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Abstract

A metarational tree is defined within the graph model for conflict resolution paradigm, providing a general framework within
which rational behavior in models with two decision makers (DMs) can be described more comprehensively. A new definition of
stability for a DM that depends on the total number, h, of moves and counter-moves allowed is proposed. Moreover, the metarational
tree can be refined so that all moves must be unilateral improvements, resulting in a new set of stability definitions for each
level of the tree. Relationships among stabilities at various levels of the basic and refined trees are explored, and connections are
established to existing stability definitions including Nash stability, general metarationality, symmetric metarationality, sequential
and limited-move stability, and policy equilibria.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Social conflicts, and our knowledge of them, may possess certain characteristics that should be incorporated into
formal models and their analyses. For example, in many conflict situations only relative preference information may
be available, whereby a given decision maker (DM) is known to prefer one scenario over another, but the degree of
preference cannot be specified. When DMs strategically interact with one another in a conflict, the specific timing and
sequencing of moves and counter-moves are usually not known a priori and hence, many possible sequences should
be considered, including the order in which DMs make their moves and the length of allowable sequences of moves.
Another feature that often must be taken into account is the modeling of irreversible moves by one or more DMs.

The foregoing and other key characteristics of conflict are incorporated into the design of the graph model for
conflict resolution [3]. Within the graph model structure, stability concepts define a range of ways in which DMs may
interact when determining which states are stable for a given DM, as well as the possible resolutions. The graph model
framework is widely used to analyze real-world conflicts, such as the disputes investigated by Fang et al. [4,5], Kilgour
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et al. [13], Hipel et al. [8] and Noakes et al. [18]. Recently, Zeng et al. [22] introduced the concept of policy stable state
to the graph model framework, based on the idea of policy. A policy for a DM is a complete plan for the DM’s action
from each possible state, similar to a strategy in game theory. The objective of this research is to extend the graph model
methodology by providing a general framework for describing a rich variety of stability concepts modeling rational
behavior of DMs. The results show how the policy concept systematically links various stability concepts applied in
conflict management.

After an overview of the graph model for conflict resolution is furnished in the next section, a metarational tree is
constructed and metarationally stable states of horizon h for a two-DM model are defined for any sequence of length
h. Theorems show that existing solution concepts including Nash [16,17], general metarationality and symmetric
metarationality [9] are special cases of metarationally stability of horizons h = 1, 2, and 3, respectively. Moreover,
relationships among metarationally stable states of various depths h are derived, as well as the connection of these
stability concepts to policy equilibrium states.

A DM may invoke an action to move the conflict to a less preferred state for himself in order to sanction his
opponent. However, such an action may be considered to be non-credible because the DM puts himself in a worse
situation. Therefore, a refinement may be made to the metarational tree whereby only unilateral improvements by DMs
are permitted; associated credible metarational stability can then be defined for any horizon h. Relationships among
credible metarational stabilities of various horizons are found and the stability definition called sequential stability
[6,7] is shown to be a special instance for the case h = 2. The relationships between credible policy equilibrium and
credible metarational stability for various horizons are also determined. Finally, when movements and preferences are
transitive, it is proven that there is at least one credible metarationally stable state for any even horizon in a two-DM
model.

2. The graph model for conflict resolution

The graph model for conflict resolution constitutes a unique methodology for modeling and analyzing real-world
conflict [3]. A graph model for a conflict is composed of a directed graph and a preference structure on the set of all
states or possible scenarios for each DM who can influence the dispute. Let N = {1, 2, . . . , n} denote the set of DMs
and S the set of u states in the model. A finite directed graph Di = (S, Ai) with the vertex set S and arc set Ai , i ∈ N ,
records the movements among states that DM i can make in one step. The vertices of each graph represent the possible
states of the conflict and hence the vertex set, S, is common to all directed graphs. Note that Ai is the arc set of Di . If
DM i can unilaterally move (in one step) from state s1 to state s2, there is an arc with orientation from s1 to s2 in Ai

and state s2 is attainable from state s1 by DM i. For i ∈ N , DM i’s reachable list for state s ∈ S is the set Ri(s) of all
states to which DM i can move in one step from state s.

To permit wide applicability to real-world conflict, a cardinal utility function is not used within the graph model
structure to express the preference of each DM. Specifically, in the graph model, preference is described in terms of
a pair of binary relations {�i , ∼i} on S, where s1�i s2, for s1, s2 ∈ S, indicates that DM i prefers s1 to s2, and s1∼i s2
means that DM i is indifferent between s1 and s2. The following properties for preferences are assumed:

1. �i is asymmetric. Therefore, s1�i s2 and s2�i s1 cannot hold true at the same time, where s1, s2 ∈ S.
2. ∼i is reflexive, i.e., s∼i s for any s ∈ S, and symmetric, i.e., if s1∼i s2 then s2∼i s1, where s1, s2 ∈ S.
3. {�i , ∼i} is strongly complete. In other words, if s1, s2 ∈ S, then exactly one of s1�i s2, s2�i s1 and s1∼i s2 is true.

Occasionally, the notation s1�i s2 is utilized to indicate that either s1�i s2 or s1∼i s2. Notice that transitivity of preferences
is not assumed, so that the main results in this paper are valid for intransitive or transitive preferences. Also keep in mind
that under the third assumption, each DM is assumed to have complete information about every DM’s preferences.
Within the paradigm of the graph model, research has been carried out on the topic of incomplete preference information
[15,19].

A unilateral improvement from a particular state for a specific DM is any preferred state to which the DM can
unilaterally move. The unilateral improvement list for DM i from state s is denoted as R+

i (s) = {s1 ∈ Ri(s) : s1�i s}.
Likewise, define R−

i (s) = {s1 ∈ Ri(s) : s�i s1} and R=
i (s) = {s1 ∈ Ri(s) : s1∼i s}. Clearly Ri(s) = R+

i (s) ∪ R−
i (s) ∪

R=
i (s).
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Fig. 1. The bridge conflict in graph form.

Example. To explain the graph model, consider a dispute between two interest groups over the planned building of a
bridge across a river. DM 1 represents the drivers of vehicles who will use the bridge and, hence, prefers that the bridge
be constructed. On the other hand, DM 2, representing local residents, would prefer that the bridge not be constructed
to avoid increased air pollution and noise levels. Fig. 1 displays the two states in this simple conflict consisting of state
s1 in which a bridge is built and state s2 in which there is no bridge. The preferences of DMs are represented by s1�1s2
and s1≺2s2. In DM 1’s graph shown on the left in Fig. 1, there are two vertices representing the two states. The direction
of the arc connecting them indicates that DM 1 has the ability to build the bridge. In DM 2’s graph shown on the right
in Fig. 1, the direction of the arc means that DM 2 can destroy the bridge or block its construction. Accordingly, DM
1 can stay at any state or move from s2 to s1, while DM 2 can stay at any state or move from s1 to s2.

3. Generalized metarationalities

The concepts of reachable lists and policies are used for building a metarational tree for a two-DM conflict consisting
of DMs i and j. This construct permits the definitions of metarational stabilities for which interesting relationships among
metarational stabilities and existing definitions of stability are derived.

3.1. Metarational tree

In a conflict, a DM may announce in advance what he or she intends to do at each state that could arise. For instance,
in a potential military confrontation, one country may declare in advance that it will go to war only if it is invaded, while
another may proclaim that it will launch an attack if hostile troops are massed close to its border. Such a declaration,
or policy, is clearly intended to influence the final result of the conflict. Formally, a policy of DM i is a function
Pi : S → S, such that Pi (s) ∈ Ri(s)∪{s}. A policy Pi can be characterized by all Pi (s) for s ∈ S, and we sometimes
denote Pi by {Pi (s) : s ∈ S}, as is done by Zeng et al. [22]. In words, a policy for a DM specifies what the DM’s
action will be at each state (stay at that state or move to another state) if that state arises.

It is assumed that no DM can move consecutively. Accordingly, only alternating sequences of DMs are considered.
Given an initial state s∗, an originating DM i, i’s policy Pi , and j’s policy Pj , a sequence of moves–counter-moves is
specified as follows [22]:

P0(s
∗) ≡ s∗,Pi (s

∗),Pj (Pi (s
∗)), . . . ,Pi (Pj (. . .Pi (s

∗) . . .)),Pj (Pi (. . .Pi (s
∗) . . .)), . . . .

The above sequence can be rewritten as a series of elements. Each element (s, i) is composed of a state (s) and a DM
(i) who moves at that state. If DM i stays at state s, the sequence terminates at element (s, i) and is called a terminated
sequence.

An element (s, i) in a sequence is said to be repeating if the same element (s, i) appeared earlier. If there is a
repeating element in a sequence, which is not terminated, then there exists a unique cycle of even length containing
the repeating element. Once a sequence encounters the first repeating element, the sequence cycles among all the
repeating elements.
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Fig. 2. DM i’s metarational tree given Pj .

A sequence having h elements is called a sequence of length h. The result of a sequence of length h or a terminated
sequence is the state in the last element. Because the number of all states in a conflict is finite, there must exist a
repeating element in a sequence with infinite length. The result of a sequence having infinite length is defined to be the
state in the first repeating element. This definition can be justified by considering a move to have an infinitesimal cost
as reflected in the inertia assumption [1,14,21]. Therefore, for a sequence of infinite length, the subsequence between
the initial element and the second appearance of the first repeating element is important, and we call it a complete
sequence. The result of any sequence of infinite length is also the result of its complete sequence.

Given policies Pi , Pj , initial state s and first mover i, a sequence of moves is completely determined. Therefore, the
result of this sequence is equivalently referred to as the result of corresponding policies Pi , Pj , with respect to initial
state s and first mover i.

Given a policy of DM j, DM i’s decision problem at an initial state s is illustrated in the metarational tree displayed
in Fig. 2. Initially, DM i can either stay at s or move to a state s1 ∈ Ri(s). If DM i moves to s1, DM i envisions DM j
following j’s policy. If DM j stays at s1 according to Pj , the sequence terminates. Otherwise, DM i has the opportunity
to respond to j’s move and the sequence of moves and counter-moves continues as shown in Fig. 2. Here, s1, s2, . . . ,

represent the states as they appear in sequence, and are not all different. Furthermore, although s2l+1 is always followed
by Pj (s2l+1), only one representative s2l+1 is connected to s2l+2 in the tree. Similar conventions are applied in other
figures later. A metarational tree is now formally defined.

Definition 1. A metarational tree for DM i with respect to status quo state s and policy Pj of DM j is a tree whose
vertices and arcs are determined as follows by induction. First, the root is s, and DM i controls any possible movement
away from s. A vertex s2h of depth 2h (h = 0, 1, . . . with s0 = s), from which a movement is controlled by DM i, is
connected by arcs in Ai to vertices of depth 2h + 1, which are states in Ri(s2h). In addition, s2h is also connected to a
terminating vertex s2h to indicate the action of staying. A non-terminating vertex s2h+1 of depth 2h + 1 (h = 0, 1, . . .)

is connected to vertex Pj (s2h+1) of depth 2h + 2, to which DM j moves.

Sometimes, the words “with respect to status quo state s” are omitted if this is not confusing. A tree is finite and of
depth k if the depths of all vertices are at most k, and at least one of them is of depth k.

A vertex in a metarational tree consists of a state and a DM who controls the possible moves away from the state.
Therefore, it is actually an element in a sequence as defined before. For each vertex in a metarational tree, there is a
path from the root to the vertex, and the vertices in the path form a sequence.

3.2. Metarationally stable states of horizon h

Consider DM i’s decision problem in the metarational tree in Fig. 2 with depth h. If all of the resulting states of all
sequences in the metarational tree of depth h are less than or equally preferred by DM i to the original state s, then DM
i has no incentive to move away from s. It is assumed that DM i acts conservatively. Therefore, if there exists a policy
Pj such that DM i cannot move to a more preferred state, DM i is deterred from moving away from the original state.

Thus, state s is called metarationally stable with horizon h (MRh) for DM i and s ∈ S
MRh

i .
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Definition 2. State s is MRh stable for DM i, denoted by s ∈ S
MRh

i , iff there exists a policy Pj of DM j with Pj (s)=s,
such that for all sequences of length h and all terminated sequences of length shorter than h in the metarational tree for
DM i, the results of those sequences are not more preferred to s by DM i. Otherwise, state s is called MRh unstable for
DM i. A state is called an MRh resolution, denoted by s ∈ SMRh , iff it is MRh stable for both i and j.

In the metagame analysis [9], conflict analysis [6,7] and graph model [3] literature, a state which is stable for every
DM according to a given stability definition is called an equilibrium. To avoid confusion with the game-theoretic
concept of an equilibrium, an equilibrium for a graph model is called a resolution in this paper.

It is evident that state s is MRh unstable for DM i iff given any policy Pj of DM j with Pj (s)= s, there is a sequence
of length h or a terminated sequence of length which is shorter than h, such that the result of the sequence is more
preferred to s by DM i.

3.3. Relationships among stability concepts

In this section, it is proven that metarational stabilities of horizons 1–3 are equivalent to Nash stability, general
metarationality, and symmetric metarationality, respectively. Additionally, relationships among metarational stabilities
for various horizons h are established.

Definition 3. A state s ∈ S is Nash stable for DM i, denoted by s ∈ SNash
i , iff R+

i (s) = ∅. A state s is called a Nash
resolution iff it is Nash stable for all DMs.

This definition is adapted from Nash [16,17] for use with the graph model [2,3]. Fig. 3 depicts the metarational tree
of depth one. According to Definition 2, in order for state s to be MR1 stable for DM i, all s1 ∈ Ri(s) must be less than
or equally preferred by DM i to s. This is equivalent to Definition 3.

Definition 4. A state s ∈ S is general metarational (GMR) for DM i, denoted by s ∈ SGMR
i , iff for every s1 ∈ R+

i (s),
there exists at least one s2 ∈ Rj (s1) such that s�i s2. A state is called a GMR resolution iff it is GMR for all DMs.

Howard [9] provides the original definition for GMR stability while Fang et al. [2,3] furnish the definition within
the graph model paradigm.

Theorem 1. MR2 stability is equivalent to general metarationality.

Proof. Given s ∈ SGMR
i , it can also be proved that s ∈ S

MR2
i as follows. Since s is GMR for DM i, for each s1 ∈ R+

i (s),
there exists s2 ∈ Rj (s1), such that s�i s2. A metarational tree of depth 2 is shown in Fig. 4. For any s1 ∈ R−

i (s) or

Fig. 3. Metarational tree of depth 1.

Fig. 4. Metarational tree of depth 2.
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Fig. 5. Metarational tree of depth 3.

R=
i (s), one can choose Pj (s1) = s1, so that s�i s1. For any s1 ∈ R+

j (s), one can set Pj (s1) = s2 so that s�i s2.
A similar argument shows that a MR2 stable state is also GMR. �

Definition 5. A state s ∈ S is symmetric metarational (SMR) for DM i, denoted by s ∈ SSMR
i , iff for every s1 ∈ R+

i (s),
there exists s2 ∈ Rj (s1) such that s�i s2 and s�i s3 for all s3 ∈ Ri(s2). A state is called a SMR resolution iff it is SMR
for all DMs.

This definition for SMR stability was originally proposed by Howard [9] and later given within the graph model
context by Fang et al. [2,3].

Theorem 2. MR3 stability is equivalent to symmetric metarationality.

Proof. Given s ∈ SSMR
i , it can also be proved that s ∈ S

MR3
i as follows. Since s is SMR for DM i, for each s1 ∈ R+

i (s),
there exists s2 ∈ Rj (s1), such that s�i s2 and s�i s3 for all s3 ∈ Ri(s2). A metarational tree of depth 3 is shown in
Fig. 5. For any s1 ∈ R−

i (s) or R=
i (s), one can choose Pj (s1) = s1, so that the sequence terminates and hence s1�i s.

For any s1 ∈ R+
j (s), one can set Pj (s1) = s2, so that s�i s2 and s�i s3 for all s3 ∈ Ri(s2). Therefore, the results of

all sequences of length 3 and all terminated sequences of length shorter than 3 are not more preferred by DM i to s.
A similar argument shows that a MR3 stable state is also SMR. �

Limited-move stability of horizon h constitutes another useful stability concept that has been tailored for use within
the graph model for conflict resolution [3,12]. Appendix A provides an overview of the definition for limited-move
stability of horizon h as well as its relationship to MRh stability. The key finding is that Lh stability is a subset of MRh

stability.

Theorem 3. (1) If a state s is MR2k+1 unstable for DM i, then it is also MR1, MR3, . . . , and MR2k−1 unstable for i.
Furthermore, if a state s is not an MR2k+1 resolution, then it is also not an MR1, MR3, . . . , or MR2k−1 resolution.

(2) If a state s is MR2k stable for DM i, then it is also MR2, MR4, . . . , and MR2k−2 stable for i. Furthermore, if a
state s is an MR2k resolution, then it is also an MR2, MR4, . . . , and MR2k−2 resolution.

Proof. (1) If state s is MR2k+1 unstable for DM i, then for any given policy Pj of DM j, there is a policy Pi of DM i
and a sequence of length 2k + 1 or shorter, such that the result of the sequence is more preferred to s by DM i. Given
l < k, if the sequence is terminated at length shorter than or equal to 2l + 1, then s becomes MR2l+1 unstable for i.
Otherwise, let

{(s0 = s, i), (sm
1 , j), . . . , (sm

2l , i), (s
m
2l+1, j), . . . , (sm

2k+1, j)}Mm=1 (1)

be all the sequences of length greater than 2l + 1, whose results are more preferred to s by DM i: sm
2k+1�i s. Then one

claims that sm
2l+1�i s for at least one m. Otherwise, sm

2l+1�i s for all m = 1, 2, . . . , M , and then DM j can change policy
Pj to stay at states sm

2l+1 for all m = 1, 2, . . . , M . Subsequently, the result of the mth sequence in (1) becomes sm
2l+1,

which is not more preferred to s by DM i for all m. Therefore, s becomes MR2k+1 stable for i, which contradicts the
given condition. Thus, there is at least one sequence (s0, i), (s

m
1 , j), . . . , (sm

2l+1, j) of length 2l + 1 whose result is
more preferred to s by DM i. Hence, s is also MR2l+1 unstable for DM i.
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(2) Let s be an MR2l unstable state for DM i and for some l ∈ {1, 2, . . . , k − 1}. Then, given any policy Pj of DM
j, there is a sequence (s0 = s, i), (s1, j), . . . , (s2l , i) of length 2l, or a terminated sequence with length shorter than 2l

whose result is more preferred to s by DM i. If the sequence is a terminated sequence, then s becomes MR2k unstable
for DM i. Otherwise, let DM i choose a policy to stay at s2l . Then sequence (s0 = s, i), (s1, j), . . . , (s2l , i) is terminated
of length 2l < 2k. Therefore, s is MR2k unstable for DM i, which contradicts the condition. �

The relationships established in Theorem 3 are shown in Fig. 8.

4. Credible metarationalities

A policy of a DM may contain some moves going to less preferred states. A DM’s policy is deemed to be credible,
if he always moves to a more preferred state. Incredible moves are excluded in the refinement of Nash equilibria in
game theory, such as the subgame perfect equilibrium of Selten [20]. Hence, a credible policy is defined as Pc

i (s) ∈
R+

i (s)∪{s}. By requiring a policy to be credible, one obtains a credible MRh denoted by MRc
h. The credible metarational

tree shown in Fig. 6 is constructed in a fashion that is similar to the metarational tree in Fig. 2.

Definition 6. State s is MRc
h stable for DM i, denoted by s ∈ S

MRc
h

i , iff there exists a policy Pc
j of DM j with Pc

j (s)=s,
such that for any policy of DM i, all sequences of length h and all terminated sequences of length shorter than h, the
results of those sequences are not more preferred to s by DM i. Otherwise, state s is called MRc

h unstable for DM i. A
state is called an MRc

h resolution, denoted by s ∈ SMRc
h , iff it is MRc

h stable for both i and j.

The concept of credible MR1 stability is equivalent to the MR1 stability, or the Nash stability. The concept of credible
MR2 stability is equivalent to the sequential stability of Fraser and Hipel [6,7].

Definition 7. For a two-DM conflict having the set of DMs N = {i, j}, a state s ∈ SSEQ is sequentially stable for DM
i iff for every s1 ∈ R+

i (s) there exists s2 ∈ R+
j (s1) with s�i s2. A state is a sequentially resolution iff it is sequentially

stable for both DMs.

Similar to Theorems 1 and 3, the following two theorems can be derived.

Theorem 4. MRc
2 stability is equivalent to sequential stability.

The credible metarational tree of depth 2 is displayed in Fig. 7.

Theorem 5. (1) If a state s is MRc
2k+1 unstable for DM i, then it is also MRc

1, MRc
3, . . . , and MRc

2k−1 unstable for DM
i. Furthermore, if a state s is not an MRc

2k+1 resolution, then it is also not an MRc
1, MRc

3, . . . , or MRc
2k−1 resolution.

(2) If a state s is MRc
2k stable for DM i, then it is also MRc

2, MRc
4, . . . , and MRc

2k−2 stable for DM i. Furthermore,
if a state s is an MRc

2k resolution, then it is also an MRc
2, MRc

4, . . . , and MRc
2k−2 resolution.

Fig. 6. DM i’s credible metarational tree given Pc
j .
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Fig. 7. Credible metarational tree of depth 2.

5. Policy equilibrium

Zeng et al. [22] define the concept of a policy stable state (PSS) for two-DM conflicts as follows.

Definition 8. Policies P1,P2 form a policy equilibrium with respect to status quo state s∗ if:

(1) Pi (s
∗) = s∗ holds for both DM i = 1, 2,

(2) ∀i = 1, 2, ∀P′
i such that P′

i (s
∗) �= s∗, the result of any terminated sequence or any complete sequence is not

preferred to s∗ by DM i.

A state s∗ satisfying the above two conditions is called a PSS. Denote the set of all PSSs by SPSS.

Theorem 6. (1) If s ∈ SMR2h−1 for a positive integer h, then s ∈ SPSS;
(2) If s ∈ SPSS, then s ∈ SMR2h for every positive integer h.

Proof. (1) Contrary to the conclusion, let state s∗ be an MR2h−1 resolution, but not a PSS. By definition of PSS, for
an arbitrarily given policy P

�
j of DM j, there exists a policy of DM i which moves away from s∗ and a sequence whose

result is s̄ and

s̄�i s
∗. (2)

Specifically, let P�
j stay at any state which is not more preferred to s∗ by DM i. Rename the sequence as (s0 =

s∗, i), (s1, j), (s2, i), . . . , (s2h−1, j), (s2h, i), . . . . Assume that s2h−1 is not more preferred to s∗ by DM i for some
h. Then DM j stays at s2h−1 according to his policy P

�
j . Hence, the sequence becomes terminated and the result is

s2h−1�i s
∗, which contradicts (2). Therefore, one concludes that state s∗ is MR2h−1 unstable for any positive integer h.

(2) Contrary to the conclusion, suppose that there is a state s∗ which is not an MR2h resolution, say MR2h unstable
for DM i, for a positive integer h, but s∗ is a PSS with policies P∗

i and P∗
j . Since s∗ is MR2h unstable for DM i, with

respect to P∗
j there is a policy P

�
i and a sequence (s0 = s∗, i), (s1, j), . . . , (s2h, i) of length 2h, or a shorter terminated

sequence, such that the result of the sequence is more preferred to s∗ by DM i: s2h�i s
∗. Consider three possible cases.

• If the sequence is terminated, then the result of this sequence is also the result of policies P�
i and P∗

j with respect to
the original state s∗ and first mover i. Therefore, given DM j’s policy P∗

j , DM i obtains a more preferred result by

changing from policy P∗
i to P

�
i , which contradicts the condition that s∗ is a PSS with policies P∗

i and P∗
j .

• If the sequence (s0, i), (s1, j), . . . , (s2h, i) is not terminated and element (s2h, i) is not repeating, then DM i can
change his policy from P∗

i to P
�1
i , which is the same as P

�
i except choosing to stay at s2h. In this way, state s2h

becomes the result of policies P�1
i and P∗

j with respect to the original state s∗ and first mover i. Therefore, given

DM j’s policy P∗
j , DM i obtains a more preferred result by changing from policy P∗

i to P
�1
i , which contradicts the

condition that s∗ is a PSS with policies P∗
i and P∗

j .
• Finally, consider the case when the sequence (s0, i), (s1, j), . . . , (s2h, i) is not terminated and element (s2h, i) is a

repeating version of element (s2l , i) (l < h). Without loss of generality, suppose that element (s2l , i) is not repeating.
Then s2h = s2l�i s0. DM i can change his policy from P∗

i to P
�2
i , which is the same as P�

i except choosing to stay

at s2l . In this way, state s2l becomes the result of policies P�2
i and P∗

j with respect to the original state s∗ and first
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Fig. 8. Relationships among SMRh and SPSS.

Fig. 9. An example in which MRh �= MRh+1.

mover i. Therefore, given DM j’s policy P∗
j , DM i obtains a more preferred result by changing from policy P∗

i to

P
�2
i , which contradicts the condition that s∗ is a PSS with policies P∗

i and P∗
j . �

Relationships among the concepts of MRh resolutions and PSSs are shown in Fig. 8. The following conclusion
follows immediately.

Corollary 1. SPSS = SMRh∗ holds for some h∗ iff SMRh∗ = SMRh∗+1 .

In some situations, SMRh = SMRh+1 may not be true for any large h. For example, consider the 2 × 2 conflict shown
in Fig. 9, which is No. 44 in the appendix of Brams [1]. Notice that DM 1, the row DM, controls the actions U and
D, while DM 2, the column DM, controls the actions L and R. The four cells in the matrix represent the four possible
states, while the two numbers in each cell represent the ordinal preferences of DMs 1 and 2, respectively, where a higher
number means more preferred. In this conflict, consider the stability of state (U, L) from each DM’s viewpoint. Notice
that DM 1 has a unilateral improvement from state (U, L) to state (D, L), and DM 2 can respond with a unilateral
improvement from state (D, L) to state (D, R). Then DM 1 has a unilateral improvement from state (D, R) to (U, R)

and, subsequently, DM 2 can cause the conflict to move from (U, R) to (U, L) by invoking his unilateral improvement.
According to Definition 2, for any positive integer h, state (U, L) is MR4h stable for DM 1. Since DM 2 has no unilateral
improvement from state (U, L), this state is MR1 stable for DM 2 and, therefore, MR4h stable for DM 2. Hence, state
(U, L) constitutes an MR4h resolution. However, if 4h + 1 steps are allowed, DM 1 can move from (U, L) to (D, L)

without being sanctioned. Therefore, state (U, L) is an MR4h but not MR4h+1 resolution.
One may wish to know, what is SPSS when SMR2h �= SMR2h+1? The answer is that SPSS may be neither SMR2h nor

SMR2h+1 . To illustrate this, consider the graph model for a conflict having three states shown in Fig. 10. Once again,
the numbers given in brackets represent the ordinal preferences of the two DMs, i and j, where a higher number means
more preferred. For this conflict, one can easily show that SMR2h = {s1, s2, s3}, SMR2h+1 = ∅ and SPSS = {s2, s3}.

Theorem 6 describes relationships between metarational resolutions and PSSs. In a similar fashion, one can de-
rive relationships between credible metarational resolutions and credible PSSs. Specifically, the set of credible MRh
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Fig. 10. An example in which SPSS �= SMRh �= SMRh+1 .

Fig. 11. Relationships among S
MRc

h and SPSSc
.

resolutions (SMRc
h) with even h contains the set of all credible PSSs (SPSSc

), which in turn contains the set of all credible
MRh resolutions with odd h, as shown in Fig. 11.

6. Existence of metarationally stable states

Fraser and Hipel [7] prove the existence of a sequential resolution within the context of the conflict analysis approach
under the assumption of transitive preferences. The result is generalized as follows for certain metarational resolutions
within the graph model paradigm.

Theorem 7. Given any positive integer h, if movements and preferences are transitive, then there is at least one MRc
2h

resolution in the graph model for a two-DM conflict.

Proof. If the theorem is false for a given h, each state is not MRc
2h for at least one DM. Specifically,

let s0 be the state that is most preferred by DM i among MRc
2h unstable states for DM i. (3)

Then there is at least one sequence of length 2h or a shorter terminated sequence, beginning from a move of DM
i. Without loss of generality, assume the sequence is not terminated. Otherwise, the following argument holds for a
smaller h. Let

{(s0, i), (s
m
1 , j), . . . , (sm

2h−1, j), (sm
2h, i)}Mm=1,
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Fig. 12. An example without any PSS.

be all such kinds of sequences, and hence sm
2h�i s0 holds for all m = 1, 2, . . . , M . One can claim that

sm
2h−1�i s0 for some m = 1, 2, . . . , M . (4)

Otherwise, DM j can use a policy which stays at all sm
2h−1 (m = 1, 2, . . . , M), so that there is no sequence of length 2h

whose result is more preferred to s0 by DM i and s0 becomes MRc
2h.

According to (3), s2h−1
m is MRc

2h stable for DM i for some m = 1, 2, . . . , M by (4). If sm
2h−1 is also MRc

2h stable for
j, then the proof is completed. Otherwise, by use of the transitivity of preference of DM j, one can assume that sm

2h is
the most preferred state by DM j among R+

j (sm
2h−1) without loss of generality. Since sm

2h�i s0, then sm
2h is MRc

2h stable
for DM i by (3) again. If sm

2h is MRc
2h stable for DM j, then the proof is completed. Otherwise, DM j can move to a

better state s̃m
2h. Because of the transitivity of movement, DM j should have a move from sm

2h−1 to s̃m
2h directly, which

contradicts the assumption that sm
2h is the most preferred state by DM j. �

According to Theorem 4, sequential stability is the same as MRc
2. Hence, the existence of a sequential stable resolution

within the graph model structure is contained within Theorem 7.
Based on Theorems 6 and 7, the following result is obtained.

Corollary 2. If movements and preferences are transitive and SPSS = SMR2h for some h, then SPSS is non-empty.

Generally, even when movements and preferences are transitive, it may happen that there is no PSS. Consider the
graph model in Fig. 12. Specifically, in this example, if the status quo state is s1, then no policy of DM i can sanction
DM j for deviation, if DM j uses the policy of moving from s1 to s2, staying at s2 and s3, and moving from s4 to s2. If
the status quo state is s2, then no policy of DM j can sanction DM i for deviation, if DM i uses the policy of staying at
s1, moving from s2 to s3, and staying at s3 and s4. A similar result holds for s3 and s4.

7. Conclusions

A general framework for defining human behavior under conflict is developed using the concepts of a metarational
tree and its refined version. Theorems are proven to establish interesting relationships among metarational stabilities
of various horizons h, previously defined stability concepts, and PSSs. These new developments significantly enhance
the graph model methodology for effectively modeling and analyzing real-world conflict.
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Appendix A. Summary of limited-move stability and its relationship to metarational stability

The idea of limited-move stability was proposed by Zagare [21] for strict ordinal 2 × 2 games while Kilgour [11]
extended these limited-move concepts to any finite two-DM game in normal form. Kilgour et al. [12] generalized the
limited-move concepts for employment within the graph model for conflict resolution for both two-DM and more than
two-DM conflicts.

For limited-move stability with horizon h, DM i’s decision problem at the initial state is illustrated in Fig. A.1.
This is a finite extensive game of perfect information, and can be solved completely by backward induction analysis.
In limited-move stability, transitivity of the binary relations, �i and ∼i , mentioned in Section 2 is assumed. Hence,
the preference structure is a weak-order structure and a payoff function can be defined on S where only the ordinal
information in the payoff function is employed in the definition of limited-move stability.

A state s is limited move with horizon h stable (denoted by Lh) for DM i if DM i cannot move to a more preferred
state in h steps when DM j maximizes his own payoff (if DM j has indifferent choices, he chooses the one minimizing
DM i’s payoff). State s is called an Lh limited-move resolution if it is Lh limited-move stable for both DMs. Denote
the set of all Lh limited-move resolutions by SLh .

The concept of Lh stability is similar to MRh stability in the sense that both consider the rationality of horizon h.
However, DMs are required to maximize their own payoffs in the definition of Lh, which is not required in MRh.
Therefore, Lh stability for DM i implies MRh stability for DM i. This can be simply proved as follows. Given an Lh

stable state for DM i, construct Pj by maximizing his own payoff in h steps. Then, for any policy Pi of DM i, any
sequence of length h, and any terminated sequence of length shorter than h, the results of the sequences are not more

Fig. A.1. Lh stability for DM i in a two-DM conflict (p is the last mover, so that p = i if h is odd and p = j if h is even).
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Fig. A.2. Relationship between SMR2h+1 and SL2h+1 .

Fig. A.3. A normal-form conflict.

preferred to s by DM i. In other words, s is MRh stable for DM i. The relationship between SMR2h+1 and SL2h+1 is
shown in Fig. A.2.

A non-myopic resolution is a state which is Lh stable for the conflict for all h�h∗, where h is a positive integer [10].
The following theorem was originally given by Zeng et al. [22].

Theorem A.1. A non-myopic resolution is a PSS.

Proof. If state s is a non-myopic resolution, then it is Lh stable for all h�h∗ for each DM. Therefore, it is MRh stable
for h�h∗ for each DM, which implies that s is a policy equilibrium by Corollary 1. �

As shown in the appendix of Brams [1], each conflict represented by a 2 × 2 strict ordinal game has at least one
non-myopic resolution. Therefore, by Theorem A.1, all such conflicts have at least one PSS.

The converse of Theorem A.1 is not true. For example, in the conflict of Fig. A.3 (which is No. 26 conflict in the
appendix of Brams [1]), (U, L) is not a non-myopic resolution but it is a PSS.
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