when considering a α/β ratio of 10. The mean GTV and PTV D98% and D50% were 41.6Gy (SD:7.7) and 46.5Gy (SD:6.8) ,39.3Gy (SD:7) and 46.1Gy (SD:6.6) respectively. Each treatment was delivered by an average of 158 beams. All dose constraint parameters proposed by Timmerman were respected (Semin.Radiat.Oncol.2008). Furthermore, the average difference between the Raytracing and the Monte Carlo algorithm was 0.43% on these values. At a median follow up of 30.9 months (range: 5.7-50.3), the 1 and 2-year LC rates remained stable at 83.5%. The 1 and 2-year liver PFS and the DFS rates were 57.1%, 46.1% and 75.5%, 64.4% respectively. The 2-year OS was 60.6% (Figure 1). No acute grade 2 toxicities were observed. Three patients reported late grade 2 gastro-intestinal toxicities. No late grade 3 nor 4 toxicities were reported. The 2 year OS was 60.6% (Figure 1). No acute grade 2 toxicities were observed. Three patients reported late grade 2 gastro-intestinal toxicities. No late grade 3 nor 4 toxicities were reported.

Conclusion: Robotic SBRT is feasible, safe and very well tolerated for the treatment of hepatic oligometastases. Our outcome results compare favorably from previous published studies of SBRT. It could represent a valid treatment option in the multimodality treatment of unresectable hepatic oligometastases.

EP-1277
Adyuvant chemoradiation for resected gallbladder cancer: single center 25-year experience
C. Solé1, V. Solé2
1Instituto de Radiaciones Médicas, Radiotherapy, Santiago, Chile
2Universidad San Sebastián, Medicine School, Santiago, Chile

Purpose or Objective: Patients with locally advanced gallbladder cancer (LAGC) have a dismal prognosis. We investigated outcomes and risk factors for overall survival (OS) in patients treated with radical surgery and adyuvant chemoradiotherapy (CRT).

Material and Methods: A total of 212 patients with LAGC (cT3 59% and/or cN+ 52%) were studied. For survival outcomes potential associations were assessed in univariate and multivariate analyses using the Cox proportional hazards model. We constructed a risk scoring system in which points were assigned to each risk factor by dividing each β coefficient in the final model by the lowest β coefficient and rounding to the nearest integer.

Results: Median follow-up was 46.2 months (2-235). Five-year OS for the entire cohort was 50%. In multivariate analysis higher pT stage [HR 1.73, p = 0.01], R1 resection [HR 5.06, p < 0.01], and number of surgical procedures [HR 1.41, p = 0.05] were associated with an increased risk of death. A risk model was generated to determine a prognostic index for individual patients with LAGC.

Conclusion: Overall results after multimodality treatment of LAGC are promising. Classification of risk factors for death has contributed to propose a prognostic index that could allow us to guide risk-adapted tailored treatment

EP-1278
CCRT with or without surgery using Helical Tomotherapy or IMRT for esophageal cancer patients
P.Y. Ho1, W. Le-Jung1, H. Chen-Hsi1, S. Pei-Wei1
1Far Eastern Memorial Hospital, Radiation Oncology, New Taipei City, Taiwan

Purpose or Objective: To retrospectively review the treatment outcome of esophageal cancer in our hospital, and compare the radiotherapy efficacy and toxicity of helical tomotherapy with step-and-shoot Intensity Modulation Radiation Therapy (IMRT).

Material and Methods: Between 2007 and 2012, 108 consecutive patients with locally advanced esophageal cancer, cT2-4N0-M0-T1, received neoadjuvant concurrent chemoradiotherapy (CCRT) followed by esophagectomy or definitive CCRT treatment course respectively. The radiotherapy was delivered with helical tomotherapy in 56 patients, and with conventional IMRT in other 52 patients. We had evaluated outcomes with radiation dose, overall survival rate (OS), disease-free survival rate (DFS), and toxicity of radiation pneumonitis.

Results: The median follow-up duration was 16 months. The median time of overall survival among all patients was 15 months. The treatment modality with neoadjuvant CCRT followed by esophagectomy had favorable OS (47.6% : 10.4%, p = 0.014), DFS (42.9% : 23.9%, p = 0.013), and local recurrence (33.3% : 50.7%, p = 0.574) comparing with definitive CCRT. No significant difference outcome of OS was found between tomotherapy and conventional IMRT. The patients using tomotherapy had less incidence and severity of radiation pneumonitis (only one patient with less than grade 3 radiation pneumonitis in tomotherapy group; 5 patients < grade 3 and 2 patients > grade 3 radiation pneumonitis in conventional IMRT group).

Conclusion: In our study, the treatment outcomes of neoadjuvant CCRT followed by esophagectomy for esophageal cancer are better in OS, DFS, and local control than definitive CCRT. Tomotherapy may reduce lung dose, and probably reduce incidence and severity of radiation pneumonitis when compared with conventional IMRT.

EP-1279
SABR in inoperable liver oligometastatic patients and radioresistant primary tumors.
E. Clerici1, T. Comito1, L. Cozzi1, A. Fogliata1, A. Tozzi1, C. Iftode1, C. Franzese1, P. Navarra1, G.R. D’Agostino1, P. Mancosu1, F. Lobefalo1, S. Tomatis1, M. Scarsetti1
1Istituto Clinico Humanitas, Radiotherapy and Radiosurgery, Rozzano Milan, Italy

Purpose or Objective: To evaluate the feasibility and efficacy of Stereotactic Ablative Body Radiotherapy (SABR) in the treatment of liver metastases from radioresistant primary tumors.

Material and Methods: Patients with inoperable liver metastases from renal cancers, melanoma and sarcomas, not amenable to other locoregional therapies, treated with SABR were included in this retrospective study. Inclusion criteria were: Karnofsky Performance Status of 70; no evidence of progressive or untreated gross disease outside the liver; maximum tumor diameter less than 6 cm; no more than 3 liver lesions; normal liver volume greater than 1000 cm3; adequate liver function. Dose prescription ranged from 75 to 50.26Gy in 3 consecutive fractions, delivered with RapidArc VMAT, with 10MV FFF photons. Local control was defined according to RECIST criteria. Toxicity was classified according to the Common Toxicity Criteria (CTC) version 3.0.

Results: From April 2010 to October 2015, 20 patients were treated with SABR for a total number of 24 lesions. Median follow-up was 21 (range 6-58) months. In field progression was observed in 1 patient for a total of 2 lesions. One and 2