A power of an entire function sharing one value with its derivative

Ji-Long Zhang a,∗, Lian-Zhong Yang b

a Beihang University, LMIB and School of Mathematics & Systems Science, Beijing, 100191, PR China
b Shandong University, School of Mathematics, Jinan, Shandong, 250100, PR China

ARTICLE INFO

Article history:
Received 16 May 2009
Received in revised form 2 August 2010
Accepted 2 August 2010

Keywords:
Uniqueness theorems
Shared value
Entire function

ABSTRACT

In this paper, we investigate uniqueness problems of entire functions that share one value with one of their derivatives. Let f be a non-constant entire function, n and k be positive integers. If f^n and $(f^n)'$ share 1 CM and $n \geq k + 1$, then $f^n = (f^n)'$, and f assumes the form $f(z) = ce^{\lambda z}$, where c is a non-zero constant and $\lambda^k = 1$. This result shows that a conjecture given by Brück is true when $F = f^n$, where $n \geq 2$ is an integer.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In what follows, a meromorphic (resp. entire) function always means a function which is meromorphic (resp. analytic) in the whole complex plane. We will use the standard notation in Nevanlinna’s value distribution theory of meromorphic functions; see, e.g. [1].

We say that two meromorphic functions f and g share $\alpha \in \mathbb{C}$ IM (ignoring multiplicities) when $f - \alpha$ and $g - \alpha$ have the same zeros. If $f - \alpha$ and $g - \alpha$ have the same zeros with the same multiplicities, then we say that f and g share α CM (counting multiplicities). Let m and p be positive integers. We denote by $N_p(r, 1/(f - \alpha))$ the counting function of the zeros of $f - \alpha$ where m-fold zeros are counted m times if $m \leq p$ and p times if $m > p$.

Recently, a widely studied subtopic of the uniqueness theory has been the consideration of shared value problems relative to a meromorphic function F and its kth derivative $F^{(k)}$. In order to get the uniqueness of sharing one value of F and $F^{(k)}$, some deficient assumption is needed. The reader is invited to see the recent papers [2–7].

The purpose of this paper is to study a power of an entire function sharing one value with its derivative. We will give some results concerning Brück’s Conjecture, which is mentioned later.

Let f be a non-constant entire function and n be a positive integer. If f^n and $(f^n)'$ share 1 CM, then there exists an entire function α such that

$$\frac{(f^n)' - 1}{f^n - 1} = e^{\alpha}.$$

Rewriting above equation, we have

$$g_1 + g_2 + g_3 = 1,$$

where $g_1 = (f^n)'$, $g_2 = -e^{\alpha}f^n$, $g_3 = e^{\alpha}$.

There are many results on a combination of three meromorphic functions

$$f_1 + f_2 + f_3 = 1$$

in uniqueness theory. The following result is a useful one. As for the proof; see, e.g. [8].

∗ Corresponding author.
E-mail addresses: jilong_zhang@mail.sdu.edu.cn (J.-L. Zhang), lzyang@sdu.edu.cn (L.-Z. Yang).

0896-1221/$– see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.08.001
Theorem 1.1. Let \(f_j \) (\(j = 1, 2, 3 \)) be meromorphic functions satisfying (1.2). If \(f_j \) is not a constant, and
\[
\sum_{j=1}^{3} N_2(r, 1/f_j) + \sum_{j=1}^{3} N(r, f_j) < (\lambda + o(1)) T(r), \quad r \in I,
\]
where \(\lambda < 1 \), \(T(r) = \max\{T(r, f_1), T(r, f_2), T(r, f_3)\} \), \(I \) denotes a set of \(r \in (0, \infty) \) with infinite linear measure. Then either \(f_2 = 1 \) or \(f_3 = 1 \).

Applying Theorem 1.1 on (1.1), the present authors [8] got:

Theorem 1.2. Let \(f \) be a non-constant entire function, \(n \geq 7 \) be an integer. If \(f^n \) and \((f^n)\)' share 1 CM and, then \(f^n = (f^n)' \), and \(f \) assumes the form
\[
f(z) = ce^{\lambda z},
\]
where \(c \) is a non-zero constant.

It is natural to ask whether \(n \) can be reduced in Theorem 1.2. In fact, there are much more relations between \(g_i \) in (1.1) than \(f_i \) in (1.2). By studying this, we give a result improving Theorem 1.2 in Section 2. In Section 3, we consider a power of an entire function sharing 1 IM with its derivative. We provide some concluding remarks in Section 4.

2. Sharing 1 CM

In order to get a general result, we consider \(f^n \) sharing 1 CM with its \(k \)th derivative, where \(k \) is a positive integer, and obtain the following result:

Theorem 2.1. Let \(f \) be a non-constant entire function, \(n \) and \(k \) be positive integers. If \(f^n \) and \((f^n)^k \) share 1 CM and \(n \geq k + 1 \), then \(f^n = (f^n)^k \), and \(f \) assumes the form
\[
f(z) = ce^{\lambda z},
\]
where \(c \) is a non-zero constant and \(\lambda^k = 1 \).

In order to prove Theorem 2.1, we need the following lemma.

Lemma 2.2 ([1, Lemma 4.3]). Let \(f \) be a non-constant meromorphic function and \(P(f) \) be a polynomial in \(f \) with constant coefficients. Let \(b_j \) (\(j = 1, \ldots, q \)) be distinct finite values. If \(q > \deg P \), then
\[
m\left(r, \frac{P(f)f'}{(f - b_1)(f - b_2) \cdots (f - b_q)} \right) = S(r, f).
\]

We begin to prove Theorem 2.1:

Proof. Denote
\[
F = f^n.
\]
Since \(F \) and \((F)^k \) share 1 CM, then there exists an entire function \(\alpha \), such that
\[
F^{(k)} - 1 = e^{\alpha}(F - 1).
\]
Suppose first that \(e^{\alpha} \) is a non-constant entire function. By differentiation, we have
\[
F^{(k+1)} = \alpha' e^{\alpha}(F - 1) + e^{\alpha} F'.
\]
Combining (2.3) with (2.4) yields
\[
F^{(k+1)} - \alpha' F^{(k)} F - F^{(k)} F' = F^{(k+1)} - \alpha' (F^{(k)} + F) - F' + \alpha'.
\]
By induction, we deduce from (2.2) that
\[
F^{(k)} = \sum_{\lambda} c_\lambda f^{(\lambda)} f^{(\lambda)} \cdots f^{(\lambda)}\frac{F}{k},
\]
where \(l_0, \ldots, l_k \) are non-negative integers satisfying \(\sum_{j=0}^{k} l_j = n, n - k \leq l_0 \leq n - 1 \) and \(c_\lambda \) are constants.
Substituting (2.2) and (2.6) into (2.5), we have
\[f^n \cdot f^{n-k-1} P = Q, \quad (2.7) \]
where \(Q \) is a differential polynomial in \(f \) of the degree \(n \), \(P \) is a differential polynomial in \(f \) of the degree \(k + 1 \) and the coefficients of \(P \) are the polynomials in \(\alpha' \). In particular, every monomial of \(P \) has the form
\[R(\alpha' f^{l_0} (f')^{l_1} \cdots (f^{(k+1)})^{l_{k+1}}), \]
where \(l_0, \ldots, l_{k+1} \) are non-negative integers satisfying \(\sum_{j=0}^{k+1} l_j = k + 1 \) and \(l_0 \leq k \) (since \(n \geq k + 1 \)). \(R(\alpha') \) is a polynomial in \(\alpha' \) with constant coefficients. From this and logarithmic derivative lemma, we obtain
\[m\left(r, \frac{p}{f f'} \right) = S(r, f). \quad (2.8) \]

If \(P \neq 0 \), we get from (2.7) and Clunie lemma (for the proof, see, e.g. [9, Chapter 2.4]) that
\[T(\alpha f^n, f^n f^{n-k-1}) = m(r, f^n f^{n-k-1}) = S(r, f). \]
Combining this with (2.8), we have
\[
m\left(r, \frac{1}{f^{n-k-1}} \right) \leq m\left(r, \frac{f^{n-k-1} P}{f^n f^{n-k-1}} \right) + m\left(r, \frac{1}{f^{n-k-1}} \right) \\
\leq m\left(r, \frac{p}{f f'} \right) + T(\alpha f^n, f^n f^{n-k-1}) + O(1) \\
= S(r, f).
\]
From the above inequality and Lemma 2.2, we have
\[
m\left(r, \frac{1}{f^n} \right) = \frac{1}{n} m\left(r, \frac{1}{f^n} \right) \\
\leq \frac{1}{n} m\left(r, \frac{f^{n-1} f'}{f^n} \right) + \frac{1}{n} m\left(r, \frac{1}{f^{n-1} f'} \right) \\
\leq S(r, f)
\]
and
\[
m\left(r, \frac{1}{f^n - 1} \right) \leq m\left(r, \frac{f^{n-1} f'}{f^n - 1} \right) + m\left(r, \frac{1}{f^n - 1} \right) = S(r, f).
\]
From (2.3) and (2.10), we get
\[m(r, e^{\alpha}) \leq m\left(r, \frac{F(k)}{F - 1} \right) + m\left(r, \frac{1}{f^n - 1} \right) + O(1) \leq S(r, f), \]
which means that \(T(r, e^{\alpha}) = S(r, f) \).

Rewriting (2.3), yields
\[e^{\alpha} - 1 = \frac{F(k) - F}{F - 1} = \frac{f^{n-k}(P_k(f) + f^k)}{f^n - 1}, \]
where \(P_k(f) \) is a differential polynomial in \(f \). Noting that \(n \geq k + 1 \), we get
\[N\left(r, \frac{1}{e^{\alpha} - 1} \right) \leq N\left(r, \frac{1}{e^{\alpha} - 1} \right) \leq T(r, e^{\alpha}) + O(1) = S(r, f). \]
Combining this with (2.9), we obtain
\[T(r, f) = T\left(r, \frac{1}{f^n} \right) + O(1) = m\left(r, \frac{1}{f^n} \right) + N\left(r, \frac{1}{f^n} \right) + O(1) = S(r, f), \]
which is a contradiction. Hence \(P = 0 \). Then \(Q = 0 \) from (2.7), where \(Q = F^{(k+1)} - \alpha' (F^{(k)} - F') - F' + \alpha' \). We get from (2.5) that \(F^{(k+1)} F - \alpha' F^{(k)} F - F^{(k)} F' = 0 \). If \(F \) is a polynomial, then \(F - 1 \) and \(F(k) - 1 \) cannot have the same zeros with the same multiplicities. Thus \(FF^{(k)} \neq 0 \). Therefore
\[\frac{F^{(k+1)}}{F^{(k)}} = \alpha' + \frac{F'}{F}. \]
By integration, we have $F^{(k)} = dFe^z$, where d is a non-zero constant. Substituting this and (2.2) into (2.3), we have

$$(d - 1)f^n = \frac{1 - e^z}{e^z}.$$

Obviously, $d \neq 1$ and all zeros of $1 - e^z$ have the multiplicities at least n. Noting that $n \geq 2$, we get from the second fundamental theorem that

$$T(r, e^z) \leq N(r, e^z) + \frac{1}{n} N'(r, e^z) + S(r, e^z)$$

which is a contradiction since we suppose first that e^z is a non-constant entire function.

Suppose then that e^z is a non-zero constant. Say A. From (2.3), we have

$$F^{(k)} - AF = 1 - A. \tag{2.11}$$

If $A \neq 1$, we claim that 0 is a Picard exceptional value of f. Otherwise, suppose that z_0 is a zero of f of the multiplicity p. Noting that $n \geq k + 1$, z_0 is zero of $F^{(k)}$ of the multiplicity $np - k$. Then we get $A = 1$ from (2.11), which is a contradiction. We may assume that $f = e^\beta$, where β is a non-constant entire function. Substituting this into (2.11), we obtain

$$(P(\beta') - A)e^{\beta} = 1 - A,$$

where $P(\beta')$ is a differential polynomial in β'. Obviously, $P(\beta') \neq 1$. Then $nT(r, e^\beta) = T(r, e^{\beta'}) = T(r, (1 - A)/(P(\beta') - A)) = T(r, P(\beta')) + O(1) = S(r, e^\beta)$ from the above equation, which contradicts with the fact that β is a non-constant entire function.

Hence $A = 1$. Therefore, $F = F^{(k)}$ from (2.11). By the same arguments as above, we have that 0 is a Picard exceptional value of f, then f assumes the form

$$f(z) = ce^{\frac{z}{\lambda}}$$

where c is a non-zero constant and $\lambda^k = 1$. \qed

For the special case $k = 1$, we have the following corollary improving Theorem 1.2:

Corollary 2.3. Let f be a non-constant entire function, $n (\geq 2)$ be an integer. If f^n and $(f^n)'$ share 1 CM, then $f^n = (f^n)'$, and f assumes the form

$$f(z) = ce^{\frac{z}{\lambda^k}}, \tag{2.12}$$

where c is a non-zero constant.

Example 2.4. Let f be a non-constant solution of

$$\frac{f' - 1}{f - 1} = e^z.$$

Then f and f' share 1 CM, while $f \neq f'$. This example shows that the assumption $n \geq 2$ in Corollary 2.3 is sharp.

3. Sharing 1 IM

In this section, we consider a power of an entire function sharing 1 IM with its kth derivative:

Theorem 3.1. Suppose that f is an entire function, n and k are positive integers satisfying $n \geq k + 2$. If f^n and $(f^n)^{(k)}$ share 1 IM, then $f^n = (f^n)^{(k)}$, and f assumes the form (2.1).

Proof. Suppose that $F \neq F^{(k)}$. From the second fundamental theorem, we have

$$T(r, F) \leq \frac{1}{N}(r, 1/F) + \frac{1}{N}(r, 1/(F - 1)) + S(r, F)$$

$$\leq \frac{1}{N}(r, 1/f) + \frac{1}{N}(r, 1/(F^{(k)}/F - 1)) + S(r, F)$$

$$\leq \frac{1}{N}(r, 1/f) + T(r, F^{(k)}/F) + S(r, F)$$

$$= \frac{1}{N}(r, 1/f) + N(r, F^{(k)}/F) + S(r, F)$$
which contradicts with \(n \geq k + 2 \). Thus \(F = F^{(k)} \). Using the same way as in the proof of Theorem 2.1, we get that \(f \) assumes the form (2.1). \(\Box \)

Comparing Theorem 2.1 with Theorem 3.1, we give an open problem as follows:

Question 1. What happens if \(n \geq k + 2 \) is replaced by \(n \geq k + 1 \) in Theorem 3.1?

In this paper, we give an answer to Question 1 when \(k = 1 \) by the following result, which also improves Corollary 2.3.

Theorem 3.2. Let \(f \) be a non-constant entire function, \(n(\geq 2) \) be an integer. If \(f^n \) and \((f^n)'\) share 1 IM, then \(f^n = (f^n)' \), and \(f \) assumes the form (2.12).

Proof. Let \(F \) be given by (2.2). Since \(F \) and \(F' \) share 1 IM, we know that all zeros of \(F - 1 \) are simple zeros. Suppose that \(F \neq F' \). Denote

\[
H := \frac{F'(F' - F)}{F(F - 1)} = \frac{n f^{n-2} f'(n f' - f)}{f^n - 1}.
\] (3.1)

Then \(H \) is an entire function and

\[
T(r, H) = m(r, H) = m \left(r, \frac{F'}{F - 1} \left(\frac{F'}{F} - 1 \right) \right)
\leq m \left(r, \frac{F'}{F - 1} \right) + m \left(r, \frac{F'}{F} \right) + O(1)
= S(r, f).
\] (3.2)

Rewriting (3.1) gives

\[
F'^2 - FF = H(F^2 - F).
\]

Differentiating twice, we obtain

\[
2F'F'' - F'^2 - FF'' = H'(F^2 - F) + H(2FF' - F')
\] (3.3)

and

\[
2F'^2 + 2F' F''' - 3F' F'' - FF''' = H''(F^2 - F) + 2H'(2FF' - F') + H(2F'^2 + 2FF'' - F'').
\] (3.4)

Let \(z_1 \) be a zero of \(F - 1 \). Then \(F(z_1) = F'(z_1) = 1 \). From (3.3) and (3.4) we have

\[
F''(z_1) = H(z_1) + 1,
\]

\[
F'''(z_1) = 2H'(z_1) - H^2(z_1) + 2H(z_1) + 1.
\]

Set

\[
\phi = \frac{F'' - (H + 1)F'}{F - 1},
\] (3.5)

\[
\psi = \frac{F''' - (2H' - H^2 + 2H + 1)F'}{F - 1}.
\] (3.6)

Then \(\phi \) and \(\psi \) are entire functions since all zeros of \(F - 1 \) are simple. Hence, we get from (3.2) that

\[
T(r, \phi) = m(r, \phi)
\leq m \left(r, \frac{F''}{F - 1} \right) + m \left(r, \frac{F'}{F - 1} \right) + m(r, H) + O(1)
= S(r, f).
\]

Similarly,

\[
T(r, \psi) = S(r, f).
\]

From (3.5), we obtain

\[
F'' = (H + 1)F' + \phi(F - 1).
\] (3.7)
Differentiating the above equation gives
\[F''' = H'F' + (H + 1)F' + \phi'(F - 1) + \phi F'. \]
(3.8)

Combining (3.7), (3.8) and (3.6) yields
\[F'(2H^2 - H' + \phi) = (F - 1)\left(\psi - \phi' - (1 - H)\phi\right). \]

Namely,
\[n\phi^-f'(2H^2 - H' + \phi) = (f^n - 1)\left(\psi - \phi' - (1 - H)\phi\right). \]

If \(2H^2 - H' + \phi \neq 0\), the last two equations imply
\[N\left(r, \frac{1}{2H^2 - H' + \phi}\right) \leq N\left(r, \frac{1}{H} \right) = S(r, f), \]
\[N\left(r, \frac{1}{H} \right) \leq N\left(r, \frac{1}{\psi - \phi' - (1 - H)\phi}\right) = S(r, f). \]

By the second fundamental theorem, we obtain
\[T(r, f^n) \leq \bar{N}\left(r, \frac{1}{f^n - 1}\right) + \bar{N}\left(r, \frac{1}{H}\right) + S(r, f) = S(r, f), \]
which is a contradiction. Therefore
\[2H^2 - H' + \phi = 0. \]
(3.9)

Let \(z_0\) be a zero of \(f\). Then \(F(z_0) = F'(z_0) = 0\) since \(n \geq 2\). Substituting this into (3.4) and (3.5), we get
\[F''(z_0)(2F''(z_0) + H(z_0)) = 0, \]
(3.10)
\[F''(z_0) = -\phi(z_0). \]
(3.11)

We claim that
\[2F''(z_0) = -H(z_0). \]
(3.12)

In fact, if \(n \geq 3\), then \(F''(z_0) = 0\). Furthermore, we get from (3.1) that \(H(z_0) = 0\). Hence (3.12) holds. If \(n = 2\), then \(F''(z_0) = 2f''(z_0) + 2f(z_0)f''(z_0) = 2f''^2(z_0)\). If \(F''(z_0) = 0\), then \(f'(z_0) = 0\). From (3.1), we get \(H(z_0) = 0\), and so (3.12) holds. If \(F''(z_0) \neq 0\), (3.12) comes immediately from (3.10).

Substituting (3.11) and (3.12) into (3.9), we obtain
\[2H^2(z_0) + \frac{1}{2}H(z_0) - H'(z_0) = 0. \]
(3.13)

If \(2H^2 + \frac{1}{2}H - H' \neq 0\), we get from (3.2) and (3.13) that
\[\bar{N}\left(r, \frac{1}{H}\right) \leq N\left(r, \frac{1}{2H^2 + \frac{1}{2}H - H'}\right) = S(r, f). \]

Noting that
\[N\left(r, \frac{1}{F - 1}\right) \leq N\left(r, \frac{1}{F'} - 1\right) \leq T\left(r, \frac{F'}{F}\right) + O(1) \]
\[= N\left(r, \frac{F'}{F}\right) + m\left(r, \frac{F'}{F}\right) + O(1) \]
\[\leq \bar{N}\left(r, \frac{1}{F}\right) + S(r, f) \]
\[= S(r, f). \]

By the second fundamental theorem, we have a contradiction. Hence
\[2H^2 + \frac{1}{2}H - H' = 0. \]
(3.14)

Since \(F \neq F'\), we have \(H \neq 0\). Then
\[2H = H' - \frac{1}{2}. \]
Noting that H is an entire function, we have
\[T(r, H) = m(r, H) \leq m\left(r, \frac{H'}{H}\right) + O(1) = S(r, H), \]
which means that H is a constant. From (3.14), we know that $H = -\frac{1}{4}$. From (3.1), we obtain
\[(2F' - F)^2 = F. \]
Set
\[\gamma = 2F' - F \quad \text{or} \quad -\gamma = 2F' - F. \]
Then $F = \gamma^2$ and $F' = 2\gamma \gamma'$. Thus $4\gamma' = \gamma + 1$ or $4\gamma' = \gamma - 1$. If $4\gamma' = \gamma + 1$, by integration,
\[\gamma = Ae^{\frac{1}{2}z} - 1, \]
where A is a non-zero constant. Let $z^* = 4\pi i - 4 \log A$. Then $\gamma(z^*) = -2$ and $\gamma'(z^*) = -\frac{1}{4}$. Thus $F'(z^*) = 1$ and $F(z^*) = 4$, which contradicts with F and F' sharing 1 IM. If $4\gamma' = \gamma - 1$, by integration, $\gamma = Be^{\frac{1}{2}z} + 1$, where B is a non-zero constant. Let $z^* = -4 \log A$. We obtain a contradiction by the same reasoning. Therefore, $F = F'$, and there exists a non-zero constant c such that $f = ce^{\frac{1}{2}z}$. This completes the proof of Theorem 3.2. □

4. Concluding remarks

Now, we introduce the definition of weighted sharing: let l be a non-negative integer or infinite. For any $a \in \mathbb{C} \cup \{\infty\}$, we denote by $E_l(a, f)$ the set of all a-points of f where an a-point of multiplicity m is counted m times if $m \leq l$ and $l + 1$ times if $m > l$. If $E_l(a, f) = E_l(a, g)$, we say that f and g share the value a with weight l (see [5]).

We say that f and g share (a, l) if f and g share the value a with weight l. It is easy to see that f and g share (a, l) implies f and g share (a, p) for $0 \leq p \leq l$. Also we note that f and g share a value a IM or CM if and only if f and g share $(a, 0)$ or (a, ∞) respectively.

We recall the following result which is a corollary of Theorem 1.1 in [10]:

Theorem 4.1. Let f be a non-constant entire function and k be a positive integer. Suppose that F and $F^{(k)}$ share (1, 2). If
\[\delta_2(0, F) + \delta_{2+k}(0, F) > 1, \]
where $\delta_p(0, F) = 1 - \limsup_{r \to \infty} \frac{N_p(r, 1/F)}{T(r, F)}$, then $F = F^{(k)}$.

If $F = f^n$, where f is a non-constant entire function and n is a positive integer. Then
\[\delta_p(0, F) = 1 - \limsup_{r \to \infty} \frac{N_p(r, 1/F)}{T(r, F)} \geq 1 - \frac{p}{n}. \]

Noting this, from Theorem 4.1 we have the following corollary:

Corollary 4.2. Let f be a non-constant entire function and n, k be two positive integers. Denote $F = f^n$. Suppose that F and $F^{(k)}$ share 1 CM. If $n \geq k + 5$, then $F = F^{(k)}$.

Obviously, Theorem 2.1 improves Corollary 4.2.

Without deficient assumption, Brück [11] proposed the following conjecture:

Brück Conjecture 1. Let F be a non-constant entire function. Suppose that
\[\rho_2(F) := \limsup_{r \to \infty} \frac{\log^+ \log^+ T(r, F)}{\log r} \]
is not a positive integer or infinite. If F and F' share a finite value b CM, then
\[\frac{F' - b}{F - b} = c \]
for some non-zero constant c.

The conjecture has been verified in special cases only: (1) $\rho_2(F) < \frac{1}{2}$, see [12]; (2) $b = 0$, see [11]; (3) $N(r, 1/F') = S(r, F)$, see [11].

In this paper, Corollary 2.3 tells us Conjecture 1 is true when $F = f^n$, where $n \geq 2$ is an integer.
Acknowledgements

The authors would like to thank the referee for valuable suggestions to the present paper. This research was supported by the Fundamental Research Funds for Central Universities (No. 300414) and the NNSF of China (No. 10771011 and 10671169).

References