Meromorphic functions that share a set with their derivatives

Jianming Chang ${ }^{\text {a,1 }}$, Lawrence Zalcman ${ }^{\text {b,*,2 }}$
${ }^{\text {a }}$ Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, PR China
${ }^{\text {b }}$ Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel
Received 26 April 2007
Available online 8 June 2007
Submitted by Steven G. Krantz

Abstract

There exists a set S with three elements such that if a meromorphic function f, having at most finitely many simple poles, shares the set S CM with its derivative f^{\prime}, then $f^{\prime} \equiv f$. © 2007 Elsevier Inc. All rights reserved.

Keywords: Meromorphic functions; Shared values

1. Introduction

For f a nonconstant entire function in the plane domain D and S a set of complex numbers, let

$$
E_{D}(S, f)=\bigcup_{a \in S}\{z \in D: f(z)-a=0\},
$$

where zero of multiplicity m is counted m times in the set $E_{D}(S, f)$. When $D=\mathbb{C}$, we simply write $E(S, f)$.
In [2], Fang and Zalcman proved
Theorem A. There exists a finite set S containing 3 elements such that if f is a nonconstant entire function and $E(S, f)=E\left(S, f^{\prime}\right)$, then $f \equiv f^{\prime}$.

It is natural to ask whether Theorem A remains valid for meromorphic functions. In this paper, we prove the following generalization of Theorem A.

Theorem 1. There exists a set S with three elements such that if f is a meromorphic function f with at most finitely many simple poles and $E(S, f)=E\left(S, f^{\prime}\right)$, then $f^{\prime} \equiv f$.

[^0]Theorem 1 follows from the following more precise result.
Theorem 2. Let f be a nonconstant meromorphic function with at most finitely many simple poles; and let $S=$ $\{0, a, b\}$, where a and b are distinct nonzero complex numbers. If f and its derivative f^{\prime} satisfy $E(S, f)=E\left(S, f^{\prime}\right)$, then either
(i) $f(z)=C e^{z}$; or
(ii) $f(z)=C e^{-z}+\frac{2}{3}(a+b)$ and either $a+b=0$ or $2 a^{2}-5 a b+2 b^{2}=0$; or
(iii) $f(z)=C e^{\frac{-1 \pm i \sqrt{3}}{2} z}+\frac{3 \pm i \sqrt{3}}{6}(a+b)$ and $a^{2}-a b+b^{2}=0$,
where C is a nonzero constant.
Throughout this paper, we use the standard notions and notation of Nevanlinna theory [3,6]. In particular, the spherical derivative of a meromorphic function f is given by

$$
f^{\#}(z)=\frac{\left|f^{\prime}(z)\right|}{1+|f(z)|^{2}}
$$

and the order of f is defined by

$$
\rho=\limsup _{r \rightarrow \infty} \frac{\log ^{+} T(r, f)}{\log r}
$$

2. Auxiliary results

Lemma 1. Let f be a meromorphic function on \mathbb{C}. If f has bounded spherical derivative on \mathbb{C}, f is of order at most 2. If, in addition, f is entire, then the order of f is at most 1 .

Remark. The first part of the lemma follows from the formula for the Ahlfors-Shimizu characteristic

$$
T_{0}(r, f)=\int_{0}^{r} \frac{1}{t}\left(\frac{1}{\pi} \iint_{|z| \leqslant t}\left[f^{\#}(z)\right]^{2} d x d y\right) d t
$$

and the fact that $T(r, f)$ and $T_{0}(r, f)$ differ by a bounded quantity (independent of r). The result for entire functions is more subtle; it is a special case of Theorem 3 in [1].

It is not difficult to extend Lemma 1 as follows.
Lemma 2. Let f be a meromorphic function on \mathbb{C} with finitely many poles. If f has bounded spherical derivative on \mathbb{C}, f is of order at most 1 .

Recently, using Zalcman's Lemma [5] (cf. [7]), Liu and Pang obtained the following normality criterion [4].
Lemma 3. (See [4].) Let \mathcal{F} be a family of functions meromorphic on the unit disk Δ. If there exists a set S with three elements such that $E_{\Delta}(S, f)=E_{\Delta}\left(f^{\prime}, S\right)$ for every $f \in \mathcal{F}$, then \mathcal{F} is normal on Δ.

As an almost immediate consequence, we have
Lemma 4. Let f be a function meromorphic on \mathbb{C}. If there exists a set S with three elements such that $E(S, f)=$ $E\left(S, f^{\prime}\right)$, then $f^{\#}(z)$ is bounded on \mathbb{C}.

Proof. Set $\mathcal{F}=\left\{f_{w}: w \in \mathbb{C}\right\}$, where $f_{w}(z)=f(z+w)$. By Lemma $3, \mathcal{F}$ is normal on Δ; so by Marty's Theorem, $f^{\#}(w)=f_{w}^{\#}(0) \leqslant M$ for some $M>0$ and all $w \in \mathbb{C}$.

Lemma 5. (See [3, p. 56].) Let f be a meromorphic function of finite order on the plane \mathbb{C}. Then

$$
m\left(r, \frac{f^{(k)}}{f}\right)=O(\log r)
$$

for each positive integer k.
Lemma 6. Let f be a nonconstant meromorphic function of finite order, and let A, B be two constants satisfying $A^{2}-4 B \neq 0$ and $B \neq 0$. Then

$$
m\left(r, \frac{\left(f^{\prime}\right)^{3}+A\left(f^{\prime}\right)^{2}+B f^{\prime}}{f^{3}+A f^{2}+B f}\right)=O(\log r)
$$

Proof. Since $A^{2}-4 B \neq 0$ and $B \neq 0$, we have

$$
f^{3}+A f^{2}+B f=f(f+\alpha)(f+\beta),
$$

where α and β are two distinct nonzero constants. Then

$$
\begin{aligned}
\frac{1}{f^{3}+A f^{2}+B f} & =\frac{1}{f(f+\alpha)(f+\beta)} \\
& =\frac{1}{\beta-\alpha}\left(\frac{1}{f(f+\alpha)}-\frac{1}{f(f+\beta)}\right) \\
& =\frac{1}{\alpha \beta} \cdot \frac{1}{f}-\frac{1}{\alpha(\beta-\alpha)} \cdot \frac{1}{f+\alpha}+\frac{1}{\beta(\beta-\alpha)} \cdot \frac{1}{f+\beta}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\left(f^{\prime}\right)^{3}+A\left(f^{\prime}\right)^{2}+B f^{\prime}}{f^{3}+A f^{2}+B f}= & \frac{\left(f^{\prime}\right)^{3}}{f(f+\alpha)(f+\beta)}+\frac{A}{\beta-\alpha}\left(\frac{\left(f^{\prime}\right)^{2}}{f(f+\alpha)}-\frac{\left(f^{\prime}\right)^{2}}{f(f+\beta)}\right)+\frac{B}{\alpha \beta} \cdot \frac{f^{\prime}}{f} \\
& -\frac{B}{\alpha(\beta-\alpha)} \cdot \frac{f^{\prime}}{f+\alpha}+\frac{B}{\beta(\beta-\alpha)} \cdot \frac{f^{\prime}}{f+\beta}
\end{aligned}
$$

Lemma 6 now follows from Lemma 5.
Lemma 7. Let f be a nonconstant meromorphic function satisfying the equation

$$
a_{0} f^{n}+a_{1} f^{n-1}+\cdots+a_{n}=0
$$

where a_{j} are meromorphic functions with $a_{0} \not \equiv 0$. Then

$$
m(r, f) \leqslant m\left(r, \frac{1}{a_{0}}\right)+\sum_{j=1}^{n} m\left(r, a_{j}\right)+O(1) .
$$

Proof. By the equation,

$$
f^{n}=-\frac{1}{a_{0}}\left(a_{1} f^{n-1}+\cdots+a_{n}\right) .
$$

So

$$
\begin{aligned}
n m(r, f) & =m\left(r, f^{n}\right) \leqslant m\left(r, \frac{1}{a_{0}}\right)+m\left(r, a_{1} f^{n-1}+\cdots+a_{n}\right) \\
& \leqslant m\left(r, \frac{1}{a_{0}}\right)+m\left(r, a_{1} f^{n-1}+\cdots+a_{n-1} f\right)+m\left(r, a_{n}\right)+O(1) \\
& \leqslant m\left(r, \frac{1}{a_{0}}\right)+m(r, f)+m\left(r, a_{1} f^{n-2}+\cdots+a_{n-1}\right)+m\left(r, a_{n}\right)+O(1)
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant m\left(r, \frac{1}{a_{0}}\right)+m(r, f)+m\left(r, a_{1} f^{n-2}+\cdots+a_{n-2} f\right)+m\left(r, a_{n-1}\right)+m\left(r, a_{n}\right)+O(1) \\
& \leqslant \cdots \\
& \leqslant m\left(r, \frac{1}{a_{0}}\right)+(n-1) m(r, f)+m\left(r, a_{1}\right)+\cdots+m\left(r, a_{n}\right)+O(1)
\end{aligned}
$$

Hence

$$
m(r, f) \leqslant m\left(r, \frac{1}{a_{0}}\right)+\sum_{j=1}^{n} m\left(r, a_{j}\right)+O(1)
$$

Lemma 7 is proved.
Lemma 8. Let f be a nonconstant meromorphic function. Set

$$
\begin{equation*}
\gamma=\frac{f^{\prime \prime}}{f^{\prime}} \tag{1}
\end{equation*}
$$

Then

$$
\begin{aligned}
& f^{\prime \prime}=\gamma f^{\prime}, \quad f^{\prime \prime \prime}=\left(\gamma^{\prime}+\gamma^{2}\right) f^{\prime}, \quad f^{(4)}=\left(\gamma^{\prime \prime}+3 \gamma^{\prime} \gamma+\gamma^{3}\right) f^{\prime}, \\
& \left(\frac{1}{f^{\prime}}\right)^{\prime}=-\frac{\gamma}{f^{\prime}}, \quad\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}=\gamma^{\prime}, \quad \frac{f^{\prime \prime}}{\left(f^{\prime}\right)^{2}}=\frac{\gamma}{f^{\prime}}, \\
& \left(\frac{f^{\prime \prime}}{\left(f^{\prime}\right)^{2}}\right)^{\prime}=\frac{\gamma^{\prime}-\gamma^{2}}{f^{\prime}}, \quad \frac{\left(f^{\prime \prime}\right)^{2}}{f^{\prime}}=\gamma^{2} f^{\prime}, \quad\left(\frac{\left(f^{\prime \prime}\right)^{2}}{f^{\prime}}\right)^{\prime}=\left(2 \gamma \gamma^{\prime}+\gamma^{3}\right) f^{\prime}, \\
& \frac{f^{\prime \prime \prime}}{f^{\prime}}=\gamma^{\prime}+\gamma^{2}, \quad\left(\frac{f^{\prime \prime \prime}}{f^{\prime}}\right)^{\prime}=\gamma^{\prime \prime}+2 \gamma \gamma^{\prime}, \quad\left(\frac{1}{f^{\prime}}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}\right)^{\prime}=\frac{\gamma^{\prime \prime}-\gamma \gamma^{\prime}}{f^{\prime}} .
\end{aligned}
$$

Proof. Straightforward calculation.
Lemma 9. Let f, h be meromorphic functions such that f is nonconstant, and let A, B be two constants. Assume that

$$
\begin{equation*}
f^{3}+A f^{2}+B f=h\left[\left(f^{\prime}\right)^{3}+A\left(f^{\prime}\right)^{2}+B f^{\prime}\right] . \tag{2}
\end{equation*}
$$

Then

$$
\begin{align*}
6 f^{\prime}= & h^{\prime \prime \prime}\left(f^{\prime}+A+\frac{B}{f^{\prime}}\right)+h^{\prime \prime}\left(6 f^{\prime \prime}+3 A \frac{f^{\prime \prime}}{f^{\prime}}\right) \\
& +h^{\prime}\left[8 f^{\prime \prime \prime}+3 A\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}+B\left(\frac{f^{\prime \prime}}{\left(f^{\prime}\right)^{2}}\right)^{\prime}+\frac{3\left(f^{\prime \prime}\right)^{2}}{f^{\prime}}+2 A \frac{f^{\prime \prime \prime}}{f^{\prime}}+\frac{B}{f^{\prime}}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}\right] \\
& +h\left[3\left(\frac{\left(f^{\prime \prime}\right)^{2}}{f^{\prime}}\right)^{\prime}+3 f^{(4)}+2 A\left(\frac{f^{\prime \prime \prime}}{f^{\prime}}\right)^{\prime}+B\left(\frac{1}{f^{\prime}}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}\right)^{\prime}\right] . \tag{3}
\end{align*}
$$

Proof. Differentiating (2), we get

$$
\left(3 f^{2}+2 A f+B\right) f^{\prime}=h^{\prime}\left[\left(f^{\prime}\right)^{3}+A\left(f^{\prime}\right)^{2}+B f^{\prime}\right]+h\left[3\left(f^{\prime}\right)^{2}+2 A f^{\prime}+B\right] f^{\prime \prime}
$$

so that

$$
\begin{equation*}
3 f^{2}+2 A f+B=h^{\prime}\left[\left(f^{\prime}\right)^{2}+A f^{\prime}+B\right]+h\left(3 f^{\prime} f^{\prime \prime}+2 A f^{\prime \prime}+B \frac{f^{\prime \prime}}{f^{\prime}}\right) \tag{4}
\end{equation*}
$$

Differentiating (4), we obtain a new equality. Dividing both sides of the new equality by f^{\prime} shows that

$$
\begin{align*}
6 f+A= & h^{\prime \prime}\left(f^{\prime}+A+\frac{B}{f^{\prime}}\right)+h^{\prime}\left(5 f^{\prime \prime}+3 A \frac{f^{\prime \prime}}{f^{\prime}}+B \frac{f^{\prime \prime}}{\left(f^{\prime}\right)^{2}}\right) \\
& +h\left[3 f^{\prime \prime \prime}+\frac{3\left(f^{\prime \prime}\right)^{2}}{f^{\prime}}+2 A \frac{f^{\prime \prime \prime}}{f^{\prime}}+\frac{B}{f^{\prime}}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}\right] . \tag{5}
\end{align*}
$$

Finally, differentiating (5), we get (3).
Lemma 10. Let f, h be meromorphic functions such that f is nonconstant, and let A, B be constants such that (2) holds. Then we have

$$
\begin{equation*}
P+\frac{A Q}{f^{\prime}}+\frac{B R}{\left(f^{\prime}\right)^{2}}=0 \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& P=h^{\prime \prime \prime}+6 \gamma h^{\prime \prime}+\left(8 \gamma^{\prime}+11 \gamma^{2}\right) h^{\prime}+\left(3 \gamma^{\prime \prime}+15 \gamma \gamma^{\prime}+6 \gamma^{3}\right) h-6, \tag{7}\\
& Q=h^{\prime \prime \prime}+3 \gamma h^{\prime \prime}+\left(5 \gamma^{\prime}+2 \gamma^{2}\right) h^{\prime}+\left(2 \gamma^{\prime \prime}+4 \gamma \gamma^{\prime}\right) h, \tag{8}\\
& R=h^{\prime \prime \prime}+\left(2 \gamma^{\prime}-\gamma^{2}\right) h^{\prime}+\left(\gamma^{\prime \prime}-\gamma \gamma^{\prime}\right) h, \tag{9}
\end{align*}
$$

and γ is defined in (1).
Proof. By Lemma 9, we have (3). Substituting the formulae obtained in Lemma 8 into (3), we obtain (6).
Lemma 11. Let f be a nonconstant meromorphic function, and let A and $B \neq 0$ be constants. Assume that $f^{3}+$ $A f^{2}+B f$ and $\left(f^{\prime}\right)^{3}+A\left(f^{\prime}\right)^{2}+B f^{\prime}$ have the same zeros with the same multiplicity. Then $f^{\prime} \neq 0$, so that $1 / f^{\prime}$ is an entire function.

Proof. Since $f^{3}+A f^{2}+B f$ and $\left(f^{\prime}\right)^{3}+A\left(f^{\prime}\right)^{2}+B f^{\prime}$ have the same zeros with the same multiplicity, we see that

$$
\begin{equation*}
h=\frac{f^{3}+A f^{2}+B f}{\left(f^{\prime}\right)^{3}+A\left(f^{\prime}\right)^{2}+B f^{\prime}} \tag{10}
\end{equation*}
$$

is an entire function, and $h(z)=0$ if and only if $f(z)=\infty$. By (10), we have (2) and hence (4). It follows that $f^{\prime} \neq 0$. Indeed, at any zero of f^{\prime}, the left side of (4) is holomorphic while the right side fails to be holomorphic since $h(z)=0$ if and only if $f(z)=\infty$. The lemma is proved.

Lemma 12. Let f be a nonconstant rational function satisfying $f^{\prime} \neq 0$. Then $f(z)=a z+b$ or $f(z)=\frac{a}{(z+c)^{n}}+b$, where $a(\neq 0), b, c$ are constants and n is a positive integer.

Proof. If f is a polynomial, then clearly $f(z)=a z+b$ for some constants $a \neq 0$ and b.
If f is not a polynomial, it has at least one pole in \mathbb{C}; moreover, since $f^{\prime} \neq 0$, all zeros of $f-C$ are simple for any $C \in \mathbb{C}$. Thus

$$
f(z)=b+a \frac{\prod_{j=1}^{m}\left(z-w_{j}\right)}{\prod_{j=1}^{n}\left(z-z_{j}\right)^{p_{j}}},
$$

where $a \neq 0$ and b are constants, $m \geqslant 0$ and $n, p_{j} \geqslant 1$ are integers, and all z_{j} and w_{j} are distinct complex numbers. Furthermore, we may assume that $m \neq \sum_{j=1}^{n} p_{j}$, since if $m=\sum_{j=1}^{n} p_{j}$, we can consider the function $f(z)-a$ instead of $f(z)$.

Now direct calculation shows that $f^{\prime}(z)=a P(z) / \prod_{j=1}^{n}\left(z-z_{j}\right)^{p_{j}+1}$, where

$$
P(z)=\prod_{j=1}^{n}\left(z-z_{j}\right) \cdot \sum_{j=1}^{m} \prod_{l \neq j}\left(z-w_{l}\right)-\prod_{j=1}^{m}\left(z-w_{j}\right) \cdot \sum_{j=1}^{n} p_{j} \prod_{s \neq j}\left(z-z_{s}\right) .
$$

We claim that $n+m-1=0$. Suppose that $n+m-1 \neq 0$. Then since the coefficient of the leading term z^{n+m-1} of P is $m-\sum_{j=1}^{n} p_{j} \neq 0$, we see that P has at least one zero. However, $f^{\prime} \neq 0$, so each zero of P must be one of the z_{j}. Suppose $P\left(z_{1}\right)=0$. Then $\prod_{j=1}^{m}\left(z_{1}-w_{j}\right) \prod_{s \geqslant 2}\left(z_{1}-z_{s}\right)=0$. But this is impossible, as all z_{j} and w_{j} are distinct.

Thus $n+m-1=0$. Since $n \geqslant 1$ and $m \geqslant 0, m=0$ and $n=1$. The lemma is proved.

3. Proof of Theorem 2

Since f and f^{\prime} share the set $S=\{0, a, b\} \mathrm{CM}$, by Lemma $4, f$ is of order $\leqslant 2$. We also see that $f^{3}+A f^{2}+B f$ and $\left(f^{\prime}\right)^{3}+A\left(f^{\prime}\right)^{2}+B f^{\prime}$ have the same zeros with the same multiplicity, where $A=-(a+b)$ and $B=a b \neq 0$. Note $A^{2}-4 B \neq 0$. So by Lemma $11,1 / f^{\prime}$ is an entire function, and there exists an entire function h, whose zeros are the poles of f and have multiplicity 3 , such that

$$
\begin{equation*}
f^{3}+A f^{2}+B f=h\left[\left(f^{\prime}\right)^{3}+A\left(f^{\prime}\right)^{2}+B f^{\prime}\right] \tag{11}
\end{equation*}
$$

By Lemma 6,

$$
\begin{equation*}
m\left(r, \frac{1}{h}\right)=O(\log r) \tag{12}
\end{equation*}
$$

and by Lemma 10 ,

$$
\begin{equation*}
P+\frac{A Q}{f^{\prime}}+\frac{B R}{\left(f^{\prime}\right)^{2}}=0, \tag{13}
\end{equation*}
$$

where P, Q, R are defined in (7)-(9). We claim that P, Q and R are entire functions. Note that the possible poles of P, Q and R must be poles of f since $f^{\prime} \neq 0$. So we only need to show that P, Q and R are holomorphic at every pole of f.

Let z_{0} be a pole of f. Then elementary computation shows

$$
\begin{align*}
& P=O\left(z-z_{0}\right), \\
& Q=-\frac{(n-1)(2 n-1)}{n^{3}}+O\left(z-z_{0}\right), \tag{14}\\
& R=\frac{2(n-2)(n+2)}{n^{3}}+O\left(z-z_{0}\right), \tag{15}
\end{align*}
$$

as $z \rightarrow z_{0}$. Thus P, Q and R are entire functions.
Next we consider two cases.
Case 1 . We have $R \not \equiv 0$. Then by (13), we have

$$
\frac{P}{h}+\frac{A Q}{h} \cdot \frac{1}{f^{\prime}}+\frac{B R}{h}\left(\frac{1}{f^{\prime}}\right)^{2}=0
$$

Thus, by Lemma 7,

$$
m\left(r, \frac{1}{f^{\prime}}\right) \leqslant m\left(r, \frac{h}{R}\right)+m\left(r, \frac{Q}{h}\right)+m\left(r, \frac{P}{h}\right)+O(1) .
$$

By Lemma 5, we have $m(r, Q / h)=O(\log r)$ and $m(r, R / h)=O(\log r)$; and by Lemma 5 and (12), $m(r, P / h)=$ $O(\log r)$. Thus

$$
m\left(r, \frac{1}{f^{\prime}}\right) \leqslant m\left(r, \frac{h}{R}\right)+O(\log r)
$$

It follows that

$$
\begin{align*}
N\left(r, f^{\prime}\right) & \leqslant T\left(r, \frac{1}{f^{\prime}}\right)+O(1)=m\left(r, \frac{1}{f^{\prime}}\right)+O(1) \leqslant m\left(r, \frac{h}{R}\right)+O(\log r) \\
& \leqslant T\left(r, \frac{h}{R}\right)+O(\log r) \leqslant T\left(r, \frac{R}{h}\right)+O(\log r) \leqslant N\left(r, \frac{R}{h}\right)+O(\log r) \tag{16}
\end{align*}
$$

Let $N_{p}(r, f)$ for each $p \in \mathbb{N}$ be the counting function of the poles of f with multiplicity exact p, each pole counted only once. Then by (15), we have

$$
\begin{equation*}
N\left(r, \frac{R}{h}\right) \leqslant 3 N_{1}(r, f)+2 N_{2}(r, f)+3 \sum_{p \geqslant 3} N_{p}(r, f) . \tag{17}
\end{equation*}
$$

We also have

$$
\begin{equation*}
N\left(r, f^{\prime}\right)=\sum_{p \geqslant 1}(p+1) N_{p}(r, f) . \tag{18}
\end{equation*}
$$

By hypothesis, $N_{1}(r, f)=O(\log r)$. Then by (16)-(18)

$$
\begin{equation*}
N_{2}(r, f)+\sum_{p \geqslant 3}(p-2) N_{p}(r, f) \leqslant O(\log r) . \tag{19}
\end{equation*}
$$

It follows that f has finitely many poles. Thus by Lemmas 4 and 2 , the order of f satisfies $\rho(f) \leqslant 1$, and we can write

$$
\begin{equation*}
f^{\prime}(z)=\frac{e^{c z}}{M(z)}, \tag{20}
\end{equation*}
$$

where c is a constant and $M(z)(\not \equiv 0)$ is a polynomial.
Since all zeros of h are poles of f, h has finitely many zeros. Thus by (12), h is a polynomial.
If $c=0$, then f is a rational function. By Lemma 12, this case cannot occur.
Thus $c \neq 0$. We claim that

$$
\begin{equation*}
f(z)=R_{1}(z) e^{c z}+R_{2}(z) e^{-c z}+R_{3}(z) \tag{21}
\end{equation*}
$$

where $R_{j}(z)$ are rational functions. Indeed, by (20), $f^{\prime}=e^{c z} / M$. Thus $1 / f^{\prime}=M e^{-c z}, f^{\prime \prime}=M_{1} e^{c z}, f^{\prime \prime \prime}=M_{2} e^{c z}$, $f^{\prime \prime} / f^{\prime}=c-M^{\prime} / M, f^{\prime \prime \prime} / f^{\prime}=M M_{2}$ and $\left(f^{\prime \prime} / f^{\prime}\right)^{\prime}=-\left(M^{\prime} / M\right)^{\prime}$, where M_{1} and M_{2} are rational functions. Since h is a polynomial, (21) follows from (5), proving the claim.

By (20) and (21), we have

$$
\begin{equation*}
\left(R_{1}^{\prime}+c R_{1}-\frac{1}{M}\right) e^{2 c z}+R_{3}^{\prime} e^{c z}+R_{2}^{\prime}-c R_{2}=0 \tag{22}
\end{equation*}
$$

It follows that $R_{3}^{\prime}=0, R_{2}^{\prime}-c R_{2}=0$ and

$$
\begin{equation*}
R_{1}^{\prime}+c R_{1}-\frac{1}{M}=0 . \tag{23}
\end{equation*}
$$

Thus $R_{2}=0$ and R_{3} is a constant, say $R_{3}=d$. So

$$
\begin{equation*}
f(z)=R_{1}(z) e^{c z}+d \tag{24}
\end{equation*}
$$

Substituting (20) and (24) into (11), we get

$$
\begin{equation*}
\left(\left(R_{1}\right)^{3}-\frac{h}{M^{3}}\right)+\left([3 d+A]\left(R_{1}\right)^{2}-\frac{A h}{M^{2}}\right) e^{2 c z}+\left(\left[3 d^{2}+2 d A+B\right] R_{1}-\frac{B h}{M}\right) e^{c z}+d^{3}+A d^{2}+B d=0 \tag{25}
\end{equation*}
$$

It follows that

$$
\begin{align*}
& \left(R_{1}\right)^{3}-\frac{h}{M^{3}}=0, \tag{26}\\
& (3 d+A)\left(R_{1}\right)^{2}-\frac{A h}{M^{2}}=0, \tag{27}\\
& \left(3 d^{2}+2 d A+B\right) R_{1}-\frac{h B}{M}=0, \tag{28}\\
& d^{3}+A d^{2}+B d=0 . \tag{29}
\end{align*}
$$

A tedious calculation, which we defer to Appendix A , then shows that f assumes one of the following forms:
(i) $f(z)=C e^{z}$;
(ii) $f(z)=C e^{-z}-\frac{2}{3} A$ and either $A=0$ or $B=\frac{2}{9} A^{2}$;
(iii) $f(z)=C e^{\frac{-1 \pm i \sqrt{3}}{2} z}-\frac{3 \pm i \sqrt{3}}{6} A$ and $B=\frac{1}{3} A^{2}$,
where C is a nonzero constant. Since $A=-(a+b)$ and $B=a b$, this completes the proof of Theorem 2 in Case 1 .
Case 2 . We have $R \equiv 0$. Then by (15), all poles of f are double. Thus

$$
\begin{equation*}
f^{\prime}(z) h(z)=e^{\alpha(z)}, \tag{30}
\end{equation*}
$$

where α is a polynomial of degree $\leqslant 2$. Set

$$
\begin{equation*}
\beta=\frac{h^{\prime}}{h} . \tag{31}
\end{equation*}
$$

Then by (30) and (31),

$$
\begin{equation*}
\gamma=\frac{f^{\prime \prime}}{f^{\prime}}=\alpha^{\prime}-\beta . \tag{32}
\end{equation*}
$$

By (31), we also have

$$
\begin{equation*}
h^{\prime}=\beta h, \quad h^{\prime \prime}=\left(\beta^{\prime}+\beta^{2}\right) h, \quad h^{\prime \prime \prime}=\left(\beta^{\prime \prime}+3 \beta \beta^{\prime}+\beta^{3}\right) h . \tag{33}
\end{equation*}
$$

Substituting (32) and (33) into (9) and setting $R \equiv 0$, we obtain

$$
\begin{equation*}
\left(2 \beta^{2}+\beta^{\prime}\right) \alpha^{\prime}+\left[3 \alpha^{\prime \prime}-\left(\alpha^{\prime}\right)^{2}\right] \beta+\alpha^{\prime \prime \prime}-\alpha^{\prime} \alpha^{\prime \prime}=0 . \tag{34}
\end{equation*}
$$

Let z_{0} be a pole of f. Then some computation shows that near z_{0},

$$
\begin{equation*}
2 \beta^{2}+\beta^{\prime}=\frac{15}{\left(z-z_{0}\right)^{2}}\left[1+O\left(z-z_{0}\right)\right] . \tag{35}
\end{equation*}
$$

From (34) and (35), it follows that $\alpha^{\prime}\left(z_{0}\right)=0$. Thus if $\alpha^{\prime} \not \equiv 0$, then since α is a polynomial of degree at most 2 , f has at most one pole. Thus by Lemma $4, f$ is of order at most 1 and hence h has at most a single zero. Thus $N(r, 1 / h)=O(\log r)$; so by (12) and Nevanlinna's First Fundamental Theorem,

$$
T(r, h)=T\left(r, \frac{1}{h}\right)+O(1)=O(\log r) .
$$

Since h is entire, it must be a polynomial. An argument similar to that in Case 1 now shows that f must have one of the forms listed at the end of Case 1.

So we consider the case that $\alpha^{\prime} \equiv 0$, i.e., α constant. Set $e^{\alpha}=c$. Then by (30),

$$
\begin{equation*}
f(z)=\frac{c}{h(z)} . \tag{36}
\end{equation*}
$$

So $\gamma=-\beta$. In this case, (13) becomes

$$
\begin{equation*}
A\left(\beta \beta^{\prime}+\beta^{\prime \prime}\right) h^{2}-2 c\left(2 \beta \beta^{\prime}-\beta^{\prime \prime}\right) h+6 c=0 . \tag{37}
\end{equation*}
$$

Differentiating (37), we obtain

$$
\begin{equation*}
A\left[\left(\beta^{\prime}\right)^{2}+3 \beta \beta^{\prime \prime}+2 \beta^{2} \beta^{\prime}+\beta^{\prime \prime \prime}\right] h-2 c\left[2\left(\beta^{\prime}\right)^{2}+\beta \beta^{\prime \prime}+2 \beta^{2} \beta^{\prime}-\beta^{\prime \prime \prime}\right]=0 \tag{38}
\end{equation*}
$$

However, near a zero z_{0} of h, we have

$$
\begin{align*}
& \left(\beta^{\prime}\right)^{2}+3 \beta \beta^{\prime \prime}+2 \beta^{2} \beta^{\prime}+\beta^{\prime \prime \prime}=\frac{27}{\left(z-z_{0}\right)^{4}}\left[1+O\left(z-z_{0}\right)\right] \tag{39}\\
& 2\left(\beta^{\prime}\right)^{2}+\beta \beta^{\prime \prime}+2 \beta^{2} \beta^{\prime}-\beta^{\prime \prime \prime}=-\frac{9}{\left(z-z_{0}\right)^{4}}\left[1+O\left(z-z_{0}\right)\right] \tag{40}
\end{align*}
$$

It follows from (38)-(40) that $c=0$. But then $f^{\prime}=0$, so f is constant, which contradicts the assumptions of Theorem 2. Thus h does not vanish. By (12), $T(r, h)=T(r, 1 / h)+O(1)=m(r, 1 / h)+O(1)=O(\log r)$, so that h is a polynomial, and hence constant. Thus f is a linear function. Again, this contradicts the assumptions of Theorem 2.

This completes the proof.

Appendix A

Here we give the details of the derivation of (i)-(iii) from (23) and (26)-(29). By (26) and (27),

$$
\begin{equation*}
A R_{1} M=3 d+A . \tag{*}
\end{equation*}
$$

If $A=0$, then by $(*), d=0$. Thus by (28), $h=M R_{1}$; and hence $M^{2}\left(R_{1}\right)^{2}=1$ by (26). So $\frac{1}{M}= \pm R_{1}$. Thus by (23), we get $R_{1}^{\prime}+(c \pm 1) R_{1}=0$. Since R_{1} is a rational function, R_{1} is a constant and $c= \pm 1$. Set $R_{1}=C$. If $c=1$, we have $f(z)=C e^{z}$; and if $c=-1, f(z)=C e^{-z}$.

If $A \neq 0$, then by $(*), 3 d+A \neq 0$ and $\frac{1}{M}=\frac{A}{3 d+A} R_{1}$. Thus by (23),

$$
R_{1}^{\prime}+\left(c-\frac{A}{3 d+A}\right) R_{1}=0
$$

Since R_{1} is a rational function, R_{1} is a constant and $c=A /(3 d+A)$. Set $R_{1}=C$. Then $\frac{1}{M}=c C$ and $h=1 / c^{3}$ by (26).

From (27), we obtain

$$
\begin{equation*}
3 d+\left(1-\frac{1}{c}\right) A=0 \tag{**}
\end{equation*}
$$

and from (28),

$$
\begin{equation*}
3 d^{2}+2 A d+\left(1-\frac{1}{c^{2}}\right) B=0 . \tag{***}
\end{equation*}
$$

Case 1: $c=1$. Then by $(* *), d=0$. So $f(z)=C e^{z}$.
Case 2: $c=-1$. Then by $(* *), d=-\frac{2}{3} A$. So $f(z)=C e^{-z}-\frac{2}{3} A$. By (29), we have

$$
-\frac{8}{27} A^{3}+\frac{4}{9} A^{3}-\frac{2}{3} A B=0 .
$$

It follows that either $A=0$ or $B=\frac{2}{9} A^{2}$.
Case 3: $c \neq \pm 1$. Then by $(* *), A=\frac{3 c d}{1-c}$; and then by $(* * *)$,

$$
B=\frac{c^{2}}{1-c^{2}}\left(3 d^{2}+2 A d\right)=\frac{3 c^{2} d^{2}}{(1-c)^{2}}
$$

Since $B \neq 0$, we have $d \neq 0$. Thus by (29), we get

$$
d^{3}+\frac{3 c d^{3}}{1-c}+\frac{3 c^{2} d^{3}}{(1-c)^{2}}=0
$$

It follows that $1+c+c^{2}=0$. Thus $c=\frac{-1 \pm i \sqrt{3}}{2}$, and hence $d=\frac{1-c}{3 c} A=-\frac{3 \pm i \sqrt{3}}{6} A$ and $B=\frac{1}{3} A^{2}$. So

$$
f(z)=C e^{\frac{-1 \pm i \sqrt{3}}{2} z}-\frac{3 \pm i \sqrt{3}}{6} A .
$$

References

[1] J. Clunie, W.K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1966) $117-148$.
[2] M.L. Fang, L. Zalcman, Normal families and uniqueness theorems for entire functions, J. Math. Anal. Appl. 280 (2003) $273-283$.
[3] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[4] X.J. Liu, X.C. Pang, Shared values and normal function, Acta Math. Sin. (Chin. Ser.) 50 (2007) 409-412.
[5] X.C. Pang, L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000) 325-331.
[6] L. Yang, Value Distribution Theory, Springer, Berlin, 1993.
[7] L. Zalcman, Normal families: New perspectives, Bull. Amer. Math. Soc. (N.S.) 35 (1998) 215-230.

[^0]: * Corresponding author.

 E-mail addresses: jmwchang @pub.sz.jsinfo.net, jmchang@cslg.edu.cn (J. Chang), zalcman@macs.biu.ac.il (L. Zalcman).
 ${ }^{1}$ Research supported by the NNSF of China (Grants Nos. 10471065 and 10671093) and by the Fred and Barbara Kort Sino-Israel Post Doctoral Fellowship Program at Bar-Ilan University.
 2 Research supported by the German-Israeli Foundation for Scientific Research and Development, Grant G-809-234.6/2003.

