Meromorphic functions that share a set with their derivatives

Jianming Changa,1, Lawrence Zalcmanb,*,2

a Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, PR China
b Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel

Received 26 April 2007
Available online 8 June 2007
Submitted by Steven G. Krantz

Abstract
There exists a set S with three elements such that if a meromorphic function f, having at most finitely many simple poles, shares the set S CM with its derivative f', then $f' \equiv f$.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Meromorphic functions; Shared values

1. Introduction

For f a nonconstant entire function in the plane domain D and S a set of complex numbers, let

$$E_D(S, f) = \bigcup_{a \in S} \{ z \in D : f(z) - a = 0 \},$$

where zero of multiplicity m is counted m times in the set $E_D(S, f)$. When $D = \mathbb{C}$, we simply write $E(S, f)$.

In [2], Fang and Zalcman proved

Theorem A. There exists a finite set S containing 3 elements such that if f is a nonconstant entire function and $E(S, f) = E(S, f')$, then $f \equiv f'$.

It is natural to ask whether Theorem A remains valid for meromorphic functions. In this paper, we prove the following generalization of Theorem A.

Theorem 1. There exists a set S with three elements such that if f is a meromorphic function f with at most finitely many simple poles and $E(S, f) = E(S, f')$, then $f' \equiv f$.

* Corresponding author.
E-mail addresses: jmwchang@pub.sz.jsinfo.net, jmchang@cslg.edu.cn (J. Chang), zalcman@macs.biu.ac.il (L. Zalcman).
1 Research supported by the NNSF of China (Grants Nos. 10471065 and 10671093) and by the Fred and Barbara Kort Sino-Israel Post Doctoral Fellowship Program at Bar-Ilan University.
2 Research supported by the German–Israeli Foundation for Scientific Research and Development, Grant G-809-234.6/2003.

0022-247X/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2007.05.079
Theorem 1 follows from the following more precise result.

Theorem 2. Let \(f \) be a nonconstant meromorphic function with at most finitely many simple poles; and let \(S = \{0, a, b\} \), where \(a \) and \(b \) are distinct nonzero complex numbers. If \(f \) and its derivative \(f' \) satisfy \(E(S, f) = E(S, f') \), then either

(i) \(f(z) = C e^{z} \); or
(ii) \(f(z) = C e^{-z} + \frac{z}{2}(a + b) \) and either \(a + b = 0 \) or \(2a^2 - 5ab + 2b^2 = 0 \); or
(iii) \(f(z) = C e^{\frac{-z+\sqrt{3}i}{2}} + \frac{3+i\sqrt{3}}{6}(a + b) \) and \(a^2 - ab + b^2 = 0 \).

where \(C \) is a nonzero constant.

Throughout this paper, we use the standard notions and notation of Nevanlinna theory [3,6]. In particular, the spherical derivative of a meromorphic function \(f \) is given by

\[
 f^\#(z) = \frac{|f'(z)|}{1 + |f(z)|^2},
\]
and the order of \(f \) is defined by

\[
 \rho = \limsup_{r \to \infty} \frac{\log^+ T(r, f)}{\log r}.
\]

2. Auxiliary results

Lemma 1. Let \(f \) be a meromorphic function on \(\mathbb{C} \). If \(f \) has bounded spherical derivative on \(\mathbb{C} \), \(f \) is of order at most 2. If, in addition, \(f \) is entire, then the order of \(f \) is at most 1.

Remark. The first part of the lemma follows from the formula for the Ahlfors–Shimizu characteristic

\[
 T_0(r, f) = \int_0^r \frac{1}{t} \left(\frac{1}{\pi} \int_{|z| \leq t} \left[f^\#(z) \right]^2 \, dx \, dy \right) \, dt
\]
and the fact that \(T(r, f) \) and \(T_0(r, f) \) differ by a bounded quantity (independent of \(r \)). The result for entire functions is more subtle; it is a special case of Theorem 3 in [1].

It is not difficult to extend Lemma 1 as follows.

Lemma 2. Let \(f \) be a meromorphic function on \(\mathbb{C} \) with finitely many poles. If \(f \) has bounded spherical derivative on \(\mathbb{C} \), \(f \) is of order at most 1.

Recently, using Zalcman’s Lemma [5] (cf. [7]), Liu and Pang obtained the following normality criterion [4].

Lemma 3. (See [4].) Let \(\mathcal{F} \) be a family of functions meromorphic on the unit disk \(\Delta \). If there exists a set \(S \) with three elements such that \(E_\Delta(S, f) = E_\Delta(f', S) \) for every \(f \in \mathcal{F} \), then \(\mathcal{F} \) is normal on \(\Delta \).

As an almost immediate consequence, we have

Lemma 4. Let \(f \) be a function meromorphic on \(\mathbb{C} \). If there exists a set \(S \) with three elements such that \(E(S, f) = E(S, f') \), then \(f^\#(z) \) is bounded on \(\mathbb{C} \).

Proof. Set \(\mathcal{F} = \{ f_w : w \in \mathbb{C} \} \), where \(f_w(z) = f(z + w) \). By Lemma 3, \(\mathcal{F} \) is normal on \(\Delta \); so by Marty’s Theorem, \(f^\#(w) = f^\#(0) \) is bounded for some \(M > 0 \) and all \(w \in \mathbb{C} \). \(\square \)
Lemma 5. (See [3, p. 56].) Let f be a meromorphic function of finite order on the plane \mathbb{C}. Then

$$m(r, \frac{f^{(k)}}{f}) = O(\log r)$$

for each positive integer k.

Lemma 6. Let f be a nonconstant meromorphic function of finite order, and let A, B be two constants satisfying $A^2 - 4B \neq 0$ and $B \neq 0$. Then

$$m(r, \frac{(f')^3 + A(f')^2 + Bf'}{f^3 + Af^2 + Bf}) = O(\log r).$$

Proof. Since $A^2 - 4B \neq 0$ and $B \neq 0$, we have

$$f^3 + Af^2 + Bf = f(f + \alpha)(f + \beta),$$

where α and β are two distinct nonzero constants. Then

$$\frac{1}{f^3 + Af^2 + Bf} = \frac{1}{f(f + \alpha)(f + \beta)} = \frac{1}{\beta - \alpha} \left(\frac{1}{f + \alpha} - \frac{1}{f + \beta} \right) = \frac{1}{\alpha\beta} \cdot \frac{1}{f} - \frac{1}{\alpha(\beta - \alpha)} \cdot \frac{1}{f + \alpha} + \frac{1}{\beta(\beta - \alpha)} \cdot \frac{1}{f + \beta}.$$

Thus

$$\frac{(f')^3 + A(f')^2 + Bf'}{f^3 + Af^2 + Bf} = \frac{(f')^3}{f(f + \alpha)(f + \beta)} + \frac{A}{\beta - \alpha} \left(\frac{(f')^2}{f(f + \alpha)} - \frac{(f')^2}{f(f + \beta)} \right) + \frac{B}{\alpha\beta} \cdot \frac{f'}{f} - \frac{B}{\alpha(\beta - \alpha)} \cdot \frac{f'}{f + \alpha} + \frac{B}{\beta(\beta - \alpha)} \cdot \frac{f'}{f + \beta}.$$

Lemma 6 now follows from Lemma 5. □

Lemma 7. Let f be a nonconstant meromorphic function satisfying the equation

$$a_0 f^n + a_1 f^{n-1} + \cdots + a_n = 0,$$

where a_j are meromorphic functions with $a_0 \neq 0$. Then

$$m(r, f) \lesssim m\left(r, \frac{1}{a_0}\right) + \sum_{j=1}^{n} m(r, a_j) + O(1).$$

Proof. By the equation,

$$f^n = -\frac{1}{a_0} \left(a_1 f^{n-1} + \cdots + a_n\right).$$

So

$$nm(r, f) = m(r, f^n) \lesssim m\left(r, \frac{1}{a_0}\right) + m(r, a_1 f^{n-1} + \cdots + a_n) + m(r, a_n) + O(1)$$

$$\lesssim m\left(r, \frac{1}{a_0}\right) + m(r, f) + m\left(r, a_1 f^{n-2} + \cdots + a_{n-1}\right) + m(r, a_n) + O(1)$$
Lemma 8. Let \(f \) be a nonconstant meromorphic function. Set
\[
\gamma = \frac{f'''}{f'}.
\] (1)

Then
\[
\begin{align*}
f'' &= \gamma f', & f''' &= (\gamma' + \gamma^2) f', & f^{(4)} &= (\gamma'' + 3\gamma'\gamma + \gamma^3) f', \\
\left(\frac{1}{f'}\right)' &= -\frac{\gamma}{f'}, & \left(\frac{f''}{f'}\right)' &= \gamma', & \frac{f'''}{f'} = \frac{\gamma}{f'}, \\
\left(\frac{f''}{(f')^2}\right)' &= \frac{\gamma' - \gamma^2}{f'}, & (f''')^2 &= \gamma^2 f', & \left(\frac{(f'')^2}{f'}\right)' &= (2\gamma\gamma' + \gamma^3) f', \\
\frac{f''''}{f'} &= \gamma' + \gamma^2, & \left(\frac{f''''}{f'}\right)' &= \gamma'' + 2\gamma\gamma', & \frac{1}{f'} \left(\frac{f''''}{f'}\right)' &= \frac{\gamma'' - \gamma\gamma'}{f'}.
\end{align*}
\]

Proof. Straightforward calculation. □

Lemma 9. Let \(f, h \) be meromorphic functions such that \(f \) is nonconstant, and let \(A, B \) be two constants. Assume that
\[
f^3 + Af^2 + Bf = h[(f')^3 + A(f')^2 + Bf'].
\] (2)

Then
\[
6f' = h'' \left(f' + A + \frac{B}{f'} \right) + h'' \left(6f'' + 3A \frac{f'''}{f'} \right)
\]
\[
+ h' \left[8f''' + 3A \left(\frac{f'''}{f'} \right)' + B \left(\frac{f'''}{(f')^2} \right) + \frac{3(f'')^2}{f'} + 2A \frac{f'''}{f'} + \frac{B}{f'} \left(\frac{f'''}{f'} \right)' \right]
\]
\[
+ h \left[3 \left(\frac{(f'')^2}{f'} \right)' + 3 f^{(4)} + 2A \left(\frac{f''''}{f'} \right)' + B \left(\frac{1}{f'} \left(\frac{f''''}{f'} \right)' \right) \right].
\] (3)

Proof. Differentiating (2), we get
\[
(3f'^2 + 2Af + B) f' = h[(f')^3 + A(f')^2 + Bf'] + h[3(f')^2 + 2Af' + B] f''.
\]
so that
\[
3f'^2 + 2Af + B = h[(f')^2 + Af' + B] + h \left(3 f' f'' + 2Af'' + B \frac{f'''}{f'} \right).
\] (4)

Differentiating (4), we obtain a new equality. Dividing both sides of the new equality by \(f' \) shows that
Lemma 12. Let f, h be meromorphic functions such that f is nonconstant, and let A, B be constants such that (2) holds. Then we have

\[6f + A = h'' \left(f' + A + \frac{B}{f'} \right) + h' \left(5f'' + 3A \frac{f'''}{f'} + B \frac{f'''}{(f')^2} \right) + h \left[3f''' + 3(f'')^2 + 2A \frac{f'''}{f'} + B \left(\frac{f'''}{(f')^2} \right)' \right]. \]

Finally, differentiating (5), we get (3). \square

Lemma 10. Let f, h be meromorphic functions such that f is nonconstant, and let A, B be constants such that (2) holds. Then we have

\[P + \frac{AQ}{f'} + \frac{BR}{(f')^2} = 0, \]

where

\[P = h''' + 6 \gamma h'' + (8 \gamma' + 11 \gamma^2)h' + (3 \gamma'' + 15 \gamma \gamma' + 6 \gamma^3)h - 6, \]
\[Q = h''' + 3 \gamma h'' + (5 \gamma' + 2 \gamma^2)h' + (2 \gamma'' + 4 \gamma \gamma')h, \]
\[R = h''' + (2 \gamma' - \gamma^2)h' + (\gamma'' - \gamma \gamma')h, \]

and γ is defined in (1).

Proof. By Lemma 9, we have (3). Substituting the formulae obtained in Lemma 8 into (3), we obtain (6). \square

Lemma 11. Let f be a nonconstant meromorphic function, and let A and $B \neq 0$ be constants. Assume that $f^3 + Af^2 + Bf$ and $(f')^3 + A(f')^2 + Bf'$ have the same zeros with the same multiplicity. Then $f' \neq 0$, so that $1/f'$ is an entire function.

Proof. Since $f^3 + Af^2 + Bf$ and $(f')^3 + A(f')^2 + Bf'$ have the same zeros with the same multiplicity, we see that

\[h = \frac{f^3 + Af^2 + Bf}{(f')^3 + A(f')^2 + Bf'} \]

is an entire function, and $h(z) = 0$ if and only if $f(z) = \infty$. By (10), we have (2) and hence (4). It follows that $f' \neq 0$. Indeed, at any zero of f', the left side of (4) is holomorphic while the right side fails to be holomorphic since $h(z) = 0$ if and only if $f(z) = \infty$. The lemma is proved. \square

Lemma 12. Let f be a nonconstant rational function satisfying $f' \neq 0$. Then $f(z) = az + b$ or $f(z) = \frac{a}{(z+c)^n} + b$, where $a (\neq 0)$, b, c are constants and n is a positive integer.

Proof. If f is a polynomial, then clearly $f(z) = az + b$ for some constants $a \neq 0$ and b.

If f is not a polynomial, it has at least one pole in \mathbb{C}; moreover, since $f' \neq 0$, all zeros of $f - C$ are simple for any $C \in \mathbb{C}$. Thus

\[f(z) = b + a \prod_{j=1}^{m} \frac{1}{(z - w_j)^{p_j}}, \]

where $a \neq 0$ and b are constants, $m \geq 0$ and n, $p_j > 1$ are integers, and all z_j and w_j are distinct complex numbers. Furthermore, we may assume that $m \neq \sum_{j=1}^{n} p_j$, since if $m = \sum_{j=1}^{n} p_j$, we can consider the function $f(z) - a$ instead of $f(z)$.

Now direct calculation shows that $f'(z) = a P(z)/ \prod_{j=1}^{n} (z - z_j)^{p_j + 1}$, where

\[P(z) = \prod_{j=1}^{n} (z - z_j) \cdot \sum_{j=1}^{m} (z - w_j) - \prod_{j=1}^{m} (z - w_j) \cdot \sum_{j=1}^{n} p_j \prod_{s \neq j} (z - z_s). \]
We claim that \(n + m - 1 = 0 \). Suppose that \(n + m - 1 \neq 0 \). Then since the coefficient of the leading term \(z^{n+m-1} \) of \(P = m - \sum_{j=1}^{n} p_j \neq 0 \), we see that \(P \) has at least one zero. However, \(f' \neq 0 \), so each zero of \(P \) must be one of the \(z_j \).

Suppose \(P(z_1) = 0 \). Then \(\prod_{j=1}^{n} (z_1 - w_j) \prod_{k \geq 2} (z_1 - z_k) = 0 \). But this is impossible, as all \(z_j \) and \(w_j \) are distinct.

Thus \(n + m - 1 = 0 \). Since \(n \geq 1 \) and \(m \geq 0 \), \(m = 0 \) and \(n = 1 \). The lemma is proved. \(\Box \)

3. Proof of Theorem 2

Since \(f \) and \(f' \) share the set \(S = \{0, a, b\} \) CM, by Lemma 4, \(f \) is of order \(\leq 2 \). We also see that \(f^3 + Af^2 + Bf \) and \((f')^3 + A(f')^2 + Bf' \) have the same zeros with the same multiplicity, where \(A = -(a + b) \) and \(B = ab \neq 0 \). Note \(A^2 - 4B \neq 0 \). So by Lemma 11, \(1/f' \) is an entire function, and there exists an entire function \(h \), whose zeros are the poles of \(f \) and have multiplicity 3, such that

\[
f^3 + Af^2 + Bf = h[(f')^3 + A(f')^2 + Bf'].
\]

By Lemma 6,

\[
m\left(r, \frac{1}{h} \right) = O(\log r),
\]

and by Lemma 10,

\[
P + \frac{AQ}{f'} + \frac{BR}{(f')^2} = 0,
\]

where \(P, Q, R \) are defined in (7)–(9). We claim that \(P, Q \) and \(R \) are entire functions. Note that the possible poles of \(P, Q \) and \(R \) must be poles of \(f \) since \(f' \neq 0 \). So we only need to show that \(P, Q \) and \(R \) are holomorphic at every pole of \(f \).

Let \(z_0 \) be a pole of \(f \). Then elementary computation shows

\[
P = O(z - z_0),
\]

\[
Q = -\frac{(n - 1)(2n - 1)}{n^3} + O(z - z_0),
\]

\[
R = \frac{2(n - 2)(n + 2)}{n^3} + O(z - z_0),
\]

as \(z \to z_0 \). Thus \(P, Q \) and \(R \) are entire functions.

Next we consider two cases.

Case 1. We have \(R \equiv 0 \). Then by (13), we have

\[
P \frac{1}{h} + \frac{AQ}{h} f' + \frac{BR}{h} \left(\frac{1}{f'} \right)^2 = 0.
\]

Thus, by Lemma 7,

\[
m\left(r, \frac{1}{f'} \right) \leq m\left(r, \frac{h}{R} \right) + m\left(r, \frac{Q}{h} \right) + m\left(r, \frac{P}{h} \right) + O(1).
\]

By Lemma 5, we have \(m(r, Q/h) = O(\log r) \) and \(m(r, R/h) = O(\log r) \); and by Lemma 5 and (12), \(m(r, P/h) = O(\log r) \). Thus

\[
m\left(r, \frac{1}{f'} \right) \leq m\left(r, \frac{h}{R} \right) + O(\log r).
\]

It follows that

\[
N(r, f') \leq T\left(r, \frac{1}{f'} \right) + O(1) = m\left(r, \frac{1}{f'} \right) + O(1) \leq m\left(r, \frac{h}{R} \right) + O(\log r) \leq T\left(r, \frac{h}{R} \right) + O(\log r) \leq T\left(r, \frac{R}{h} \right) + O(\log r).
\]
Let \(N_p(r, f) \) for each \(p \in \mathbb{N} \) be the counting function of the poles of \(f \) with multiplicity exact \(p \), each pole counted only once. Then by (15), we have

\[
N \left(r, \frac{R}{h} \right) \leq 3N_1(r, f) + 2N_2(r, f) + 3 \sum_{p \geq 3} N_p(r, f).
\]

(17)

We also have

\[
N(r, f') = \sum_{p \geq 1} (p + 1)N_p(r, f).
\]

(18)

By hypothesis, \(N_1(r, f) = O(\log r) \). Then by (16)–(18)

\[
N_2(r, f) + \sum_{p \geq 3} (p - 2)N_p(r, f) \leq O(\log r).
\]

(19)

It follows that \(f \) has finitely many poles. Thus by Lemmas 4 and 2, the order of \(f \) satisfies \(\rho(f) \leq 1 \), and we can write

\[
f'(z) = \frac{e^{cz}}{M(z)},
\]

(20)

where \(c \) is a constant and \(M(z) (\neq 0) \) is a polynomial.

Since all zeros of \(h \) are poles of \(f \), \(h \) has finitely many zeros. Thus by (12), \(h \) is a polynomial.

If \(c = 0 \), then \(f \) is a rational function. By Lemma 12, this case cannot occur.

Thus \(c \neq 0 \). We claim that

\[
f(z) = R_1(z)e^{cz} + R_2(z)e^{-cz} + R_3(z),
\]

(21)

where \(R_j(z) \) are rational functions. Indeed, by (20), \(f' = e^{cz}/M \). Thus \(1/f' = Me^{-cz} \), \(f'' = M_1e^{cz} \), \(f''' = M_2e^{cz} \), \(f''/f' = c - M'/M \), \(f''/f'' = MM_2 \) and \((f''/f')' = -(M'/M)' \), where \(M_1 \) and \(M_2 \) are rational functions. Since \(h \) is a polynomial, (21) follows from (5), proving the claim.

By (20) and (21), we have

\[
\left(R_1' + cR_1 - \frac{1}{M} \right)e^{2cz} + R_3'e^{cz} + R_2' - cR_2 = 0.
\]

(22)

It follows that \(R_3' = 0 \), \(R_2' - cR_2 = 0 \) and

\[
R_1' + cR_1 - \frac{1}{M} = 0.
\]

(23)

Thus \(R_2 = 0 \) and \(R_2 \) is a constant, say \(R_3 = d \). So

\[
f(z) = R_1(z)e^{cz} + d.
\]

(24)

Substituting (20) and (24) into (11), we get

\[
\left((R_1)^3 - \frac{h}{M^3} \right) + \left([3d + A](R_1)^2 - \frac{Ah}{M^2} \right)e^{2cz} + \left([3d^2 + 2dA + B]R_1 - \frac{Bh}{M} \right)e^{cz} + d^3 + Ad^2 + Bd = 0.
\]

(25)

It follows that

\[
(R_1)^3 - \frac{h}{M^3} = 0,
\]

(26)

\[
(3d + A)(R_1)^2 - \frac{Ah}{M^2} = 0,
\]

(27)

\[
(3d^2 + 2dA + B)R_1 - \frac{Bh}{M} = 0,
\]

(28)

\[
d^3 + Ad^2 + Bd = 0.
\]

(29)

A tedious calculation, which we defer to Appendix A, then shows that \(f \) assumes one of the following forms:
(i) \(f(z) = Ce^z; \)
(ii) \(f(z) = Ce^{-z} - \frac{2}{3}A \) and either \(A = 0 \) or \(B = \frac{2}{3}A^2; \)
(iii) \(f(z) = Ce^{\frac{-1+i\sqrt{3}}{2}z} - \frac{3+i\sqrt{3}}{6}A \) and \(B = \frac{1}{3}A^2; \)

where \(C \) is a nonzero constant. Since \(A = -(a + b) \) and \(B = ab \), this completes the proof of Theorem 2 in Case 1.

Case 2. We have \(R \equiv 0 \). Then by (15), all poles of \(f \) are double. Thus

\[
\begin{equation}
\gamma = \frac{f''}{f'} = \alpha' - \beta.
\end{equation}
\]

By (31), we also have

\[
\begin{equation}
h'(z)h(z) = e^{\alpha(z)},
\end{equation}
\]

where \(\alpha \) is a polynomial of degree \(\leq 2 \). Set

\[
\beta = \frac{h'}{h}.
\]

Then by (30) and (31),

\[
\gamma = \frac{f''}{f'} = \alpha' - \beta.
\]

Substituting (32) and (33) into (9) and setting \(R \equiv 0 \), we obtain

\[
\begin{equation}
(2\beta^2 + \beta'')\alpha' + \left[3\alpha'' - (\alpha')^2 \right] \beta + \alpha'' - \alpha' \alpha'' = 0.
\end{equation}
\]

Let \(z_0 \) be a pole of \(f \). Then some computation shows that near \(z_0 \),

\[
2\beta^2 + \beta' = \frac{15}{(z - z_0)^2}\left[1 + O(z - z_0) \right].
\]

From (34) and (35), it follows that \(\alpha'(z_0) = 0 \). Thus if \(\alpha' \neq 0 \), then since \(\alpha \) is a polynomial of degree at most 2, \(f \) has at most one pole. Thus by Lemma 4, \(f \) is of order at most 1 and hence \(h \) has at most a single zero. Thus \(N(r, 1/h) = O(\log r) \); so by (12) and Nevanlinna’s First Fundamental Theorem,

\[
T(r, h) = T \left(r, \frac{1}{h} \right) + O(1) = O(\log r).
\]

Since \(h \) is entire, it must be a polynomial. An argument similar to that in Case 1 now shows that \(f \) must have one of the forms listed at the end of Case 1.

So we consider the case that \(\alpha' \equiv 0 \), i.e., \(\alpha \) constant. Set \(e^{\alpha} = c \). Then by (30),

\[
\begin{equation}
f(z) = \frac{c}{h(z)}.
\end{equation}
\]

So \(\gamma = -\beta \). In this case, (13) becomes

\[
A(\beta \beta' + \beta'')h^2 - 2c(2\beta \beta' - \beta'')h + 6c = 0.
\]

Differentiating (37), we obtain

\[
A[(\beta')^2 + 3\beta \beta'' + 2\beta'^2 + \beta'']h - 2c[2(\beta')^2 + \beta \beta'' + 2\beta'^2 + \beta''] = 0.
\]

However, near a zero \(z_0 \) of \(h \), we have

\[
(\beta')^2 + 3\beta \beta'' + 2\beta'^2 + \beta'' = \frac{27}{(z - z_0)^2}\left[1 + O(z - z_0) \right],
\]

\[
2(\beta')^2 + \beta \beta'' + 2\beta'^2 + \beta' = \frac{9}{(z - z_0)^4}\left[1 + O(z - z_0) \right].
\]

It follows from (38)-(40) that \(c = 0 \). But then \(f' = 0 \), so \(f \) is constant, which contradicts the assumptions of Theorem 2. Thus \(h \) does not vanish. By (12), \(T(r, h) = T(r, 1/h) + O(1) = m(r, 1/h) + O(1) = O(\log r) \), so that \(h \) is a polynomial, and hence constant. Thus \(f \) is a linear function. Again, this contradicts the assumptions of Theorem 2.

This completes the proof.
Appendix A

Here we give the details of the derivation of (i)–(iii) from (23) and (26)–(29). By (26) and (27),

\[AR_1 M = 3d + A. \]

(*)

If \(A = 0 \), then by (*), \(d = 0 \). Thus by (28), \(h = MR_1 \); and hence \(M^2 (R_1)^2 = 1 \) by (26). So \(\frac{1}{M} = \pm R_1 \). Thus by (23), we get \(R'_1 + (c \pm 1) R_1 = 0 \). Since \(R_1 \) is a rational function, \(R_1 \) is a constant and \(c = \pm 1 \). Set \(R_1 = C \). If \(c = 1 \), we have \(f(z) = Ce^z \); and if \(c = -1 \), \(f(z) = Ce^{-z} \).

If \(A \neq 0 \), then by (*), \(3d + A \neq 0 \) and \(\frac{1}{M} = \frac{A}{3d + A} R_1 \). Thus by (23),

\[R'_1 + \left(c - \frac{A}{3d + A} \right) R_1 = 0. \]

Since \(R_1 \) is a rational function, \(R_1 \) is a constant and \(c = A/(3d + A) \). Set \(R_1 = C \). Then \(1/M = cC \) and \(h = 1/c \) by (26).

From (27), we obtain

\[3d + \left(1 - \frac{1}{c} \right) A = 0 \]

(**)

and from (28),

\[3d^2 + 2Ad + \left(1 - \frac{1}{c^2} \right) B = 0. \]

(***)

Case 1: \(c = 1 \). Then by (**), \(d = 0 \). So \(f(z) = Ce^z \).

Case 2: \(c = -1 \). Then by (**), \(d = -\frac{2}{3} A \). So \(f(z) = Ce^{-z} - \frac{2}{3} A \). By (29), we have

\[\frac{8}{27} A^3 + \frac{4}{9} A^3 - \frac{2}{3} AB = 0. \]

It follows that either \(A = 0 \) or \(B = \frac{2}{3} A^2 \).

Case 3: \(c \neq \pm 1 \). Then by (**), \(A = \frac{3cd}{1-c} \); and then by (***),

\[B = \frac{c^2}{1-c^2} (3d^2 + 2Ad) = \frac{3c^2d^2}{(1-c^2)^2}. \]

Since \(B \neq 0 \), we have \(d \neq 0 \). Thus by (29), we get

\[d^3 + \frac{3cd^3}{1-c} + \frac{3c^2d^3}{(1-c^2)^2} = 0. \]

It follows that \(1 + c + c^2 = 0 \). Thus \(c = \frac{-1 \pm i\sqrt{3}}{2} \), and hence \(d = \frac{1-c}{3c} A = -\frac{3 \pm i\sqrt{3}}{6} A \) and \(B = \frac{1}{3} A^2 \). So

\[f(z) = Ce^{-\frac{1\pm i\sqrt{3}}{2}z} - \frac{3 \pm i\sqrt{3}}{6} A. \]

References