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Abstract

There exists a set S with three elements such that if a meromorphic function f , having at most finitely many simple poles, shares
the set S CM with its derivative f ′, then f ′ ≡ f .
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1. Introduction

For f a nonconstant entire function in the plane domain D and S a set of complex numbers, let

ED(S,f ) =
⋃
a∈S

{
z ∈ D: f (z) − a = 0

}
,

where zero of multiplicity m is counted m times in the set ED(S,f ). When D = C, we simply write E(S,f ).
In [2], Fang and Zalcman proved

Theorem A. There exists a finite set S containing 3 elements such that if f is a nonconstant entire function and
E(S,f ) = E(S,f ′), then f ≡ f ′.

It is natural to ask whether Theorem A remains valid for meromorphic functions. In this paper, we prove the
following generalization of Theorem A.

Theorem 1. There exists a set S with three elements such that if f is a meromorphic function f with at most finitely
many simple poles and E(S,f ) = E(S,f ′), then f ′ ≡ f .
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Theorem 1 follows from the following more precise result.

Theorem 2. Let f be a nonconstant meromorphic function with at most finitely many simple poles; and let S =
{0, a, b}, where a and b are distinct nonzero complex numbers. If f and its derivative f ′ satisfy E(S,f ) = E(S,f ′),
then either

(i) f (z) = Cez; or
(ii) f (z) = Ce−z + 2

3 (a + b) and either a + b = 0 or 2a2 − 5ab + 2b2 = 0; or

(iii) f (z) = Ce
−1±i

√
3

2 z + 3±i
√

3
6 (a + b) and a2 − ab + b2 = 0,

where C is a nonzero constant.

Throughout this paper, we use the standard notions and notation of Nevanlinna theory [3,6]. In particular, the
spherical derivative of a meromorphic function f is given by

f #(z) = |f ′(z)|
1 + |f (z)|2 ,

and the order of f is defined by

ρ = lim sup
r→∞

log+ T (r, f )

log r
.

2. Auxiliary results

Lemma 1. Let f be a meromorphic function on C. If f has bounded spherical derivative on C, f is of order at
most 2. If, in addition, f is entire, then the order of f is at most 1.

Remark. The first part of the lemma follows from the formula for the Ahlfors–Shimizu characteristic

T0(r, f ) =
r∫

0

1

t

(
1

π

∫ ∫
|z|�t

[
f #(z)

]2
dx dy

)
dt

and the fact that T (r, f ) and T0(r, f ) differ by a bounded quantity (independent of r). The result for entire functions
is more subtle; it is a special case of Theorem 3 in [1].

It is not difficult to extend Lemma 1 as follows.

Lemma 2. Let f be a meromorphic function on C with finitely many poles. If f has bounded spherical derivative
on C, f is of order at most 1.

Recently, using Zalcman’s Lemma [5] (cf. [7]), Liu and Pang obtained the following normality criterion [4].

Lemma 3. (See [4].) Let F be a family of functions meromorphic on the unit disk Δ. If there exists a set S with three
elements such that EΔ(S,f ) = EΔ(f ′, S) for every f ∈ F , then F is normal on Δ.

As an almost immediate consequence, we have

Lemma 4. Let f be a function meromorphic on C. If there exists a set S with three elements such that E(S,f ) =
E(S,f ′), then f #(z) is bounded on C.

Proof. Set F = {fw: w ∈ C}, where fw(z) = f (z + w). By Lemma 3, F is normal on Δ; so by Marty’s Theorem,
f #(w) = f #

w(0) � M for some M > 0 and all w ∈ C. �
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Lemma 5. (See [3, p. 56].) Let f be a meromorphic function of finite order on the plane C. Then

m

(
r,

f (k)

f

)
= O(log r)

for each positive integer k.

Lemma 6. Let f be a nonconstant meromorphic function of finite order, and let A,B be two constants satisfying
A2 − 4B 	= 0 and B 	= 0. Then

m

(
r,

(f ′)3 + A(f ′)2 + Bf ′

f 3 + Af 2 + Bf

)
= O(log r).

Proof. Since A2 − 4B 	= 0 and B 	= 0, we have

f 3 + Af 2 + Bf = f (f + α)(f + β),

where α and β are two distinct nonzero constants. Then

1

f 3 + Af 2 + Bf
= 1

f (f + α)(f + β)

= 1

β − α

(
1

f (f + α)
− 1

f (f + β)

)

= 1

αβ
· 1

f
− 1

α(β − α)
· 1

f + α
+ 1

β(β − α)
· 1

f + β
.

Thus

(f ′)3 + A(f ′)2 + Bf ′

f 3 + Af 2 + Bf
= (f ′)3

f (f + α)(f + β)
+ A

β − α

(
(f ′)2

f (f + α)
− (f ′)2

f (f + β)

)
+ B

αβ
· f ′

f

− B

α(β − α)
· f ′

f + α
+ B

β(β − α)
· f ′

f + β
.

Lemma 6 now follows from Lemma 5. �
Lemma 7. Let f be a nonconstant meromorphic function satisfying the equation

a0f
n + a1f

n−1 + · · · + an = 0,

where aj are meromorphic functions with a0 	≡ 0. Then

m(r,f ) � m

(
r,

1

a0

)
+

n∑
j=1

m(r, aj ) + O(1).

Proof. By the equation,

f n = − 1

a0

(
a1f

n−1 + · · · + an

)
.

So

nm(r,f ) = m
(
r, f n

)
� m

(
r,

1

a0

)
+ m

(
r, a1f

n−1 + · · · + an

)

� m

(
r,

1

a0

)
+ m

(
r, a1f

n−1 + · · · + an−1f
) + m(r, an) + O(1)

� m

(
r,

1
)

+ m(r,f ) + m
(
r, a1f

n−2 + · · · + an−1
) + m(r, an) + O(1)
a0
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� m

(
r,

1

a0

)
+ m(r,f ) + m

(
r, a1f

n−2 + · · · + an−2f
) + m(r, an−1) + m(r, an) + O(1)

� · · ·
� m

(
r,

1

a0

)
+ (n − 1)m(r, f ) + m(r, a1) + · · · + m(r, an) + O(1).

Hence

m(r,f ) � m

(
r,

1

a0

)
+

n∑
j=1

m(r, aj ) + O(1).

Lemma 7 is proved. �
Lemma 8. Let f be a nonconstant meromorphic function. Set

γ = f ′′

f ′ . (1)

Then

f ′′ = γf ′, f ′′′ = (
γ ′ + γ 2)f ′, f (4) = (

γ ′′ + 3γ ′γ + γ 3)f ′,(
1

f ′

)′
= − γ

f ′ ,
(

f ′′

f ′

)′
= γ ′, f ′′

(f ′)2
= γ

f ′ ,(
f ′′

(f ′)2

)′
= γ ′ − γ 2

f ′ ,
(f ′′)2

f ′ = γ 2f ′,
(

(f ′′)2

f ′

)′
= (

2γ γ ′ + γ 3)f ′,

f ′′′

f ′ = γ ′ + γ 2,

(
f ′′′

f ′

)′
= γ ′′ + 2γ γ ′,

(
1

f ′

(
f ′′

f ′

)′ )′
= γ ′′ − γ γ ′

f ′ .

Proof. Straightforward calculation. �
Lemma 9. Let f, h be meromorphic functions such that f is nonconstant, and let A, B be two constants. Assume
that

f 3 + Af 2 + Bf = h
[
(f ′)3 + A(f ′)2 + Bf ′]. (2)

Then

6f ′ = h′′′
(

f ′ + A + B

f ′

)
+ h′′

(
6f ′′ + 3A

f ′′

f ′

)

+ h′
[

8f ′′′ + 3A

(
f ′′

f ′

)′
+ B

(
f ′′

(f ′)2

)′
+ 3(f ′′)2

f ′ + 2A
f ′′′

f ′ + B

f ′

(
f ′′

f ′

)′]

+ h

[
3

(
(f ′′)2

f ′

)′
+ 3f (4) + 2A

(
f ′′′

f ′

)′
+ B

(
1

f ′

(
f ′′

f ′

)′ )′]
. (3)

Proof. Differentiating (2), we get(
3f 2 + 2Af + B

)
f ′ = h′[(f ′)3 + A(f ′)2 + Bf ′] + h

[
3(f ′)2 + 2Af ′ + B

]
f ′′,

so that

3f 2 + 2Af + B = h′[(f ′)2 + Af ′ + B
] + h

(
3f ′f ′′ + 2Af ′′ + B

f ′′

f ′

)
. (4)

Differentiating (4), we obtain a new equality. Dividing both sides of the new equality by f ′ shows that
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6f + A = h′′
(

f ′ + A + B

f ′

)
+ h′

(
5f ′′ + 3A

f ′′

f ′ + B
f ′′

(f ′)2

)

+ h

[
3f ′′′ + 3(f ′′)2

f ′ + 2A
f ′′′

f ′ + B

f ′

(
f ′′

f ′

)′]
. (5)

Finally, differentiating (5), we get (3). �
Lemma 10. Let f, h be meromorphic functions such that f is nonconstant, and let A, B be constants such that (2)

holds. Then we have

P + AQ

f ′ + BR

(f ′)2
= 0, (6)

where

P = h′′′ + 6γ h′′ + (
8γ ′ + 11γ 2)h′ + (

3γ ′′ + 15γ γ ′ + 6γ 3)h − 6, (7)

Q = h′′′ + 3γ h′′ + (
5γ ′ + 2γ 2)h′ + (2γ ′′ + 4γ γ ′)h, (8)

R = h′′′ + (
2γ ′ − γ 2)h′ + (γ ′′ − γ γ ′)h, (9)

and γ is defined in (1).

Proof. By Lemma 9, we have (3). Substituting the formulae obtained in Lemma 8 into (3), we obtain (6). �
Lemma 11. Let f be a nonconstant meromorphic function, and let A and B 	= 0 be constants. Assume that f 3 +
Af 2 + Bf and (f ′)3 + A(f ′)2 + Bf ′ have the same zeros with the same multiplicity. Then f ′ 	= 0, so that 1/f ′ is an
entire function.

Proof. Since f 3 + Af 2 + Bf and (f ′)3 + A(f ′)2 + Bf ′ have the same zeros with the same multiplicity, we see that

h = f 3 + Af 2 + Bf

(f ′)3 + A(f ′)2 + Bf ′ (10)

is an entire function, and h(z) = 0 if and only if f (z) = ∞. By (10), we have (2) and hence (4). It follows that f ′ 	= 0.
Indeed, at any zero of f ′, the left side of (4) is holomorphic while the right side fails to be holomorphic since h(z) = 0
if and only if f (z) = ∞. The lemma is proved. �
Lemma 12. Let f be a nonconstant rational function satisfying f ′ 	= 0. Then f (z) = az + b or f (z) = a

(z+c)n
+ b,

where a (	= 0), b, c are constants and n is a positive integer.

Proof. If f is a polynomial, then clearly f (z) = az + b for some constants a 	= 0 and b.
If f is not a polynomial, it has at least one pole in C; moreover, since f ′ 	= 0, all zeros of f −C are simple for any

C ∈ C. Thus

f (z) = b + a

∏m
j=1(z − wj)∏n

j=1(z − zj )
pj

,

where a 	= 0 and b are constants, m � 0 and n,pj � 1 are integers, and all zj and wj are distinct complex numbers.
Furthermore, we may assume that m 	= ∑n

j=1 pj , since if m = ∑n
j=1 pj , we can consider the function f (z) − a

instead of f (z).
Now direct calculation shows that f ′(z) = aP (z)/

∏n
j=1(z − zj )

pj +1, where

P(z) =
n∏

j=1

(z − zj ) ·
m∑

j=1

∏
l 	=j

(z − wl) −
m∏

j=1

(z − wj) ·
n∑

j=1

pj

∏
s 	=j

(z − zs).
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We claim that n+m−1 = 0. Suppose that n+m−1 	= 0. Then since the coefficient of the leading term zn+m−1 of
P is m−∑n

j=1 pj 	= 0, we see that P has at least one zero. However, f ′ 	= 0, so each zero of P must be one of the zj .
Suppose P(z1) = 0. Then

∏m
j=1(z1 − wj)

∏
s�2(z1 − zs) = 0. But this is impossible, as all zj and wj are distinct.

Thus n + m − 1 = 0. Since n � 1 and m � 0, m = 0 and n = 1. The lemma is proved. �
3. Proof of Theorem 2

Since f and f ′ share the set S = {0, a, b} CM, by Lemma 4, f is of order � 2. We also see that f 3 + Af 2 + Bf

and (f ′)3 + A(f ′)2 + Bf ′ have the same zeros with the same multiplicity, where A = −(a + b) and B = ab 	= 0.
Note A2 − 4B 	= 0. So by Lemma 11, 1/f ′ is an entire function, and there exists an entire function h, whose zeros are
the poles of f and have multiplicity 3, such that

f 3 + Af 2 + Bf = h
[
(f ′)3 + A(f ′)2 + Bf ′]. (11)

By Lemma 6,

m

(
r,

1

h

)
= O(log r), (12)

and by Lemma 10,

P + AQ

f ′ + BR

(f ′)2
= 0, (13)

where P , Q, R are defined in (7)–(9). We claim that P , Q and R are entire functions. Note that the possible poles
of P , Q and R must be poles of f since f ′ 	= 0. So we only need to show that P , Q and R are holomorphic at every
pole of f .

Let z0 be a pole of f . Then elementary computation shows

P = O(z − z0),

Q = − (n − 1)(2n − 1)

n3
+ O(z − z0), (14)

R = 2(n − 2)(n + 2)

n3
+ O(z − z0), (15)

as z → z0. Thus P , Q and R are entire functions.
Next we consider two cases.
Case 1. We have R 	≡ 0. Then by (13), we have

P

h
+ AQ

h
· 1

f ′ + BR

h

(
1

f ′

)2

= 0.

Thus, by Lemma 7,

m

(
r,

1

f ′

)
� m

(
r,

h

R

)
+ m

(
r,

Q

h

)
+ m

(
r,

P

h

)
+ O(1).

By Lemma 5, we have m(r,Q/h) = O(log r) and m(r,R/h) = O(log r); and by Lemma 5 and (12), m(r,P/h) =
O(log r). Thus

m

(
r,

1

f ′

)
� m

(
r,

h

R

)
+ O(log r).

It follows that

N(r,f ′) � T

(
r,

1

f ′

)
+ O(1) = m

(
r,

1

f ′

)
+ O(1) � m

(
r,

h

R

)
+ O(log r)

� T

(
r,

h
)

+ O(log r) � T

(
r,

R
)

+ O(log r) � N

(
r,

R
)

+ O(log r). (16)

R h h
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Let Np(r, f ) for each p ∈ N be the counting function of the poles of f with multiplicity exact p, each pole counted
only once. Then by (15), we have

N

(
r,

R

h

)
� 3N1(r, f ) + 2N2(r, f ) + 3

∑
p�3

Np(r, f ). (17)

We also have

N(r,f ′) =
∑
p�1

(p + 1)Np(r, f ). (18)

By hypothesis, N1(r, f ) = O(log r). Then by (16)–(18)

N2(r, f ) +
∑
p�3

(p − 2)Np(r, f ) � O(log r). (19)

It follows that f has finitely many poles. Thus by Lemmas 4 and 2, the order of f satisfies ρ(f ) � 1, and we can
write

f ′(z) = ecz

M(z)
, (20)

where c is a constant and M(z) (	≡ 0) is a polynomial.
Since all zeros of h are poles of f , h has finitely many zeros. Thus by (12), h is a polynomial.
If c = 0, then f is a rational function. By Lemma 12, this case cannot occur.
Thus c 	= 0. We claim that

f (z) = R1(z)e
cz + R2(z)e

−cz + R3(z), (21)

where Rj (z) are rational functions. Indeed, by (20), f ′ = ecz/M . Thus 1/f ′ = Me−cz, f ′′ = M1e
cz, f ′′′ = M2e

cz,
f ′′/f ′ = c − M ′/M , f ′′′/f ′ = MM2 and (f ′′/f ′)′ = −(M ′/M)′, where M1 and M2 are rational functions. Since h is
a polynomial, (21) follows from (5), proving the claim.

By (20) and (21), we have(
R′

1 + cR1 − 1

M

)
e2cz + R′

3e
cz + R′

2 − cR2 = 0. (22)

It follows that R′
3 = 0, R′

2 − cR2 = 0 and

R′
1 + cR1 − 1

M
= 0. (23)

Thus R2 = 0 and R3 is a constant, say R3 = d . So

f (z) = R1(z)e
cz + d. (24)

Substituting (20) and (24) into (11), we get(
(R1)

3 − h

M3

)
+

(
[3d + A](R1)

2 − Ah

M2

)
e2cz +

([
3d2 + 2dA + B

]
R1 − Bh

M

)
ecz + d3 + Ad2 + Bd = 0.

(25)

It follows that

(R1)
3 − h

M3
= 0, (26)

(3d + A)(R1)
2 − Ah

M2
= 0, (27)

(
3d2 + 2dA + B

)
R1 − hB

M
= 0, (28)

d3 + Ad2 + Bd = 0. (29)

A tedious calculation, which we defer to Appendix A, then shows that f assumes one of the following forms:
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(i) f (z) = Cez;
(ii) f (z) = Ce−z − 2

3A and either A = 0 or B = 2
9A2;

(iii) f (z) = Ce
−1±i

√
3

2 z − 3±i
√

3
6 A and B = 1

3A2,

where C is a nonzero constant. Since A = −(a + b) and B = ab, this completes the proof of Theorem 2 in Case 1.
Case 2. We have R ≡ 0. Then by (15), all poles of f are double. Thus

f ′(z)h(z) = eα(z), (30)

where α is a polynomial of degree � 2. Set

β = h′

h
. (31)

Then by (30) and (31),

γ = f ′′

f ′ = α′ − β. (32)

By (31), we also have

h′ = βh, h′′ = (
β ′ + β2)h, h′′′ = (

β ′′ + 3ββ ′ + β3)h. (33)

Substituting (32) and (33) into (9) and setting R ≡ 0, we obtain(
2β2 + β ′)α′ + [

3α′′ − (α′)2]β + α′′′ − α′α′′ = 0. (34)

Let z0 be a pole of f . Then some computation shows that near z0,

2β2 + β ′ = 15

(z − z0)2

[
1 + O(z − z0)

]
. (35)

From (34) and (35), it follows that α′(z0) = 0. Thus if α′ 	≡ 0, then since α is a polynomial of degree at most 2,
f has at most one pole. Thus by Lemma 4, f is of order at most 1 and hence h has at most a single zero. Thus
N(r,1/h) = O(log r); so by (12) and Nevanlinna’s First Fundamental Theorem,

T (r,h) = T

(
r,

1

h

)
+ O(1) = O(log r).

Since h is entire, it must be a polynomial. An argument similar to that in Case 1 now shows that f must have one of
the forms listed at the end of Case 1.

So we consider the case that α′ ≡ 0, i.e., α constant. Set eα = c. Then by (30),

f (z) = c

h(z)
. (36)

So γ = −β . In this case, (13) becomes

A(ββ ′ + β ′′)h2 − 2c(2ββ ′ − β ′′)h + 6c = 0. (37)

Differentiating (37), we obtain

A
[
(β ′)2 + 3ββ ′′ + 2β2β ′ + β ′′′]h − 2c

[
2(β ′)2 + ββ ′′ + 2β2β ′ − β ′′′] = 0. (38)

However, near a zero z0 of h, we have

(β ′)2 + 3ββ ′′ + 2β2β ′ + β ′′′ = 27

(z − z0)4

[
1 + O(z − z0)

]
, (39)

2(β ′)2 + ββ ′′ + 2β2β ′ − β ′′′ = − 9

(z − z0)4

[
1 + O(z − z0)

]
. (40)

It follows from (38)–(40) that c = 0. But then f ′ = 0, so f is constant, which contradicts the assumptions of The-
orem 2. Thus h does not vanish. By (12), T (r,h) = T (r,1/h) + O(1) = m(r,1/h) + O(1) = O(log r), so that h is
a polynomial, and hence constant. Thus f is a linear function. Again, this contradicts the assumptions of Theorem 2.

This completes the proof.
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Appendix A

Here we give the details of the derivation of (i)–(iii) from (23) and (26)–(29). By (26) and (27),

AR1M = 3d + A. (∗)

If A = 0, then by (∗), d = 0. Thus by (28), h = MR1; and hence M2(R1)
2 = 1 by (26). So 1

M
= ±R1. Thus by (23),

we get R′
1 + (c ± 1)R1 = 0. Since R1 is a rational function, R1 is a constant and c = ±1. Set R1 = C. If c = 1, we

have f (z) = Cez; and if c = −1, f (z) = Ce−z.
If A 	= 0, then by (∗), 3d + A 	= 0 and 1

M
= A

3d+A
R1. Thus by (23),

R′
1 +

(
c − A

3d + A

)
R1 = 0.

Since R1 is a rational function, R1 is a constant and c = A/(3d + A). Set R1 = C. Then 1
M

= cC and h = 1/c3

by (26).
From (27), we obtain

3d +
(

1 − 1

c

)
A = 0 (∗∗)

and from (28),

3d2 + 2Ad +
(

1 − 1

c2

)
B = 0. (∗∗∗)

Case 1: c = 1. Then by (∗∗), d = 0. So f (z) = Cez.
Case 2: c = −1. Then by (∗∗), d = − 2

3A. So f (z) = Ce−z − 2
3A. By (29), we have

− 8

27
A3 + 4

9
A3 − 2

3
AB = 0.

It follows that either A = 0 or B = 2
9A2.

Case 3: c 	= ±1. Then by (∗∗), A = 3cd
1−c

; and then by (∗∗∗),

B = c2

1 − c2

(
3d2 + 2Ad

) = 3c2d2

(1 − c)2
.

Since B 	= 0, we have d 	= 0. Thus by (29), we get

d3 + 3cd3

1 − c
+ 3c2d3

(1 − c)2
= 0.

It follows that 1 + c + c2 = 0. Thus c = −1±i
√

3
2 , and hence d = 1−c

3c
A = − 3±i

√
3

6 A and B = 1
3A2. So

f (z) = Ce
−1±i

√
3

2 z − 3 ± i
√

3

6
A.
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