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We describe the construction of a high-resolution radiation hybrid (RH) map of the domestic cat genome,
which includes 2662 markers, translating to an estimated average intermarker distance of 939 kilobases
(kb). Targeted marker selection utilized the recent feline 1.9x genome assembly, concentrating on regions of
low marker density on feline autosomes and the X chromosome, in addition to regions flanking interspecies
chromosomal breakpoints. Average gap (breakpoint) size between cat-human ordered conserved segments
is less than 900 kb. The map was used for a fine-scale comparison of conserved syntenic blocks with the
human and canine genomes. Corroborative fluorescence in situ hybridization (FISH) data were generated
using 129 domestic cat BAC clones as probes, providing independent confirmation of the long-range
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FISH mapping correctness of the map. Cross-species hybridization of BAC probes on divergent felids from the genera
Synteny Profelis (serval) and Panthera (snow leopard) provides further evidence for karyotypic conservation within
Chromosome rearrangement felids, and demonstrates the utility of such probes for future studies of chromosome evolution within the
Felidae cat family and in related carnivores. The integrated map constitutes a comprehensive framework for
identifying genes controlling feline phenotypes of interest, and to aid in assembly of a higher coverage
feline genome sequence.
© 2008 Elsevier Inc. All rights reserved.
Introduction

Therefore, we have continued to improve the quality and density of
domestic cat radiation hybrid maps to define the evolutionary
rearrangements that distinguish the cat from other sequenced
mammalian genomes, and facilitate positional reasoning in gene
and mutation hunting. These maps can be a tool for both the long-
range precision and quality control of genome assemblies [12], as well
as studies of the dynamics of mammalian chromosome evolution [13].
For example, the feline 1.9x sequence [14] was assembled based on
conserved ordered segments defined by the RH-based feline-human

During the past decade, increasingly detailed genetic and physical
maps of the domestic cat genome have provided tools for mapping
and discerning the hereditary basis of morphological variation and
genetic diseases in cats, which model phenotypes or pathologies
observed in other mammals [1-4]. These include mutations in
functional candidate genes that control coat morphology [5-7], as
well as those that are causative for monogenic diseases such as

polycystic kidney disease [8], and hypertrophic cardiomyopathy [9].
The maps were also used in genome scans to identify disease genes
not previously implicated in human studies at the time of the scan
[10,11], suggesting the value of multiple animal models in under-
standing the pathogenesis of human disease. The ability to narrow
candidate regions and identify causative mutations in the feline model
is currently limited by appropriate animal cohorts and by the quality
of feline-human comparative gene maps.
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and feline-dog comparative maps [3]. However, a large fraction of the
genome remains unassembled due primarily to the low coverage of
the sequence traces [14] and secondarily to the incomplete (85%)
coverage of the previous cat-human comparative maps [3]. The new
map reported here provides enhanced coverage of the feline genome
(96%), and has been independently validated using FISH data, and by
comparison to a new genetic linkage map [15]. This tool will aid the
chromosomal assignment and ordering of scaffolds for the draft
genome assembly, facilitate identification of genes controlling feline
phenotypes, and provide insight into the details of chromosomal
evolution that have occurred since the divergence of the cat and dog
genomes from the ancestral carnivore karyotype.
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Results and discussion
A fine-scale cat radiation hybrid gene map

We analyzed a final set of 2674 markers that were evaluated by
formal linkage analysis. Twelve of these markers were later dropped
while computing the final map in which linkage groups were computed
using a two-point LOD score threshold of 9.0. At this threshold, all but
five chromosomes comprised complete linkage groups. Chromosomes
A1, C2, and D2 were divided into two linkage groups with gaps at the
centromeres; these chromosome arms were merged in a single map.
Chromosome E1 formed three RH linkage groups with two gaps: the first
caused by the nucleolar organizer region (NOR), and the second because
of the severe changes in retention frequency associated with the RH
selectable marker (TK1) that is found on this chromosome. The three RH
groups on chromosome E1 were oriented using evidence from the feline
linkage maps and FISH data. On chromosome X, the pseudoautosomal
region (PAR) comprises a separate linkage group due to increased
retention resulting from co-amplification of Y chromosome-bearing
fragments in the PAR [3].

The computed RH map contains 2662 markers that cover all 18
feline autosomes and the X chromosome, with marker density being
fairly uniform across chromosomes (Table 1). The uniform marker
density was achieved in part because we computed an intermediate
map after 2550 markers had been genotyped (map not shown here)
and the final batch of markers to be developed were targeted to gaps
in coverage of that intermediate map. We reused some marker input
data from earlier maps, but we did not assume that markers were in
the same order as in previous maps. Of the 2662 markers, 733 are
associated with feline annotated genes or ESTs, 783 are micro-
satellites, and the remainder are derived from published STS markers
or the domestic cat 1.9x genome sequence. The final map has 1602
markers on the maximume-likelihood (MLE)-consensus framework
map, 779 markers placed at centiRay (cR) positions relative to the
framework map, and 281 markers assigned to larger bins with
respect to the framework map. The 1602 markers on the framework
map are assigned to 1445 distinct positions; among the 2381
markers assigned to cR positions, there are 2184 distinct positions.
Therefore, assuming a feline euchromatic genome size of 2.5 giga-
bases (Gb) [14], all markers comprising the current map result in one
marker every 939 kb, 82% of which reside in unique positions. The
binned markers are not ordered or assigned a cR position, thus one
marker is assigned a cR position every 1050 kb. Fig. 1 depicts the
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integrated RH, FISH and human comparative maps for feline
chromosome A3. The complete RH comparative maps and cytoge-
netic maps are available in supplemental material (Supplemental
Table 1, Supplemental Figs. 1 and 2).

Map order confirmation using FISH and linkage map comparisons

The accuracy of the long-range marker order of the RH map was
verified using two independent approaches. The first approach used
FISH mapping of domestic cat bacterial artificial clones (BAC) isolated
from the RPCI-86 10x library. BAC end sequencing of 480 random
clones was used to identify, by computational comparison to the dog,
human and cat assemblies, a set of probes distributed relatively evenly
across all autosomes and the X chromosome. The positions of 129
feline BAC clones were obtained by FISH (Fig. 1, Supplemental Fig. 2,
Supplemental Table 2). When combined with previously published
cytogenetic mapping data (see Supplemental Fig. 2), the average
spacing of FISH markers is approximately one marker every 18 Mb.
The FISH based marker order was identical to the RH-based
comparative marker order, confirming the long-range assembly of
the RH maps.

A second analysis compared the RH map order with marker order
derived from a domestic cat linkage map [15]. A comparison of
markers mapped on both maps showed the two map to be 94%
consistent, with only 18 of 319 marker order discrepancies between
the two maps (Supplemental Table 3). The vast majority of marker
order differences involved flips of closely spaced, adjacent markers
(Avg. distance=6.8 cM). Only 3 of 17 discrepantly ordered marker
pairs were spaced greater than 10 cM apart, in addition to a single
marker, FCA1028, assigned to different chromosomes that could not
be resolved (Supplemental Table 3). Overall, the three combined
mapping approaches validate the long-range marker order across cat
chromosomes, and provide anchor points for each RH map to its
respective feline chromosome.

Comparative synteny analysis

We identified orthologous positions for 99% of the total 2662
mapped markers in the latest dog and human genome assemblies
(Supplemental Table 1). AutoGRAPH [16] was used to visualize
chromosome rearrangements between cat, dog and human genomes
(Fig. 1, Supplemental Fig. 1). Using conservative criteria to define
blocks of conserved marker order (see Materials and methods), we

Table 1

Summary statistics for the domestic cat radiation hybrid map

Domestic cat Total markers No. of MLE-consensus Avg. marker RH length Approximate cR/Mb Human CSOs Dog CSOs
chromosome on map framework markers density (Mb) (cR5000) physical length® (Mb)

Al 246 129 1.0 1964.4 246 8.0 12 13
A2 205 127 0.9 1785.2 180 9.9 15 10
A3 155 97 0.9 1278.6 143 9.0 7 4
B1 190 104 1.0 1466.2 198 74 13 19
B2 140 90 11 12353 148 8.4 2 6
B3 144 96 1.0 950.1 143 6.7 4 4
B4 148 88 0.9 1040.2 138 7.6 4 8
C1 197 125 11 1626.7 220 74 3 12
2 158 98 0.9 1302.0 148 8.8 10 8
D1 133 83 0.9 1089.7 123 8.9 5 6
D2 105 58 1.0 813.0 103 79 8 3
D3 114 80 0.9 1091.0 103 10.6 10 5
D4 109 69 0.9 992.4 95 10.4 6 3
E1 109 62 0.9 1200.9 95 12.6 6 4
E2 82 52 0.9 5524 78 71 2 4
ES) 69 50 0.9 637.3 60 10.6 7 2
F1 102 56 0.7 556.5 75 74 10 5
F2 84 47 0.9 608.8 75 8.1 1 3
X 172 91 0.7 960.3 128 7.5 1 1
Total 2662 1602 0.9 21151.0 2493 8.5 126 121

2 Assumes a 2.5 Mbp euchromatic genome and the total cytogenetic fraction estimated for each chromosome in the domestic cat genome [14], excluding the Y chromosome.
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Fig. 1. Integrated RH, FISH, and comparative maps for feline chromosome A3. CSOs for human chromosome 20 and 2 are shown to the right of each cat chromosome map (only the
map scale is shown). The inferred centromere position is shown as a gray oval. The comparative map represents the output from an AutoGRAPH [16] based analysis.
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identified 126 conserved segments ordered (CSOs, or homologous
synteny blocks—HSBs [13]) between the cat and human genomes, and
121 between the cat and dog genomes (Supplemental Table 1,
Supplemental Fig. 1). Though these figures include singletons, we
only considered a singleton to represent a CSO if it was present in one
comparison species (i.e. human or dog) and part of a multimarker
stretch of conserved gene order in the other species. We interpret these
singletons to represent evidence of lineage-specific rearrangements.

Comparative coverage of cat CSOs on the human genome assembly
was estimated as previously described [17]. Specifically, comparative
coverage is defined as the sum of the physical span of human CSOs in
cat, divided by the size of the human genome after excluding
centromere, telomere, and heterochromatic regions, or regions
lacking any cross-species homology in multi-species alignments.
Estimated comparative coverage with the human genome is 96%, an
11% increase over the previous cat-human comparative map [3]. The
mean gap size is 867 kb (range=0.12-2.3 Mb), with 68% of the gaps
being less than 1 Mb, and 97% less than 2 Mb.

An examination of chromosome rearrangement rates between
cat-human and cat-dog, as well as the lineage-specific chromosomal
breakpoints, is presented in Fig. 2. A similar number of CSOs
distinguish cat and human and cat and dog genomes (126 versus
121 respectively), despite the fact that dog and cat share a much more
recent (55 million years ago [Mya] versus 95 Mya) common ancestry
(Fig. 2). This is accounted for by the well-documented accelerated rate
of canine chromosome evolution [18-20].

In comparison to human and cat, the dog genome has been
punctuated by a very high proportion of interchromosomal rearran-
gements (Fig. 2), while very few blocks of cat-dog conserved synteny
are further disrupted by inversions (Fig. 1 and Supplementary Fig. 1).
Specifically, 86% of the rearrangements between cat and dog genomes
involve interchromosomal breakpoints, compared to only 19% of
human-cat rearrangements, which are predominately inversions (Fig.
2). Further, while the relative proportion of interchromosomal to
intrachromosomal rearrangements is similar in the two carnivore
lineages (roughly twice as many interchromosomal rearrangements),
the overall rate of breakage is approximately twice as high in the canid
lineage versus the feline lineage. The refined definition of cat-dog-
human chromosome breakpoints in this study will allow for a detailed

- |
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“ Cat-Dog
“ Cat-Human
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# INTER
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Fig. 2. Lineage-specific rearrangement totals for the domestic dog and domestic cat and
rearrangement frequencies between the domestic cat, domestic dog, and human
genomes. The lineage-specific totals are #INTRA=the number of intrachromosomal and
#INTER=the number of interchromosomal breakpoints. 4INTRA=the percentage of
rearrangements between two genomes that are the result of intrachromosomal
breakpoints. INTER=the percentage of rearrangements between two genomes that
are the result of interchromosomal breakpoints.

Fig. 3. FISH results for two feline BAC clone probes (green: 348A7; red: 348]11)
hybridized to B4 orthologues on domestic cat (Fca), serval (Pse) and snow leopard (Pun)
metaphase chromosomes. Note the same relative positioning of each probe in all three
species. A summary of all FISH results relative to domestic cat chromosomes can be
found in Supplementary Fig. 2.

comparative analysis of their sequence properties once high-coverage
cat genome sequence becomes available.

Utility of FISH probes in other species of Felidae

We examined the applicability of the domestic cat FISH probes to
hybridize to chromosomes of other divergent members of the cat
family: serval (Profelis serval), and snow leopard (Panthera uncia).
These two species are representatives of felid lineages that last shared
a common ancestor with the domestic cat approximately 8 and
10 Mya, respectively, and span the earliest nodes of the felid
phylogeny [21]. We tested all probes from two domestic cat
chromosomes, B4 and F1, that had differences in G-banding patterns
documented between at least two of the three species [22]. It has been
suggested that the B4 chromosome of species of the genus Panthera
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(and several additional felid species) is distinguished from members
of the domestic cat lineage and the serval by a pericentric inversion. In
addition, domestic cat chromosome F1 is orthologous to chromo-
somes F3 of serval and snow leopard, but differs in its G-banding
pattern, suggesting possible gene order differences between the two
chromosomes.

100% of domestic cat BAC probes tested (n=22 independent
hybridizations) on serval and snow leopard chromosome preparations
produced successful hybridization results (Fig. 3). Furthermore, hybri-
dization results suggested the marker order (as shown in Supplemental
Fig. 2) is conserved across all three felid species on these two
chromosomes (Fig. 3). Using our probes, we found no evidence of a
pericentric inversion distinguishing snow leopard chromosome B4 from
domestic cat or serval. Specifically, a BAC probe that hybridizes just
below the centromere on domestic cat B4 localizes to the same location
of the long arm, rather than the short arm (in the case of a pericentric
inversion), of snow leopard chromosome B4 (Fig. 3). Furthermore, the
marker order was identical across all three cat species for chromosome
F1 and its homologue F3. Therefore the observed G-banding differences
across the felids studied may not be due to large scale structural changes
(inversions), but either to smaller paracentric inversions inside of the
markers we applied here, or due to compositional sequence changes
between species that do not affect gene order.

Conclusions and future directions

We report a 939-kilobase resolution, RH-based, physical map of
the feline genome. The most important result of this study is the
notable improvement in the comparative genome alignments
between the cat-human and cat-dog. The comparative coverage of
the human genome is 96%, closing more than two-thirds of the
coverage deficiency of the most recent map [3], with evolutionary
breakpoints (gaps) resolved to less than 900 kilobase resolution on
average. The enhanced map resolution allowed for the identification
of several novel small conserved segments generated by intrachro-
mosomal rearrangements not observed in previous maps. The high
marker density of this map makes it vital to the construction of the
forthcoming assembly and annotation of a higher coverage (than the
currently available 1.9x) feline genome sequence. These resources will
stimulate and facilitate the identification of feline genes of interest
using genetic linkage and selective sweep mapping approaches in
domestic and natural populations of felid species.

The high success rate of the domestic cat BAC probes on other felid
species suggests they will be a reliable resource for cross-species
synteny analysis in all felids. Because results were unable to detect any
rearrangement that would explain the observed cytological differ-
ences between the orthologous domestic cat F1 and Profelis and
Panthera F3 chromosomes, these data suggest karyotypic conserva-
tism may be more extreme across Felidae than previously appreciated,
and that further application of these, and additional, probes may help
resolve other documented karyotypic differences within the cat
family. Human BAC probes are routinely applied in other primate
lineages that span 40-50 million year divergence times [23]. Our
results suggest that a large proportion of domestic cat BAC probes will
successfully hybridize to chromosomes of other feliform carnivores
(i.e. linsangs, hyenids, herpestids, viverrids), a group that radiated in a
similar evolutionary timeframe [24].

Materials and methods
Marker selection

Pairs of primers were designed from sequence contigs from the 1.9x
feline genome assembly [14] that had reciprocal best hits to one or both

orthologous chromosomes of dog (CanFam2) and human (Hs36)
genome assemblies. Repetitive sequences were masked using Repeat-

masker, and primers were designed with Primer3 [25]. Each primer pair
was tested by PCR in cat DNA, hamster DNA, and a 10:1 hamster:cat
mixture of DNA. Only those markers showing robust amplification in cat
and the 10:1 DNAs were chosen for further genotyping in the RH panel.

RH genotyping

RH genotyping was performed on the 5000-rad feline whole
genome radiation hybrid panel using previously described methods
[4]. Markers were dropped before map computation for one of the
following reasons: weak amplification, high hamster background
amplification, or excessively high retention frequency (>70% and not
predicted to reside on the selectable locus chromosome or near a
centromere) or excessively low retention frequency compared to
other markers on the same chromosome. These new genotypes were
merged with vectors from previous maps for map computation.

Map construction

Two-point linkage groups were computed at a LOD score of 9.0.
Markers within each chromosome or linkage group were ordered
using a reduction from the problem of RH mapping to the traveling
salesman problem (TSP), as implemented in the software rh_tsp_map
[26,27]. The computations to construct the map were done using
programs from the software package rh_tsp_map (ftp://ftp.ncbi.nih.
gov/pub/agarwala/rhmapping/rh_tsp_map.tar.gz) and using the pack-
age CONCORDE (http://www.isye.gatech.edu/~wcook/rh) [28] linked
with QSopt (http://www.isye.gatech.edu/~wcook/qsopt) to solve the
TSP instances to guaranteed optimality. Details of the mapping
procedures are described in the tutorial accompanying rh_tsp_map.
The three linkage groups on chromosome E1, and the PAR and X-
specific region on the X chromosome maps were oriented and ordered
using data from linkage maps and FISH.

Before computing the final map shown here, we used similar
procedures to compute an intermediate map when approximately 2550
markers had been developed, amplified, and scored on the 5000 rad
panel. The intermediate map was used for two different purposes that
both led to a much-improved final map. First, for any clone and triplet of
(apparently) consecutive markers in which the retention patterns
showed two obligate breaks, the problematic marker/clone pairs were
reevaluated using the strategy described in [ 17]. This substantial effort in
local quality control explains why over 99% of the markers at the start of
final map computation could be included in the final map, despite
rigorous flips tests of marker order implemented in rh_tsp_map.

Second, the intermediate map was used to identify holes in cat-
human and cat-dog map comparisons, so that the last batch of
markers to be developed could be targeted to many of these holes.
This substantial effort in global quality control explains why the
coverage of the new map (96%) is so much higher than the coverage of
the previous cat RH map (85%; [3]).

FISH mapping

480 clones from three randomly selected plates of the domestic cat
RPCI-86 BAC library were end-sequenced (SP6 end only) using
described protocols [29]. These sequences were repeatmasked and
queried against the feline 1.9x genome assembly and human and dog
genome assemblies using BLAT to identify best hits and positions in
each assembly (Supplemental Table 2). A collection of BAC clones
spaced across all cat autosomes and the X chromosome were selected,
grown, and DNA extracted using the Qiagen large construct procedure.
BAC clone DNA was labeled with biotin and/or digoxigenin (Bio-Nick
and Dig-Nick kits; Roche Molecular Biochemicals) and hybridized to
domestic cat metaphase chromosomes. Images for a minimum of 30
metaphase spreads were captured and analyzed with a Zeiss
Axioplan2 fluorescent microscope equipped with Cytovision/Genus


ftp://ftp.ncbi.nih.gov/pub/agarwala/rhmapping/rh_tsp_map.tar.gz
ftp://ftp.ncbi.nih.gov/pub/agarwala/rhmapping/rh_tsp_map.tar.gz
http://www.isye.gatech.edu/
http://www.isye.gatech.edu/

304 B.W. Davis et al. / Genomics 93 (2009) 299-304

V. 2.7 (Applied Imaging). Identification of cat chromosomes and
assignment of markers to specific chromosome bands followed the
nomenclature of O'Brien and Nash [30]. A subset of these probes
(n=11) were also hybridized to metaphase spreads from individuals
representing two divergent felid species: Profelis serval (serval) and
Panthera uncia (snow leopard).

Comparative analysis

For each domestic cat locus, physical positions for orthologous
genes were obtained by using either BLAT [31] or discontiguous
MegaBLAST (http://www.ncbi.nlm.nih.gov/blast/; [32]) searches to
the feline, human and canine reference genome assemblies (felCat3,
hg18 and canFam2, respectively). In a small number of cases, BLAT hits
to one species (either human or dog) genome were not covered in the
top alignment net in the second genome. In these cases, we identified
the nearest corresponding stretch of orthology using the dog and
human alignment nets of the UCSC Genome Browser. Conserved
segments ordered (homologous synteny blocks) were defined by
searching for runs of two or more uninterrupted markers on the same
chromosome between two species. Inverted segments were defined
by runs of three or more markers, each separated by 1 Mbp. Some out
of place markers were expected due to mapping/genotyping errors or
limitations of RH mapping resolution. These were assigned to the
closest conserved segment if the intervening markers did not span
more than a few Mb. Markers that were binned or placed with a LOD
score <0.5 were not used in determining marker order, though they
could be used to determine the extent of comparative coverage. The
program AutoGRAPH [16] was used to visualize ordered and
unordered conserved segments between cat-human and cat-dog
comparisons.

Acknowledgments

We thank Keith Durkin, Julie Fronczek, Jan Janecka, William Nash,
and Ashley Seabury for helpful advice and technical support. We thank
Cynthia King for the serval blood sample. Jim Mullikin provided a list of
candidate contigs for primer design. Marilyn Menotti-Raymond shared
the marker positions on a new genetic map computed by AAS. This
work was supported by funds from the Morris Animal Foundation
(Grant DO6FE-063) to WJM and the Winn Feline Foundation (Grant 06-
026) to WJM, TR, and BPC. This research was supported in part by the
intramural research program of the NIH, NLM (RA, AAS).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ygeno0.2008.09.010.

References

[1] M. Menotti-Raymond, V.A. David, R. Agarwala, A.A. Schiffer, R. Stephens, SJ.
O'Brien, W.J. Murphy, Radiation hybrid mapping of 304 novel microsatellites in the
domestic cat genome, Cytogenet. Genome Res. 102 (2003) 272-276.

M. Menotti-Raymond, V.A. David, M.E. Roelke, Z.Q. Chen, K.A. Menotti, S. Sun, A.A.

Schaffer, J.F. Tomlin, R. Agarwala, S,J. O'Brien, W.J. Murphy, Second-generation

integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus),

J. Heredity 94 (2003) 95-106.

W.,J. Murphy, B. Davis, V.A. David, R. Agarwala, A.A. Schaffer, A.J. Pearks Wilkerson,

B. Neelam, SJ. O'Brien, M. Menotti-Raymond, A 1.5-Mb-resolution radiation

hybrid map of the cat genome and comparative analysis with the canine and

human genomes, Genomics 89 (2007) 189-196.

WJ. Murphy, S. Sun, Z. Chen, N. Yuhki, D. Hirschmann, M. Menotti-Raymond, S.J.

O'Brien, A radiation hybrid map of the cat genome: implications for comparative

mapping, Genome Res. 10 (2000) 691-702.

[5] J.S. Kehler, V.A. David, A.A. Schiffer, K. Bajema, E. Eizirik, D.K. Ryugo, S.S. Hannah,
SJ. O'Brien, M. Menotti-Raymond, Four independent mutations in the feline
fibroblast growth factor 5 gene determine the long-haired phenotype in
domestic cats, J. Heredity 98 (2007) 555-566.

2

3

[4

[6] LA. Lyons, D.L. Imes, H.C. Rah, R.A. Grahn, Tyrosinase mutations associated with
Siamese and Burmese patterns in the domestic cat (Felis catus), Anim. Genet. 36
(2005) 119-126.

A. Schmidt-Kiintzel, E. Eizirik, S.J. O'Brien, M. Menotti-Raymond, Tyrosinase and

tyrosinase related protein 1 alleles specify domestic cat coat color phenotypes of

the albino and brown loci, J. Heredity 96 (2005) 289-301.

L.A. Lyons, D.S. Biller, C.A. Erdman, MJJ. Lipinski, A.E. Young, B.A. Roe, B. Qin, R.A.

Grahn, Feline polycystic kidney disease mutation identified in PKD1, J. Am. Soc.

Nephrol. 15 (2004) 2548-2555.

K.M. Meurs, X. Sanchez, R.M. David, N.E. Bowles, J.A. Towbin, PJ. Reiser, J.A.

Kittleson, M.J. Munro, K. Dryburgh, K.A. Macdonald, M.D. Kittleson, A cardiac

myosin binding protein C mutation in the Maine Coon cat with familial

hypertrophic cardiomyopathy, Hum. Mol. Genet. 14 (2005) 3587-3593.

[10] J.C. Fyfe, M. Menotti-Raymond, V.A. David, L. Brichta, A.A. Schdffer, R. Agarwala, WJ.
Murphy, WJ. Wedemeyer, B.L. Gregory, B.G. Buzzell, M.C. Drummond, B. Wirth, S.J.
O'Brien, An ~ 140-kb deletion associated with feline spinal muscular atrophy implies an
essential LIX1 function for motor neuron survival, Genome Res. 16 (2006) 1084-1090.

[11] M. Menotti-Raymond, V.A. David, A.A. Schiffer, R. Stephens, D. Wells, R. Kumar-
Singh, S.J. O'Brien, K. Narfstrom, Mutation in CEP290 discovered for cat model of
human retinal degeneration, ]. Heredity 98 (2007) 211-220.

[12] C. Hitte, J. Madeoy, E.F. Kirkness, C. Priat, T.D. Lorentzen, F. Senger, D. Thomas, T.
Derrien, C. Ramirez, C. Scott, G. Evanno, B. Pullar, E. Cadieu, V. Oza, K. Lourgant, D.B.
Jaffe, S. Tacher, S. Dreano, N. Berkova, C. André, P. Deloukas, C. Fraser, K. Lindblad-
Toh, E.A. Ostrander, F. Galibert, Facilitating genome navigation: survey sequencing
and dense radiation-hybrid gene mapping, Nat. Rev. Genet. 6 (2005) 643-648.

[13] WJ. Murphy, D.M. Larkin, A. Everts-van der Wind, G. Bourque, G. Tesler, L. Auvil, J.
E. Beever, B.P. Chowdhary, F. Galibert, L. Gatzke, C. Hitte, S.N. Meyers, D. Milan, E.A.
Ostrander, G. Pape, H.G. Parker, T. Raudsepp, M.B. Rogatcheva, L.B. Schook, L.C.
Skow, M. Welge, J.E. Womack, ]. O'Brien S, P.A. Pevzner, H.A. Lewin, Dynamics of
mammalian chromosome evolution inferred from multispecies comparative
maps, Science 309 (2005) 613-617.

[14] J.U. Pontius, J.C. Mullikin, D.R. Smith, K. Lindblad-Toh, S. Gnerre, M. Clamp, ]. Chang,
R. Stephens, B. Neelam, N. Volfovsky, A.A. Schdffer, R. Agarwala, K. Narfstrom, W.J.
Murphy, U. Giger, A.L. Roca, A. Antunes, M. Menotti-Raymond, N. Yuhki, ]. Pecon-
Slattery, W.E. Johnson, G. Bourque, G. Tesler, S.J. O'Brien, Initial sequence and
comparative analysis of the cat genome, Genome Res. 17 (2007) 1675-1689.

[15] M. Menotti-Raymond, V.A. David, A.A. Schaffer, ].F. Tomlin, E. Eizirik, C. Philip, D.
Wells, J.U. Pontius, S.S. Hannah, S.J. O'Brien, A third-generation autosomal genetic
linkage map of the domestic cat, Felis silvestris catus. Genomics (in press).

[16] T. Derrien, C. André, F. Galibert, C. Hitte, AutoGRAPH: an interactive web server for
automating and visualizing comparative genome maps, Bioinformatics 23 (2007)
498-499.

[17] A. Everts-van der Wind, D.M. Larkin, C.A. Green, J.S. Elliott, C.A. Olmstead, R. Chiu,
J.E. Schein, M.A. Marra, J.E. Womack, H.A. Lewin, A high-resolution whole-genome
cattle-human comparative map reveals details of mammalian chromosome
evolution, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 18526-18531.

[18] W.G. Nash, J.C. Menninger, J. Wienberg, H.M. Padilla-Nash, S.J. O'Brien, The pattern of
phylogenomic evolution of the Canidae, Cytogenet. Cell Genet. 95 (2001) 210-224.

[19] F. Yang, A.S. Graphodatsky, P.C. O'Brien, A. Colabella, N. Solanky, M. Squire, D.R.
Sargan, M.A. Ferguson-Smith, Reciprocal chromosome painting illuminates the
history of genome evolution of the domestic cat, dog and human, Chromosome
Res. 8 (2000) 393-404.

[20] A.S. Graphodatsky, P.L. Perelman, N.V. Sokolovskaya, V.R. Beklemisheva, N.A.
Serdukova, G. Dobigny, S.J. O'Brien, M.A. Ferguson-Smith, F. Yang, Phylogenomics
of the dog and fox family (Canidae, Carnivora) revealed by chromosome painting,
Chromosome Res. 16 (2008) 129-143.

[21] W.E. Johnson, E. Eizirik, ]. Pecon-Slattery, W.J. Murphy, A. Antunes, E. Teeling, S.J.
O'Brien, The late Miocene radiation of modern Felidae: a genetic assessment,
Science 311 (2006) 73-77.

[22] D.H. Wurster-Hill, W.R. Centerwall, The interrelationships of chromosome
banding patterns in canids, mustelids, hyena, and felids, Cytogenet. Cell Genet.
34 (1982) 178-192.

[23] R.Stanyon, M. Rocchi, O. Capozzi, R. Roberto, D. Misceo, M. Ventura, M.F. Cardone,
F. Bigoni, N. Archidiacono, Primate chromosome evolution: ancestral karyotypes,
marker order and neocentromeres, Chromosome Res. 16 (2008) 17-39.

[24] E. Eizirik, W.J. Murphy, Carnivora. in: S.B. Hedges, S. Kumar, S., (Ed.), Assembling
the Timetree of Life, Oxford University Press, Oxford, in press.

[25] S. Rozen, H. Skaletsky, Primer3 on the WWW for general users and for biologist
programmers, Methods Mol. Biol. 132 (2000) 365-386.

[26] R. Agarwala, D.L. Applegate, D. Maglott, G.D. Schuler, A.A. Schdffer, A fast and
scalable radiation hybrid map construction and integration strategy, Genome Res.
10 (2000) 350-364.

[27] A.A. Schiffer, E.S. Rice, W. Cook, R. Agarwala, rh_tsp_map 3.0: end-to-end
radiation hybrid mapping with improved speed and quality control, Bioinfor-
matics 23 (2007) 1156-1158.

[28] D.L. Applegate, The Traveling Salesman Problem: A Computational Study,
Princeton University Press, Princeton, 2006.

[29] D.M. Larkin, A. Everts-van der Wind, M. Rebeiz, P.A. Schweitzer, S. Bachman, C. Green,
C.L. Wright, EJ. Campos, L.D. Benson, J. Edwards, L. Liu, K. Osoegawa, J.E. Womack,
PJ. de Jong, HA. Lewin, A cattle-human comparative map built with cattle BAC-
ends and human genome sequence, Genome Res. 13 (2003) 1966-1972.

[30] SJ. O'Brien, W.G. Nash, Genetic mapping in mammals: chromosome map of
domestic cat, Science 216 (1982) 257-265.

[31] WJ. Kent, BLAT—the BLAST-like alignment tool, Genome Res. 12 (2002) 656-664.

[32] Z.Zhang, S. Schwartz, L. Wagner, W. Miller, A greedy algorithm for aligning DNA
sequences, ]. Comput. Biol. 7 (2000) 203-214.

(7

[8

[9


http://www.ncbi.nlm.nih.gov/blast/
http://dx.doi.org/doi:10.1016/j.ygeno.2008.09.010

	A high-resolution cat radiation hybrid and integrated FISH mapping resource for phylogenomic st.....
	Introduction
	Results and discussion
	A fine-scale cat radiation hybrid gene map
	Map order confirmation using FISH and linkage map comparisons
	Comparative synteny analysis
	Utility of FISH probes in other species of Felidae
	Conclusions and future directions

	Materials and methods
	Marker selection
	RH genotyping
	Map construction
	FISH mapping
	Comparative analysis

	Acknowledgments
	Supplementary data
	References




