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Abstract

There exists a set S with three elements such that if a meromorphic function f, having at most finitely many simple poles, shares
the set S CM with its derivative f’, then f' = f.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

For f a nonconstant entire function in the plane domain D and § a set of complex numbers, let

Ep(S, )= JfzeD: fx)—a=0},
aes
where zero of multiplicity m is counted m times in the set Ep(S, f). When D = C, we simply write E(S, f).
In [2], Fang and Zalcman proved

Theorem A. There exists a finite set S containing 3 elements such that if f is a nonconstant entire function and

E(S, f)=E(S, '), then f = f'.

It is natural to ask whether Theorem A remains valid for meromorphic functions. In this paper, we prove the
following generalization of Theorem A.

Theorem 1. There exists a set S with three elements such that if f is a meromorphic function f with at most finitely
many simple poles and E(S, f) = E(S, f'), then f' = f.
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Theorem 1 follows from the following more precise result.

Theorem 2. Let f be a nonconstant meromorphic function with at most finitely many simple poles; and let S =
{0, a, b}, where a and b are distinct nonzero complex numbers. If f and its derivative f’ satisfy E(S, f) = E(S, f'),
then either

@) f@)=Ce*or
) f(x)=Ce*+ %(a + b) and either a +b =0 or 2a*> — 5ab + 2b* = 0; or

(i) f(x) = Ce™ 5 4 3084 4 b) and a® — ab+ b? =0,

()
2
where C is a nonzero constant.

Throughout this paper, we use the standard notions and notation of Nevanlinna theory [3,6]. In particular, the
spherical derivative of a meromorphic function f is given by

. I
b (Z)_71+|f(z)|2’

and the order of f is defined by

. logt T'(r, )
p =limsup ———.
r—00 logr

2. Auxiliary results

Lemma 1. Let f be a meromorphic function on C. If f has bounded spherical derivative on C, f is of order at
most 2. If, in addition, f is entire, then the order of f is at most 1.

Remark. The first part of the lemma follows from the formula for the Ahlfors—Shimizu characteristic

r

ne = [ (% [[irf@rax dy) i

0 lzI<t

and the fact that T (r, f) and Ty(r, f) differ by a bounded quantity (independent of r). The result for entire functions
is more subtle; it is a special case of Theorem 3 in [1].

It is not difficult to extend Lemma 1 as follows.

Lemma 2. Let f be a meromorphic function on C with finitely many poles. If f has bounded spherical derivative
on C, f is of order at most 1.

Recently, using Zalcman’s Lemma [5] (cf. [7]), Liu and Pang obtained the following normality criterion [4].

Lemma 3. (See [4].) Let F be a family of functions meromorphic on the unit disk A. If there exists a set S with three
elements such that EA(S, ) = EA(f’, S) for every f € F, then F is normal on A.

As an almost immediate consequence, we have

Lemma 4. Let | be a function meromorphic on C. If there exists a set S with three elements such that E(S, f) =
E(S, f)), then f*(z) is bounded on C.

Proof. Set F ={f,: w € C}, where f,,(z) = f(z+ w). By Lemma 3, F is normal on A; so by Marty’s Theorem,
fH(w)= f#0)< M forsome M >0andallw e C. O
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Lemma 5. (See [3, p. 56].) Let f be a meromorphic function of finite order on the plane C. Then

(k)
m<r, f7> = O(logr)

for each positive integer k.

Lemma 6. Let ' be a nonconstant meromorphic function of finite order, and let A, B be two constants satisfying
A?> —4B #0and B #0. Then

< (f)3+ A + Bf’
m\r,

T AT BS ) = O(logr).

Proof. Since A2 —4B 0 and B # 0, we have
PPHAL+Bf = [(f+O)(f +B),
where o and 8 are two distinct nonzero constants. Then

1 1
FP+AfP+Bf  f(f+a)(f+B)

1 1 1
:ﬂ—a(f<f+a) N f(f+ﬂ))
1 1 1 1 1 1

"W F @) fia BB-w fiB

Thus
(f)’ + AU +Bf' _ f? LA ( Gy ) LB
P+ Af?+Bf f(f+a)(f+B) B-a of f

fF(F e f(f+B)
— B . f/ + B . f/
af—a) [+ PB-a) [+B

Lemma 6 now follows from Lemma 5. 0O

Lemma 7. Let f be a nonconstant meromorphic function satisfying the equation
n n—1 —
aof" +a f +---+a, =0,

where aj are meromorphic functions with ag # 0. Then

1 n
m(r, f) < m(r, %) —i—Zm(r, aj)+ O(1).
j=1

Proof. By the equation,

1
fn z_a_o(alfn—l ++an)

So

nm(r, f)=m(r, fn) <m<r, al> —|—m(r,a1f”71 +"'+an)

0

< m(r, i) +m(r,ar f" 4 ano f) +m(r,a,) + O(1)

ao
1

< m(r, a—) +m@r, f)+m(r.arf" 2+ +an_1) + m@r,ay) + O(1)
0
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< m(r, i) +mr, f)+m(r.ar f" 4+ ana f) +m(r,an—1) + m(r,a,) + 0(1)

< m(r, a_10> + (n—Dm(r, f)+m(@r,a1)+---+m@r,a,) + O(1).

Hence

1 n
m(r, f) < m<r, a—o> +Y m(r.aj)+ 0.

j=1

Lemma 7 is proved. O

Lemma 8. Let f be a nonconstant meromorphic function. Set

f//

=—. 1
7 ()

f// _ )/f/, f/// _ ()// + )/2)f/, f(4) — (y// + 3)//)/ + )/3)f/,
)5 G e
’ f/’ f/ ’ (f/)2 f/’

" ! I ,2 1\2 IAYAN
f ):y 14 (f)=2 (f)>=(2)/}//+)/3)f/,

7o g v (f/

f_///: ’ 2 (f_///)/: L Y < (f//>/>/:7///_)/3//
Iz Yy Ty, Iz v o +2yy, 7\ 7 I

Proof. Straightforward calculation. O

Lemma 9. Let f, h be meromorphic functions such that f is nonconstant, and let A, B be two constants. Assume
that

P+AfP+Bf =h[(f) + A + Bf']. 2)
Then

6f h///(f +A+B> h//(6f//+3Af//>
I f

” f//)/ ( f// >/ 3(f//)2 f/// (f//)/]
|8 3A B
i [f i (f/ PG e P e\
Y s o(1(5))]
h|3 3 2A B . 3
+[<f, 3 ra( ) wn( (4 3
Proof. Differentiating (2), we get

(Bf2+2AfF +B)f =0 [(f) + A + Bf' ]+ h[3(f)* +2Af" + B]f",

so that

3f24+2Af +B=H0[(f)* +Af +B]+h(3f f”+2Af”+Bf/> (4)

Differentiating (4), we obtain a new equality. Dividing both sides of the new equality by f’ shows that
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6f+A=h//(f/+A+£>+h/<5f//+3Af_//+ f”)
f' I (f')?
w3 f" B(f”)'}
h|3 2A — 1| 5
+[f+f 2+ 57 )

Finally, differentiating (5), we get (3). O

Lemma 10. Let f, h be meromorphic functions such that f is nonconstant, and let A, B be constants such that (2)
holds. Then we have

AQ R
7 + e =0, (6)

where
P=h"+6yh" + (8y' +11y*)h + (3y" + 15y’ +6y°)h — 6, (7)
Q=h"+3yh" + (5y' + 20?1 + Qy" +4yy)h, (8)
R=h"+(2y' =y’ )h' + (" —yy"h, ©)

and y is defined in (1).
Proof. By Lemma 9, we have (3). Substituting the formulae obtained in Lemma 8 into (3), we obtain (6). O

Lemma 11. Let f be a nonconstant meromorphic function, and let A and B # 0 be constants. Assume that f3 +
Af? + Bf and (f')? + A(f")? + Bf' have the same zeros with the same multiplicity. Then f' 0, so that 1/’ is an
entire function.

Proof. Since f3 + Af%+ Bf and (f')> + A(f")? + Bf’ have the same zeros with the same multiplicity, we see that

P4+ Af*+Bf
3+ A+ B
is an entire function, and /(z) = 0 if and only if f(z) = co. By (10), we have (2) and hence (4). It follows that f/ # 0.

Indeed, at any zero of f’, the left side of (4) is holomorphic while the right side fails to be holomorphic since 4 (z) =
if and only if f(z) = co. The lemma is proved. O

(10)

Lemma 12. Let f be a nonconstant rational function satisfying f' #0. Then f(z) =az + b or f(z) = (z++)" + b,
where a (#0), b, ¢ are constants and n is a positive integer.

Proof. If f is a polynomial, then clearly f(z) =az + b for some constants a # 0 and b.
If f is not a polynomial, it has at least one pole in C; moreover, since f’ 0, all zeros of f — C are simple for any
C € C. Thus

[Tz —w))

Mo —zpP’

where a # 0 and b are constants, m > 0 and n, p j = 1 are integers, and all z j and w; are distinct complex numbers.
Furthermore, we may assume that m # Z?:l pj, since if m = Z;l':l pj, we can consider the function f(z) —a

instead of f(z).
Now direct calculation shows that f'(z) =aP(z)/ ]_[’}:1 (z — zj)”!"“, where

P(x) = ﬂ(z ~zj) Zl_[(z —wy) — ﬂ(z —w))- ij [Tc -z

j=11#£j J=1 s#j

f)=b+a
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We claim that n +m — 1 = 0. Suppose that n +m — 1 # 0. Then since the coefficient of the leading term z" "~ of
Pism— 27:1 pj # 0, we see that P has at least one zero. However, f’ # 0, so each zero of P must be one of the z.
Suppose P(z1) =0. Then ]_[;":1 (z1 —wj) HS>2(Z1 — z5) = 0. But this is impossible, as all z; and w; are distinct.

Thusn+m —1=0.Sincen > 1 and m > 0, m =0 and n = 1. The lemma is proved. O

3. Proof of Theorem 2

Since f and f’ share the set S = {0, a, b} CM, by Lemma 4, f is of order < 2. We also see that f> + Af> + Bf
and (f')® + A(f")?> + Bf’ have the same zeros with the same multiplicity, where A = —(a + b) and B = ab # 0.
Note A2 —4B #0. So by Lemma 11, 1/f is an entire function, and there exists an entire function &, whose zeros are
the poles of f and have multiplicity 3, such that

PHAf2+Bf =h[(f) + A(f)* + BSf']. (11)
By Lemma 6,
mQ%):O@yL (12)
and by Lemma 10,
pyi2  BR (13)
Ut

where P, Q, R are defined in (7)-(9). We claim that P, Q and R are entire functions. Note that the possible poles
of P, Q and R must be poles of f since f’# 0. So we only need to show that P, Q and R are holomorphic at every
pole of f.

Let zg be a pole of f. Then elementary computation shows

P = 0(z—z0),
0=-""22"0 1 o -2, (14)
R= 222D 4 o), (15)

as z — zo. Thus P, Q and R are entire functions.
Next we consider two cases.
Case 1. We have R 0. Then by (13), we have

P AQ 1 BR/1)?
h h f T h

Thus, by Lemma 7,

1Y) ¢ h Q P\ +oa
() <) e ) () 0w

By Lemma 5, we have m(r, Q/h) = O(logr) and m(r, R/h) = O(logr); and by Lemma 5 and (12), m(r, P/ h) =
O(logr). Thus

! < h o
m(r,?)\m(r,ﬁ>+ (logr).

It follows that

f/

N(r, f/) < T(r, %) +O0()=m|r, %) +0() < m<r, %) + O(logr)

’
h R R
< T(r, E) + O(logr) < T(r, E) 4+ O(logr) < N(r, Z) + O(logr). (16)
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Let Ny (r, f) for each p € N be the counting function of the poles of f with multiplicity exact p, each pole counted
only once. Then by (15), we have

R
N(r, 5) <3N ) +2Na(r ) +3 Y NG, f). (17)
p=>3
We also have
NG, Y=Y (p+ DN, /). (18)
p=l1
By hypothesis, Ni(r, f) = O(logr). Then by (16)—(18)
Na(r, )+ Y (p = 2N, (r, f) < O(logr). (19)
p=3

It follows that f has finitely many poles. Thus by Lemmas 4 and 2, the order of f satisfies p(f) < 1, and we can
write
e

f(z)=M(Z),

where c is a constant and M (z) (£ 0) is a polynomial.
Since all zeros of & are poles of f, h has finitely many zeros. Thus by (12), % is a polynomial.
If ¢ =0, then f is a rational function. By Lemma 12, this case cannot occur.
Thus ¢ # 0. We claim that

f(@) =R1(2)e” + Ra(z)e”“ + R3(2), (21
where R(z) are rational functions. Indeed, by (20), ' = e“*/M. Thus 1/f' = Me™ %, " = Mie%, f"" = Mpe®®,
f'1f =c—M /M, f"]f' = MM, and (f"/f") = —(M'/M)’, where M| and M, are rational functions. Since % is
a polynomial, (21) follows from (5), proving the claim.

By (20) and (21), we have

cZ

(20)

1 . .
(Ri +cRy — M)ez‘z + Rye““ + R, —cR, =0. (22)
It follows that R} =0, R}, — cR, =0 and
1
R} +cR; —Mzo. (23)

Thus R, =0 and Rj3 is a constant, say R3 =d. So

f(@) =Ri(x)e +d. (24)
Substituting (20) and (24) into (11), we get

h Ah Bh
((R1)3 —~ W) + <[3d + Al(R)?* — W)&CZ + <[3d2 +2dA+ B]R| — ﬁ>ecz +d*+ Ad* + Bd=0.

(25)
It follows that
h
(R1)* — =0 (26)
, Ah
Bd + A)(R1)” — o 0, 27)
hB

(3d* +2dA+ B)R, — =0 (28)
d>+ Ad> + Bd =0. (29)

A tedious calculation, which we defer to Appendix A, then shows that f assumes one of the following forms:
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(i) f@)=Ce%
(ii) f(z)=Ce™% —2Aandeither A=0o0r B =A%

(i) f(z)=Ce 32— 33 4 and B = 142,

where C is a nonzero constant. Since A = —(a + b) and B = ab, this completes the proof of Theorem 2 in Case 1.
Case 2. We have R = 0. Then by (15), all poles of f are double. Thus
f'@h(z) =@, (30)
where « is a polynomial of degree < 2. Set
p= " (3D
=
Then by (30) and (31),
f//
By (31), we also have
l’l,=,3h, h”:(ﬂ/-l-ﬂz)h, h’”:(ﬂ”—‘r3ﬂﬂ/+ﬂ3)h. (33)
Substituting (32) and (33) into (9) and setting R = 0, we obtain
(2132 + ,3/)0{, + [30[// _ (Ot/)z],B + " — oo =0. (34)
Let zg be a pole of f. Then some computation shows that near zg,
282+ = 1—5[1 + 0(z —z20)] (35)
(z —z0)?

From (34) and (35), it follows that a’(z9) = 0. Thus if o’ # 0, then since « is a polynomial of degree at most 2,
f has at most one pole. Thus by Lemma 4, f is of order at most 1 and hence / has at most a single zero. Thus
N(r,1/h) = O(logr); so by (12) and Nevanlinna’s First Fundamental Theorem,

T(r,h)= T(r, %) +0(1) = O(logr).

Since 4 is entire, it must be a polynomial. An argument similar to that in Case 1 now shows that f must have one of
the forms listed at the end of Case 1.
So we consider the case that &’ =0, i.e., @ constant. Set ¢* = ¢. Then by (30),

c
So y = —B. In this case, (13) becomes

ABB + BH)h* —2c¢(2BB' — B")h + 6¢ = 0. (37)
Differentiating (37), we obtain

A[(B)? +3" + 288+ B"h — 2c[2(8)* + pB" + 2878 — "] =0. (38)
However, near a zero zq of &, we have

N2 " 2 ! " 27
(B +3p8" +28°B + " = ———[1+ 0z — 20)], (39)
(z—z0)
9
28 + BB +28°8 — B =————[1+ 0z —20)] (40)
(z — 20)

It follows from (38)—(40) that ¢ = 0. But then f’ =0, so f is constant, which contradicts the assumptions of The-

orem 2. Thus & does not vanish. By (12), T(r,h) =T (r,1/h) + O(1) =m(r,1/h) + O(1) = O(logr), so that & is

a polynomial, and hence constant. Thus f is a linear function. Again, this contradicts the assumptions of Theorem 2.
This completes the proof.



1028 J. Chang, L. Zalcman / J. Math. Anal. Appl. 338 (2008) 1020-1028

Appendix A

Here we give the details of the derivation of (i)—(iii) from (23) and (26)—(29). By (26) and (27),
AR\M =3d+ A. ()

If A =0, then by (x), d = 0. Thus by (28), h = M Ry; and hence M?(R)> = 1 by (26). So % = £ R;. Thus by (23),
we get R’l + (¢ £ 1)R; = 0. Since R; is a rational function, R; is a constant and ¢ = 1. Set Ry =C.If c =1, we
have f(z) = Ce*;andif c = —1, f(z) = Ce .

If A #0, then by (x), 3d + A # 0 and - A__R|. Thus by (23),

= 3d+A
A
Ri+|c— R; =0.
3d+ A

Since R; is a rational function, R; is a constant and ¢ = A/(3d + A). Set R; = C. Then % =cC and h = 1/c3
by (26).
From (27), we obtain

1
3d+(1——)A=O ()
c
and from (28),
1
3d* 4+ 2Ad + (1— —2>B=0. (k%)
c

Case 1: ¢ = 1. Then by (xx), d = 0. So f(z) = Ce*.

Case 2: ¢ = —1. Then by (x*), d = —3A. So f(z) = Ce™* — 3A. By (29), we have
8 4 2
—— A+ -A - ZAB=0.
27 9 3

It follows that either A =0 or B = %Az.
Case 3: ¢ # 1. Then by (+*), A = 3% ; and then by (+x),

c? 3c2d?
1—c2 (1—-0)?%"
Since B # 0, we have d # 0. Thus by (29), we get
3cd? N 3c2d?
l—c (1-0?2

B= (3d* +24d) =

d* +
It follows that 1 + ¢ + ¢ = 0. Thus ¢ = =23 and hence d = 16 A = —3£¥3 4 and B = 1 42. So

f@)= Ce™ 5% _ 3 iéﬁ

A.
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