Semantics is to associate a functional with recursive programs. If
we reconsider the recurrence equation discussed above (which can be viewed as code for a recursive program computing
the factorial function) then we can associate the functional Φ defined by Φ f (0) = 1, and Φ f (n) = nf (n − 1) for all n ∈ N.
Then, the functional Φ transforms the function f into a new function Φ f defined by the scheme displayed above.

The formalization of the meaning of the recursive program, in our case the program computing the factorial function, is
then obtained as the least fixed point of this functional Φ over the function space under consideration.

Similarly, for each recurrence equation, a functional Φ can be associated with this recurrence.
Observe that we consider functionals over functions from ω to N. This is a deliberate simplification. In Denotational

Semantics, the function spaces are so-called domains (e.g., complete partial orders) and the functions typically are partial,
i.e., they have function domains and ranges which can include the symbol ⊥ to indicate the undefined case.

The theory of Complexity Spaces, discussed next, has been introduced to capture the complexity of the programs. For
instance the number of steps the program takes during its computation could be captured, as opposed to a representation
of the input-output relation of the program as is typically the case in Denotational Semantics. In the theory of Complexity
Spaces, complexity functions are formally represented as unique fixed points of functionals associated with the recurrence
equations that specify the complexity of a program.

Let us recall [13], that the complexity (quasi-metric) space is the pair (C,dC), where

C =
{

f : ω → (0,∞]:
∞∑

n=0

2−n 1

f (n)
< ∞

}
,

and dC is the quasi-metric on C given by

dC( f , g) =
∞∑

n=0

2−n
((

1

g(n)
− 1

f (n)

)
∨ 0

)
,

for all f , g ∈ C . (We adopt the convention that 1/∞ = 0.)
The elements of C are called complexity functions.
It is well known [10] that the quasi-metric space (C,dC) is Smyth complete.
In the sequel we denote by C0 the set { f ∈ C: f (n) < ∞ for all n ∈ ω}.
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The applicability of the theory of complexity spaces to the complexity analysis of Divide and Conquer Algorithms was
illustrated in Section 7 of [13], by a new proof, based on the Banach fixed point theorem and improver functionals, of the
fact that mergesort has optimal asymptotic average running time.

Following Definition 6.2 of [13], a functional Φ from (C,dC) into itself, is an improver with respect to a function f ∈ C0
if for each n ∈ ω, Φn+1 f � Φn f .

Note that if Φ is monotone increasing (i.e., Φ f � Φg whenever f � g), to show that Φ is an improver with respect
to f , it suffices to verify that Φ f � f .

The intuition is that an improver is a functional that corresponds to a transformation on algorithms and satisfies the
following condition: the iterative applications of the transformation to a given algorithm yield an improved algorithm at
each step of the iteration.

In this paper we discuss the complexity analysis of Probabilistic Divide and Conquer Algorithm. We obtain a general
theorem that permits us to show that for many recurrence equations based on the recursive structure of Probabilistic
Divide and Conquer Algorithm, the associated functionals have a unique fixed point which is the solution for our recurrence
equation. Our technique is based on constructing a monotone increasing functional Φ , associated with a given recurrence
equation T , for which there is a complexity function g such that g � Φg , and, by Smyth completeness of (C,dC), the
sequence (Φk g)k of iterations is convergent in (C, (dC)s) to some f T ∈ C which is the unique fixed point of Φ and, then, it
is the solution for the recurrence equation T . Moreover, if Φ is an improver with respect to some g ∈ C0, then f T � g and
thus f T is in class of g , i.e., f T (n) ∈O(g(n)).

Since the Probabilistic Divide and Conquer Algorithm provides an example of an algorithm which does not have a re-
currence equation of the Divide and Conquer kind, the techniques of analysis based on the theory of complexity spaces are
applicable to more general classes of algorithms than the class of Divide and Conquer Algorithms.

2. Fixed points for functionals on the complexity space associated with recurrence equations

In this section we prove a general theorem on existence of fixed points for functionals, defined on the complexity space,
which appear in a natural way in the analysis of Probabilistic Divide and Conquer Algorithm.

We first state some auxiliary results which will be crucial in obtaining our main result (Theorem 2).

Theorem 1. (See [10].) The complexity space is Smyth complete.

Proposition 1. Let Φ : C → C be monotone increasing. If there is g ∈ C such that g � Φg, then:

(1) There is f ∈ C such that limk→∞(dC)s( f ,Φk g) = 0.
(2) Φk g � f � Φ f for all k ∈ ω.

Proof. (1) Since g � Φg and Φ is monotone increasing, it follows that

Φk g � Φk+1 g,

for all k ∈ ω. Therefore

dC
(
Φk g,Φk+1 g

) = 0,

for all k ∈ ω. Hence (Φk g)k is a left K-Cauchy sequence in (C,dC). By Theorem 1 there is f ∈ C such that

lim
k→∞

(dC)s( f ,Φk g
) = 0.

(2) Fix k ∈ ω. Given ε > 0, by (1), there is j � k such that (dC)s( f ,Φ j g) < ε. Thus

dC
(
Φk g, f

)
� dC

(
Φk g,Φ j g

) + dC
(
Φ j g, f

) = dC
(
Φ j g, f

)
< ε.

Consequently dC(Φk g, f ) = 0, so that, Φk g � f .
Finally, since Φ is monotone increasing, we have Φk+1 g � Φ f for all k ∈ ω, and hence

dC( f ,Φ f ) � dC
(

f ,Φk+1 g
) + dC

(
Φk+1 g,Φ f

) = dC
(

f ,Φk+1 g
)
,

for all k ∈ ω. It follows that dC( f ,Φ f ) = 0, i.e., f � Φ f . The proof is finished. �
Proposition 2. Let ( fk)k be a sequence in C0 . If there is f ∈ C0 such that limk→∞(dC)s( f , fk) = 0, then ( fk)k is pointwise convergent
to f with respect to the Euclidean metric, i.e., for each n ∈ ω and each ε > 0 there is k0 ∈ N such that | f (n)− fk(n)| < ε for all k � k0 .

Proof. Fix n ∈ ω. Choose ε > 0. By hypothesis, there is k0 ∈ N such that∣∣∣∣ 1 − 1
∣∣∣∣ <

ε
,

f (n) fk(n) f (n)( f (n) + ε)



L.M. García-Raffi et al. / J. Math. Anal. Appl. 348 (2008) 346–355 349
for all k � k0. Hence∣∣ f (n) − fk(n)
∣∣ <

ε fk(n)

f (n) + ε
, (�)

and
1

f (n)
− ε

f (n)( f (n) + ε)
<

1

fk(n)
,

for all k � k0. From the last inequality it follows that fk(n) < f (n) + ε, for all k � k0. We immediately deduce from (�) that∣∣ f (n) − fk(n)
∣∣ < ε,

for all k � k0. �
Theorem 2. Let T be a recurrence equation. Suppose that there is n0 � 2 such that

T (n) = u(n) +
n−1∑
k=1

vk(n)T (k),

for all n � n0 , where u ∈ C0 and (vk)k is a sequence of positive functions on N satisfying the following condition.
There is K > 0 such that for all n > n0 ,

n−1∑
k=n0

vk(n) � K . (∗)

Then, the functional Φ : C → C defined, for all f ∈ C , by

Φ f (0) = T (1), Φ f (n) = T (n), n = 1, . . . ,n0 − 1,

and

Φ f (n) = u(n) +
n−1∑
k=1

vk(n) f (k),

for all n � n0 , has a unique fixed point f T ∈ C0 which is obviously the solution of the recurrence equation T .
Furthermore, if Φ is an improver with respect to some g ∈ C , it follows that f T � g.

Proof. First we observe that, indeed, Φ f ∈ C for all f ∈ C , because u ∈ C and thus
∞∑

n=0

2−n 1

Φ f (n)
�

∞∑
n=0

2−n 1

u(n)
< ∞.

Moreover Φ is monotone increasing since for f , g ∈ C with f � g , one has

Φ f (n) = Φg(n),

for n = 0,1, . . . ,n0 − 1, and

Φ f (n) � u(n) +
n−1∑
k=1

vk(n)g(k) = Φg(n),

for all n � n0.
Consider the function g : ω → (0,∞) defined by g(0) = T (1), g(n) = T (n), n = 1, . . . ,n0 − 1, and g(n) = u(n) for all

n � n0. Since u ∈ C0, it follows that g ∈ C0. Furthermore g(n) = Φg(n) for n = 0,1, . . . ,n0 − 1, and clearly g(n) � Φg(n) for
all n � n0, by the construction of Φ . Therefore, we can apply Proposition 1, so that:

(1) There is f T ∈ C such that limk→∞(dC)s( f T ,Φk g) = 0, and
(2) Φk g � f T � Φ f T for all k ∈ ω.

Note that by the construction of Φ and the fact that g ∈ C0, we easily deduce that Φk g ∈ C0 for all k ∈ ω.
Now we show that f T ∈ C0. Indeed, assume the contrary, and let j be the first nonnegative integer number such that

f T ( j) = ∞. Since f T � Φ f T , it follows that Φ f T ( j) = ∞ and j � n0. Therefore

Φ f T ( j) = u( j) +
j−1∑
k=1

vk( j) f T (k) < ∞,

a contradiction. Hence f T ∈ C0.
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Then, we can apply Proposition 2, and thus, the sequence (Φk g)k is pointwise convergent to f T .
Next we prove that f T = Φ f T . To this end, we first recall that, for n = 0,1, . . . ,n0 − 1, we have Φ f T (n) = Φg(n). So

by condition (2) and the definition of g , we deduce that f T (n) = Φ f T (n) = g(n), for n = 0,1, . . . ,n0 − 1. Hence Φg(n0) =
Φ f T (n0). It follows from (2) that f T (n0) = Φ f T (n0).

Now fix n > n0. Choose an arbitrary ε > 0. Then, there is j ∈ N such that∣∣ f T (k) − Φ j g(k)
∣∣ < ε, k = n0, . . . ,n − 1.

Consequently, we obtain (recall that, by condition (2), f T (n) = Φ j g(n), n = 0,1, . . . ,n0 − 1):

Φ f T (n) = u(n) +
n−1∑
k=1

vk(n) f T (k) < u(n) +
n0−1∑
k=1

vk(n) f T (k) +
n−1∑
k=n0

vk(n)
(
ε + Φ j g(k)

)

= ε

n−1∑
k=n0

vk(n) + Φ j+1 g(n) � Kε + f T (n).

Therefore Φ f T (n) � f T (n). We conclude that Φ f T = f T , so f T is a fixed point of Φ , and thus it is a solution for the
recurrence equation T .

In order to show that f T is the unique fixed point of Φ , we suppose that there is f ′
T ∈ C with Φ f ′

T = f ′
T . Then f ′

T (n) =
f T (n) for n = 0,1, . . . ,n0 −1, so by the construction of Φ , Φ f ′

T (n0) = Φ f T (n0), i.e., f ′
T (n0) = f T (n0), and inductively, f ′

T (n) =
f T (n) for all n > n0.

Finally, suppose that Φ is an improver with respect to some g ∈ C . Then Φg � g (see Section 1), so, f T (n) = Φg(n) �
g(n) for n = 0,1, . . . ,n0 − 1. Hence, we obtain

f T (n0) = u(n0) +
n0−1∑
k=1

vk(n0) f T (k) � u(n0) +
n0−1∑
k=1

vk(n0)g(k) = Φg(n0) � g(n0),

and, by induction on n, we easily deduce that f T (n) � g(n) for n > n0. This concludes the proof. �
Remark 1. If the recurrence T verifies T (1) = 0 and T (n) > 0 for all n � 2, we may construct the recurrence S given by
S(n) = T (n + 1) for all n ∈ N. Then, by Theorem 2, the recurrence S has a (unique) solution f S ∈ C0. Thus, the function
f T : N → [0,∞) given by f T (1) = 0 and f T (n) = f S (n − 1) for all n � 2 is the (unique) solution of T . This observation will
be used in Section 3.

3. The complexity analysis of Probabilistic Divide and Conquer Algorithm: Examples

When discussing the analysis of Probabilistic Divide and Conquer Algorithm by means of recurrences, the following
general recurrence equation is obtained:

T (n) = p(n) +
n−1∑
k=1

q(n,k)T (k),

where T (1) � 0, p(n) = c1n + c2, with c1 > 0 and 2c1 + c2 > 0, and the q(n,k)́s are nonnegative and proportional to the
splitting probabilities that express the changes that a task of size n involve a subtask of size k < n. (Observe that T (2) > 0
because 2c1 + c2 > 0, and, thus, T (n) > 0 for all n � 2.)

The following are typical examples for q(n,k).

(A)
α

n
, (B)

2α(n − k)

n(n + 1)
, (C)

α

n

n∑
j=k+1

1

j
, (D)

2α(k − 1)(n − k)

n(n − 1)(n − 2)
,

with α > 0, which arise in Probabilistic Divide and Conquer Algorithm or binary search trees, fully specified search in
2−d quadtress, partial match queries in 2−d quadtress, and median-of-three Quicksort, respectively (see [1, Section 4], and
[3, p. 609]).

Next we discuss the complexity analysis of Probabilistic Divide and Conquer Algorithm for the four cases cited above.

Case (A). The recurrence equation T is given by

T (n) = c1n + c2 + α

n

n−1∑
k=1

T (k),

for all n � 2.
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We may assume T (1) > 0 (see Remark 1), and thus T satisfies the conditions of Theorem 2, with n0 = 2, u ∈ C0 with
u(0) = u(1) = c > 0, c arbitrary, and u(n) = c1n + c2 for all n � 2, and vk(n) = α/n for all k ∈ N (observe that

∑n−1
k=2 vk(n) =

α(n − 2)/n < α for all n > 2).
Consequently, the recurrence equation T has a unique solution f T ∈ C0.
Now we will obtain a class of complexity functions for which the functional Φ associated with T , is an improver. To this

end, we write for each n � 2:

T (n + 1) = c1(n + 1) + c2 + α

n + 1

n∑
k=1

T (k) = c1(n + 1) + c2 + α

n + 1

(
T (n) +

n−1∑
k=1

T (k)

)

= c1(n + 1) + c2 + α

n + 1

(
T (n) + n

α

(
T (n) − (c1n + c2)

)) = h(n + 1) + n + α

n + 1
T (n),

where

h(n + 1) = c1(n + 1) + c2 − n(c1n + c2)

n + 1
= c1(2n + 1) + c2

n + 1
,

for all n � 2.

Therefore, we have

T (2) = 2c1 + c2 + α

2
T (1),

and

T (n) = h(n) + n + α − 1

n
T (n − 1),

for all n � 3.
Hence Φ can be expressed by Φ f (0) = Φ f (1) = T (1), Φ f (2) = T (2), and

Φ f (n) = h(n) + n + α − 1

n
f (n − 1),

for all n � 3, with

h(n) = c1(2n − 1) + c2

n
.

Then, for g ∈ C satisfying T (n) � g(n), n = 0,1,2, and

c1(2n − 1) + c2

n
+ n + α − 1

n
g(n − 1) � g(n), n � 3, (I)

it follows that Φg � g , so Φ is an improver with respect to g , and hence, the solution f T of the recurrence equation T
verifies f T � g by Theorem 2.

Next we apply these methods to deduce the known fact that, for 0 < α � 2, f T (n) ∈O(n loga n), for any a > 1.
Indeed, we first observe that given K , r > 0 and a > 1, a double application of the L’Hôpital rule gives

lim
x→+∞

K [x2(loga x − loga(x − 1)) + loga(x − 1)]
rx + s

= K

r · ln a
.

Therefore, if K > r · ln a, there exists n0 ∈ N such that for each n � n0,

Kn loga n >
(n + 1)

n
K (n − 1) loga(n − 1) + rn + s

n
. (∗∗)

By applying the inequality (∗∗) to the particular case that r = 2c1 and s = c2 − c1, we obtain for 0 < α � 2, that

Kn loga n >
(n + α − 1)

n
K (n − 1) loga(n − 1) + c1(2n − 1) + c2

n
,

whenever n � n0. So, inequality (I) above is satisfied for g(n) = Kn loga n, with K > 2c1 · ln a, and n � n0.
We conclude that f T (n) ∈O(n loga n), whenever 0 < α � 2.

Case (B). The recurrence equation T is given by

T (n) = c1n + c2 + 2α

n(n + 1)

n−1∑
k=1

(n − k)T (k),

for all n � 2.
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As in Case (A) we may assume that T (1) > 0, and thus T satisfies the conditions of Theorem 2 with n0 = 2, u ∈ C0 with
u(0) = u(1) = c > 0, c arbitrary, and u(n) = c1n + c2 for all n � 2, and vk(n) = 2α(n − k)/n(n + 1) for all k ∈ N (observe that∑n−1

k=2(n − k) = (n2 − 3n + 2)/2, so
∑n−1

k=2 vk(n) = α(n2 − 3n + 2)/n(n + 1) < α(n − 2)/n + 1 for all n > 2).
Consequently, the recurrence equation T has a unique solution f T ∈ C0.
Now we will obtain a class of complexity functions for which the functional Φ associated with T is an improver. To this

end, we write for each n � 2:

T (n + 1) = c1(n + 1) + c2 + 2α

(n + 1)(n + 2)

n∑
k=1

(n + 1 − k)T (k)

= c1(n + 1) + c2 + 2α

(n + 1)(n + 2)

(
n−1∑
k=1

(n − k)T (k) +
n∑

k=1

T (k)

)

= c1(n + 1) + c2 + 2α

(n + 1)(n + 2)

(
n(n + 1)

2α

(
T (n) − (c1n + c2)

) +
n∑

k=1

T (k)

)

=
(

c1(n + 1) + c2 − n(c1n + c2)

n + 2

)
+ n

n + 2
T (n) + 2α

(n + 1)(n + 2)

n∑
k=1

T (k).

Therefore

T (2) = 2c1 + c2 + α

3
T (1)

and

T (n) = h(n) + n − 1

n + 1
T (n − 1) + 2α

n(n + 1)

n−1∑
k=1

T (k),

for all n � 3, where

h(n) = c1n + c2 − (n − 1)(c1(n − 1) + c2)

n + 1
= c1(3n − 1) + 2c2

n + 1
.

Hence Φ can be expressed by

Φ f (0) = Φ f (1) = T (1), Φ f (2) = T (2), Φ f (3) = h(3) + 1

2
T (2) + α

6

(
T (1) + T (2)

)
,

and

Φ f (n) = h(n) + n − 1

n + 1
f (n − 1) + 2α

n(n + 1)

(
T (1) + T (2) +

n−1∑
k=3

f (k)

)
,

for all n � 4.
Then, for g ∈ C monotone increasing (i.e., g(n) � g(n + 1) for all n ∈ ω) satisfying T (n) � g(n), n = 0,1,2,3, and

c1(3n − 1) + 2c2

n + 1
+ (n − 1)(n + 2α)

n(n + 1)
g(n − 1) � g(n), n � 4, (II)

it follows that Φg � g , so Φ is an improver with respect to g , and hence, the solution f T of the recurrence equation T
verifies f T � g by Theorem 2.

Similarly to Case (A), we show that for 0 < α � 3/2, f T (n) ∈O(n loga n), for any a > 1.
Indeed, note that for each n ∈ N we have n + 1 > (n − 1)(n + 3)/(n + 1). Hence, it immediately follows from inequality

(∗∗) that there is n0 ∈ N such that for each n � n0, and 0 < α � 3/2,

Kn loga n >
(n − 1)(n + 2α)

n(n + 1)
K (n − 1) loga(n − 1) + c1(3n − 1) + 2c2

n + 1
,

where K > 3c1 · ln a.
Consequently, inequality (II) above is satisfied for g(n) = Kn loga n, with K > 3c1 · ln a, and n � n0.
We conclude that f T (n) ∈O(n loga n), whenever 0 < α � 3/2.

Case (C). The recurrence equation T is given by

T (n) = c1n + c2 + α

n

n−1∑
k=1

(Hn − Hk)T (k),

for all n � 2, where Hn = ∑n
j=1 1/ j.
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In this case, the boundedness condition (∗) of Theorem 2 can be easily obtained by developing the terms of our recur-
rence as follows. For each n � 2, put:

T (n + 1) = c1(n + 1) + c2 + α

n + 1

n∑
k=1

(Hn+1 − Hk)T (k)

= c1(n + 1) + c2 + α

n + 1

(
n−1∑
k=1

(Hn − Hk)T (k) + 1

n + 1

n∑
k=1

T (k)

)

= c1(n + 1) + c2 + α

n + 1

(
n

α

(
T (n) − (c1n + c2)

) + 1

n + 1

n∑
k=1

T (k)

)

=
(

c1(n + 1) + c2 − n(c1n + c2)

n + 1

)
+ n

n + 1
T (n) + α

(n + 1)2

n∑
k=1

T (k).

Therefore

T (n) = h(n) +
(

n − 1

n
+ α

n2

)
T (n − 1) + α

n2

n−2∑
k=1

T (k),

for all n � 3, where

h(n) = c1n + c2 − (n − 1)(c1(n − 1) + c2)

n
= c1(2n − 1) + c2

n
,

i.e., h(n) = u(n) for n � 3.
Now, as in Case (A) we may assume that T (1) > 0, and thus T satisfies the conditions of Theorem 2. Indeed, we have

n0 = 3, u(n) = c1(2n − 1) + c2/n for all n � 3, and

vk(n) = α

n2
, k < n − 1, vn−1(n) = α

n2
+ n − 1

n
.

Then u ∈ C0 and for n � 4,

n−1∑
k=3

vk(n) � α(n − 3)

n2
+ α

n2
+ n − 1

n
< 2α + 1.

Consequently, by Theorem 2, the recurrence equation T has a unique solution f T ∈ C0.
Next we will obtain a class of complexity functions for which the functional Φ associated with T is an improver. In fact,

we have for f ∈ C

Φ f (n) = h(n) +
(

n − 1

n
+ α

n2

)
f (n − 1) + α

n2

n−2∑
k=1

f (k), n � 3.

Then, for g ∈ C monotone increasing satisfying T (n) � g(n), n = 0,1,2, and

c1(2n − 1) + c2

n
+ (n − 1)(n + α)

n2
g(n − 1) � g(n), n � 3, (III)

it follows that Φg � g , so Φ is an improver with respect to g , and hence, the solution f T of the recurrence equation T
verifies f T � g by Theorem 2.

Similarly to Cases (A) and (B), we show that for 0 < α � 2, f T (n) ∈O(n loga n), for any a > 1.
Indeed, note that for each n ∈ N we have n + 1 > (n − 1)(n + 2)/n. Hence, it immediately follows from inequality (∗∗)

that there is n0 ∈ N such that for each n � n0, and 0 < α � 2,

Kn loga n >
(n − 1)(n + α)

n2
K (n − 1) loga(n − 1) + c1(2n − 1) + c2

n
,

where K > 2c1 · ln a.
So, inequality (III) above is satisfied for g(n) = Kn loga n, with K > 2c1 · ln a, and n � n0.
We conclude that f T (n) ∈O(n loga n), whenever 0 < α � 2.

Case (D). The recurrence equation T is given by

T (n) = c1n + c2 + 2α

n(n − 1)(n − 2)

n−1∑
k=1

(k − 1)(n − k)T (k),

for all n � 3.
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As in Case (A) we may assume that T (1) > 0 and thus T satisfies the conditions of Theorem 2, with n0 = 3, u ∈ C0 with
u(0) = u(1) = u(2) = c > 0, c arbitrary, and u(n) = c1n + c2 for all n � 3, and vk(n) = 2α(k − 1)(n − k)/n(n − 1)(n − 2) for
all k ∈ N (observe that

∑n−1
k=3(k − 1)(n − k) = (n − 3)(n2 − 4)/6, so

∑n−1
k=3 vk(n) < α/3 for all n > 3).

Consequently, the recurrence equation T has a unique solution f T ∈ C0.
Now we will obtain a class of complexity functions for which the functional Φ associated with T is an improver. To this

end, we write for each n � 2:

T (n + 1) = c1(n + 1) + c2 + 2α

(n + 1)n(n − 1)

n∑
k=1

(k − 1)(n + 1 − k)T (k)

= h(n + 1) + n − 2

n + 1
T (n) + 2α

(n − 1)n(n + 1)

n∑
k=2

(k − 1)T (k),

where

h(n + 1) = c1(n + 1) + c2 − (n − 2)(c1n + c2)

n + 1
.

Therefore

T (n) = h(n) + n − 3

n
T (n − 1) + 2α

(n − 2)(n − 1)n

n−1∑
k=2

(k − 1)T (k),

for all n � 3.
Hence Φ can be expressed by

Φ f (0) = Φ f (1) = T (1), Φ f (2) = T (2),

and

Φ f (n) = h(n) + n − 3

n
f (n − 1) + 2α

(n − 2)(n − 1)n

n−1∑
k=2

(k − 1) f (k),

for all n � 3.
Observe that

∑n−1
k=2(k − 1) = (n − 1)(n − 2)/2. Then, for g ∈ C monotone increasing satisfying T (n) � g(n), n = 0,1,2, and

c1(4n − 3) + 3c2

n
+ n − 3 + α

n
g(n − 1) � g(n), n � 3, (IV)

it follows that Φg � g , so Φ is an improver with respect to g , and hence, the solution f T of the recurrence equation T
verifies f T � g by Theorem 2.

Similarly to Cases (A)–(C), we show that for 0 < α � 2, f T (n) ∈O(n loga n), for any a > 1.
Indeed, note that for each n>1, we have n + 1 > (n − 3)+ 4(n − 2)/(n − 1). Hence, it immediately follows from inequality

(∗∗) that there is n0 ∈ N such that for each n � n0, and 0 < α � 2,

Kn loga n >

(
n − 3

n
+ 2α(n − 2)

(n − 1)n

)
K (n − 1) loga(n − 1) + c1(4n − 3) + 3c2

n
,

where K > 4c1 · ln a.
So, inequality (IV) above is satisfied for g(n) = Kn loga n, with K > 4c1 · ln a, and n � n0.
We conclude that f T (n) ∈O(n loga n), whenever 0 < α � 2.
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