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Abstract

We establish some results about large restricted Lie algebras similar to those known in the Group Theory.
As an application, we use this group-theoretic approach to produce some examples of restricted as well as
ordinary Lie algebras which can serve as counterexamples for various Burnside-type questions.
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1. Introduction

In this paper we consider restricted Lie algebras over a perfect field F of characteristic p > 0.
For the basic information see [4] and [1]. All subalgebras and ideals considered will also be
restricted, that is, closed under the p-operation x �→ x[p].

Definition 1. A restricted Lie algebra G is called large if there is a subalgebra H in G of finite
codimension such that H admits a surjective homomorphism on a nonabelian free restricted Lie
algebra.
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The main goal of this paper is to prove three theorems about restricted Lie algebras presented
in terms of generators and defining relations. The first two deal with the large restricted Lie
algebras while the third one is an application of the methods used in the first two theorems to
the construction of finitely generated nil restricted Lie algebras of infinite dimension and their
generalizations. A restricted Lie algebra G is called nil if for any g ∈ G there is natural n such
that g[pn] = 0.

We introduce some more notation. Given a set X of elements of a restricted Lie algebra G

we denote by algp{X} the restricted subalgebra H of G generated by X (if X = {g} then we
simply write algp{g}). Any element of H has the form of

∑m
i=1[fi(x1, . . . , xn)][pki ] where each

fi(x1, . . . , xn) is an ordinary Lie polynomial in x1, . . . , xn ∈ X. Another notation, idp
G{X}, will

be used to denote the restricted ideal I of G generated by X. Again, each element of I will look

like
∑m

i=1 w
[pki ]
i where each wi is in the ordinary ideal of G generated by X. While obtaining

these remarks, it is important to remember the main identity of restricted Lie algebras:

[
g[p], h

] = (adg)p(h) =
[
g, . . . , g︸ ︷︷ ︸

p

,h
]
. (1)

We recall that given g ∈ G and n a nonnegative integer, one defines g[pn] by induction if
one sets g[p0] = g and g[pn] = (g[pn−1])[p] if n � 1. We call g nilpotent if g[pn] = 0 for some
n ∈ N. In this case, by (1), we also have that the linear transformation adg :G → G defined by
(adg)(x) = [g,x] for any x ∈ G is also nilpotent. A nonzero element g ∈ G is called algebraic
if dim(algp{g}) = n < ∞. In this case algp{g} = Span{g,g[p], . . . , g[pn−1]}, for some n ∈ N. If,
additionally, g is nilpotent then pn is called the nil-index of g. Thus n is the least natural number
such that g[pn] = 0. A restricted Lie algebra G is called cyclic if G = algp{g} for some g ∈ G.

Our first result is an analogue of a group-theoretic theorem due to B. Baumslag and
S. Pride [2].

Theorem 1. Let G be a restricted Lie algebra over a perfect field F of characteristic p > 0 given
by a presentation with n generators and m relations, where m � n − 2. Then G is large.

A technically useful form of Theorem 1, immediate from its proof, is as follows.

Proposition 1. Let G be a restricted Lie algebra over a perfect field F of characteristic p > 0,
given by a presentation with n generators and m relations, where m � n − 2. Then for any
cyclic restricted Lie algebra A of sufficiently large dimension, G has a restricted ideal M , with
G/M ∼= A, such that M maps homomorphically on a nonabelian free restricted Lie algebra.

In Section 4 we give two examples of one-relator restricted Lie algebras, which cannot be
mapped homomorphically onto a nonabelian free restricted Lie algebra. We need this to show
that the conclusion of Theorem 1 cannot be strengthened to “G can be mapped onto a nonabelian
free restricted Lie algebra.”

The next theorem is an analogue of a group-theoretic theorem due to M. Lackenby [6], with a
simplified proof due to A. Olshanskii–D. Osin [7].

Theorem 2. Let G be a restricted Lie algebra over a perfect field F of characteristic p > 0, H

an ideal of finite codimension in G admitting a homomorphism on a nonabelian free restricted
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Lie algebra, g1, . . . , gk a set of elements of H . Let In be a (restricted) ideal of G generated by
g

[pn]
1 , . . . , g

[pn]
k . Then G/In is large for all but finitely many n ∈ N.

An important particular case of this theorem, with some more information, reads like this.

Proposition 2. Let L be a free restricted Lie algebra of rank at least two, N an ideal of finite
codimension in L, g ∈ L \ N and h ∈ algp{g} ∩ N . Then N/ idp

L{h} is a large restricted Lie
algebra with a presentation in which the number of generators exceeds the number of defining
relations at least by 2. As a consequence, also L/ idp

L{h} is a large restricted Lie algebra.

The above results allow us to construct some examples in the spirit of the Unrestricted Burn-
side Problem for groups. In [4, Chapter V, Exercise 17] the author asked for the proof of the
finite-dimensionality (probably under certain conditions) of finitely generated nil restricted Lie
algebras. Examples of infinite-dimensional finitely generated nil restricted Lie algebras can be
derived from E. Golod’s original example of finitely generated Engel Lie algebras [3]. In distinc-
tion with the situation in the Group Theory, where the example giving negative solutions to the
Unrestricted Burnside problem are abundant, in the case of Lie algebras until now we had just
one Golod’s example and its derivatives.3

Before we formulate our results, we recall some terminology.
We call an algebra residually finite-dimensional (respectively, residually finite-dimensional

nilpotent) if for every nonzero element g ∈ G there is a homomorphism ϕ of G onto a finite-
dimensional (respectively, finite-dimensional nilpotent) algebra such that ϕ(g) 	= 0. Equivalently,
one can say that G is residually finite-dimensional (nilpotent) if G has a set of ideals {Iα} with
trivial intersection

⋂
α Iα and such that each quotient algebra G/Iα is finite-dimensional (nilpo-

tent). The same definition applies to ordinary restricted Lie algebras. A subfactor of a restricted
Lie algebra G is a restricted Lie algebra H/K where K is an ideal of H and H is a subalgebra
of G.

Theorem 3. Let F be a perfect at most countable field F of characteristic p > 0. Then for any
finitely generated restricted Lie algebra G with an ideal P of finite codimension that can be
mapped homomorphically onto a nonabelian free restricted Lie algebra there exists an infinite-
dimensional homomorphic image G̃ in which the image P̃ of P is a nil restricted Lie algebra,
and G̃/P̃ ∼= G/P . One can choose G̃ residually finite-dimensional and the direct limit of large
restricted Lie algebras.

Corollary 1. Let F be a perfect at most countable field of characteristic p > 0. Then for any
restricted Lie algebra G, with a presentation where the number of generators exceeds the number
of relations at least by two, there exists an infinite-dimensional homomorphic image G̃ which is
a nil restricted Lie algebra. One can choose G̃ residually finite-dimensional nilpotent and the
direct limit of large restricted Lie algebras.

3 We are thankful to the referee who indicated that an example of another character has been published in a recent
paper by V. Petrogradsky [8] in the case of fields of characteristic 2. We also learned that this was later generalized to
other fields of positive characteristic by I. Shestakov and E. Zelmanov.
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Corollary 2. Let F be a perfect at most countable field of characteristic p > 0. Then there exist
infinite-dimensional finitely generated nil restricted Lie algebras over F . One can choose such
algebras residually finite-dimensional and direct limits of large restricted Lie algebras.

Corollary 3 (E.S. Golod). Let F be an at most countable field of characteristic p > 0. Then there
exist infinite-dimensional finitely generated Engel Lie algebras. One can choose such algebras
residually finite-dimensional nilpotent.

2. Some properties of large restricted Lie algebras

First, we want to mention a couple of obvious properties of large restricted Lie algebras,
following from the additivity of codimension.

Proposition 3. The following are true.

(i) If a restricted Lie algebra G has a homomorphic image which is large then also G is large;
(ii) If a subalgebra of finite codimension in a restricted Lie algebra G is large then also G is

large.

The next result requires a little more sophistication.

Proposition 4. The following are true.

(i) If a restricted Lie algebra can be mapped onto a nonabelian free restricted Lie algebra
then any subalgebra of finite codimension has the same property. A subalgebra of finite
codimension in a large restricted Lie algebra is itself large.

(ii) If a subalgebra H of finite codimension in a restricted Lie algebra G can be mapped onto a
nonabelian free restricted Lie algebra then an ideal K of finite codimension in G also has
this property. One can choose K with K ⊂ H .

Proof. To prove (i), we notice that if a restricted Lie algebra G can be mapped onto a free
restricted Lie algebra L by means of a surjective homomorphism ε and H is a subalgebra of
finite codimension in G then M = ε(H) is a subalgebra of finite codimension in L. If r is the
number of generators in L (could be an infinite cardinal) and d = dimL/M then an analogue of
Schreier’s formula for groups, due to G.P. Kukin, see for example [1, 2.7.5], says that the number
of free generators for M is given by pd(r − 1) + 1. Obviously, if r is greater than 1, this latter
number is greater than 1, proving that M is indeed a nonabelian free restricted Lie algebra.

The second claim in (i) now follows since if a restricted Lie algebra G is large, G1 a restricted
subalgebra of G of finite codimension and a restricted subalgebra H of finite codimension in G

can be mapped on a free restricted Lie algebra then G1 ∩ H is a restricted subalgebra of finite
codimension in G1 which by what we have just proved can be mapped onto a free restricted Lie
algebra. Thus G1 is large.

As for claim (ii), it easily follows from claim (i) and the result, apparently due to
G.P. Kukin [5], according to which every subalgebra H of finite codimension in a restricted
Lie algebra G contains an ideal K of G of finite codimension. In [9] V. Petrogradsky gives a
comodule proof of this result whose original proof is combinatorial. Below is a pure module-
theoretic proof of this result.
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Lemma 1. Let S be a unital subalgebra of an associative algebra R with 1 over a field F , such
that R is generated as a left regular S-module by a finite subset T . Assume that U is a unital left
R-module, V an S-submodule of V such that dimF U/V < ∞. Then there is an R-submodule
W such that W ⊂ V and still dimF U/W < ∞.

Proof. For each r ∈ R we consider a linear mapping Φ(r) :V → U/V given by Φ(r)(v) =
rv + V , for any r ∈ R and v ∈ V . Obviously, Φ(s)(V ) = sV = {V }, for any s ∈ S. The set W =⋂

r∈R KerΦ(r) is easily seen to be an R-submodule of U contained in V . Also, if Φ(t)(v) = V

for all t ∈ T then v ∈ W . This follows because for any s ∈ S, any t ∈ T and v as just above
we have Φ(st)(v) = (st)v + V = s(tv) + V = V . As a result, W contains the intersections
of the kernels of the finite set of linear mappings Φ(t), t ∈ T , into a finite-dimensional space
U/V . Each such kernel is of finite codimension by the Isomorphism Theorem, proving that
dimV/W < ∞. �

Now we can continue with the proof of claim (ii). A subspace V of a restricted Lie algebra G

is a restricted ideal of G if and only if V satisfies two conditions. First, V must be a submodule
under the natural R-module structure of G, R the restricted enveloping algebra of G. Second, V

must be closed under the p-operation of G. If G has a restricted subalgebra H of finite codimen-
sion then by PBW-theorem [4, Chapter 5] R is a (free) finitely generated left (and right!) module
over the associative subalgebra S generated by H . Now Lemma 1 with U = G and V = H ap-
plies and provides us with a subspace W of finite codimension in H . Since H is closed under the
p-map, the p-closure K of W is a restricted ideal of G contained between W and H . By part (i)
of this lemma it follows that K can be mapped onto a free restricted Lie algebra, as required. �

In view of the last result one can define a large restricted Lie algebra as one with an ideal of
finite codimension which can be homomorphically mapped onto a nonabelian free restricted Lie
algebra.

3. Baumslag–Pride’s theorem for restricted Lie algebras

Let F be a perfect field of characteristic p > 0 and L = L(X) a free restricted Lie algebra
over F with a set of free generators X = {x1, . . . , xn}. Let also W = {w1, . . . ,wm} be a set of
elements in L, I a restricted ideal in L generated by W , and G = L/I . We then say that G has
a presentation G = 〈x1, . . . , xn | w1, . . . ,wm〉 with n generators and m relations w1 = 0, . . . ,

wm = 0. Sometimes the left-hand sides of the relations, that is, the elements of W are called the
relators. In [2] it was established that a group which can be presented by n generators and m

defining relations is large provided that m � n − 2. We want to adapt this result to our situation.
Before we formulate our first result, we recall [1] that in a free restricted Lie algebra L(X) any

element w can be uniquely written as a linear combination of p-powers of generators (the power
component) plus a linear combination of commutators of degree at least two in the generators
and their p-powers (the commutator component).

The first result we would like to start with is the following.

Proposition 5. Let a restricted Lie algebra G be presented in terms of generators and defining
relations as above, with m � n − 1. Then another presentation can be chosen so that one of the
generators is not involved in the power components of the defining relations.
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Proof. Given a set of elements a1, . . . , ad of a restricted Lie algebra G, the following transforma-
tion is called an elementary transformation: ai → λai + f (a1, . . . , ai−1, ai+1, . . . , ad), ak → ak ,
for some i 	= j , and any k 	= i, j , f a p-polynomial, λ a nonzero element of F .

It is well known [1, Chapter 2] that any set b1, . . . , bd that can be obtained by a finite sequence
of these transformations from a1, . . . , ad generates the same restricted subalgebra of G. In the
case where a1, . . . , ad is the set of free generators of a free restricted Lie algebra G the set
b1, . . . , bd is again the set of free generators of G. Each elementary transformation extends to
an automorphism of G and it is known that the group of automorphisms of a free restricted Lie
algebra is generated by such automorphisms.

We need an easy result about free abelian restricted Lie algebras.

Lemma 2. Suppose we are given a free abelian restricted Lie algebra A with free generators
y1, . . . , yn and a restricted subalgebra B generated by a set of elements v1, . . . , vm. Then there
is another free generating set z1, . . . , zn for A and a set of elements w1, . . . ,wk generating B

such that k � min(m,n), and each wi is a p-polynomial in zi , i = 1, . . . , k.

Proof. It is well known from [4] that any abelian restricted Lie algebra A is a left module over
a skew polynomial algebra Λ in one variable t in the sense that αpt = tα, for any α ∈ F . The
action is given by t ∗ a = a[p]. The left and right analogues of the Division Algorithm work in Λ

provided that the base field is perfect. If A is a free abelian restricted Lie algebra as above then
A is a free left Λ-module with the free generating set y1, . . . , yn. The Λ-submodules of A are
precisely the subalgebras of A.

For the proof of our lemma we need to write the matrix (fij (t)) of coefficients of the ex-
pression of vi in terms of yj . As in the case of the Fundamental Theorem of Finitely Generated
Modules Over Principal Ideal Domains, we apply elementary transformations to the rows and
columns of this matrix. The elementary transformations of the rows of this matrix correspond
to elementary transformations of v1, . . . , vm, which replace one generating set of B by another,
in particular, replacing vi by vi + g(t) ∗ vj , for i 	= j , corresponds to adding to the ith row the
j th one multiplied on the left by g(t). Elementary transformations of the columns correspond to
the replacement of one free generating set of A by another. For example, if we modify the j th
column by subtracting from it the ith one, i 	= j , then we obtain the matrix of coefficients of the
generators of B with respect to the new free generating set where yi is replaced by yi + g(t) ∗ yj

while the remaining ones are left intact.
If we apply the natural versions of the left and the right division algorithms in Λ to the above

matrix it becomes obvious that using the elementary transformations we can reduce our matrix
to the form where the only nonzero elements are the first k diagonal elements f11(t), . . . , fkk(t)

where k � min(m,n). �
Now we can continue with the proof of Proposition 5. Let us assume that L is freely generated

by x1, . . . , xn and J the restricted ideal of L generated by u1, . . . , um so that G = L/J . Recall
that m � n − 1. We can work modulo the commutator subalgebra [L,L] of L. Suppose A =
L/[L,L] is the respective free abelian restricted Lie algebra. Let y1, . . . , yn, v1, . . . , vm, and B

be the images of x1, . . . , xn, u1, . . . , um, and J under the natural homomorphism of L onto A.
Then we apply Lemma 2. As a result, we obtain the free generators z1, . . . , zn of A and the
generators w1, . . . ,wk of B , each wi being a p-polynomial of zi .

If we go back to the generators x1, . . . , xn of L and the relators u1, . . . , um of G = L/J

and apply the same transformations as we did to their images y1, . . . , yn and v1, . . . , vm then,
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according to what was mentioned about the automorphisms of the free restricted Lie algebras
before the proof of Lemma 2, we obtain the desired generators and relations for G. �

Now we are ready to complete the proof of Theorem 1.

Proof. It follows from Lemma 2 that we can choose a presentation for G = L/I in such a way
that one of the generators, say t , is not involved in the p-power portions of defining relations. We
denote this generator by t and other generators by a1, . . . , an−1. Let w1, . . . ,wm be the defining
relators of G.

Let Mk be a restricted ideal of L generated by a1, . . . , an−1 and t [pk], where k = 1,2, . . . .

Then it follows from [1, 2.7.4] that Mk is a free restricted Lie algebra with free generators ali =
(ad t)l(ai), 0 � l < pk , 1 � i � n − 1 and t [pk].

Now we consider an ideal M of L generated by a1, . . . , an−1. This ideal is a restricted Lie
algebra whose free generators are ali = (ad t)l(ai), l = 0,1, . . . , 1 � i � n − 1. This follows
because M = ⋂∞

k=1 Mk and each finite subset of the generating set of M mentioned above is a
subset of the free generating set of Mk , for an appropriate k.

By Proposition 5, I ⊂ M . The image of M in G is defined by the relations wlj = 0 where
each wlj is a p-polynomial (ad t)l(wj ), rewritten in terms of the generators alj , where l is as
above and 1 � j � m. Applying the Leibniz rule for the derivations we can easily rewrite each
wj in terms of a finite subset of the latter set of generators ali . Thus me may assume that there is
a number q such that only ali with l < pq are involved in the expression of wj as the elements
of M .

Now let us choose k so that pq < pk and an element s, which is a p-polynomial in t with
leading term t [pk]. Let M(s) be the ideal of L generated by a1, . . . , an−1 and s. Again by [1,
Section 2.7], M(s) is freely generated by ali = (ad t)l(ai), 0 � l < pk , 1 � i � n − 1 and s. The
image P of M(s) in G is defined by the relations wlj = (ad t)l(wj ), l is as above, 1 � j � m,
which have to be rewritten through the new free generating system. (This is a known fact but it
follows also from our Lemma 4 below.) If we perform derivation in the relations wlj with the use
of the Leibniz rule then we observe that the maximum value of index l in the generators of M(s)

that are involved in wlj is less than pq + pk . The generators ali of M with pk � l < pk + pq

are no longer on the above list of the free generators of M(s). For these we have apk+j,i =
(ad t)p

k
(aji) = [t [pk], aji], where 0 � j < pq , and so if s = t [pk] + ∑k−1

m=0 αmt [pm] for some
αm ∈ F , then each apk+j,i should be replaced by [s, aji] − ∑k−1

m=0 αmaj+pm, i . Since q,m < k,
each generator aj+pm, i is on the list of the free generators of M(s).

Now let us impose additional relations on P by setting ali = 0 for all i = 1, . . . , n − 1,
0 � l < pq . Let Q be the quotient algebra of P obtained in this way. Then removing such super-
fluous generators we will be left with (n − 1)(pk − pq) + 1 generators s and ali , i as always,
and pq � l < pk , and still mpk relations obtained by replacing some generators by 0. Since s

was involved in the relations of P only inside the commutators [s, ali], where 0 � l < pq , none
of the newly obtained relations of Q involves s.

As a result, Q is the free product of the subalgebra generated by s and the subalgebra K

generated by (n − 1)(pk − pq) generators ali , i as always, pq � l < pk , with mpk relations
among them. The difference between the number of generators and relations for K now takes the
form (n − m − 1)pk − (n − 1)p q . It is now obvious that if we choose k sufficiently large this
latter number can be made positive and then by Lemma 2 K can be mapped onto a free restricted
algebra of rank 1. The free product Q can then be mapped onto a free restricted algebra of rank 2.
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Therefore P can be mapped onto a free restricted Lie algebra of rank 2. It remains to notice that
the codimension of P in G equals the codimension k of M(s) in L and so is a finite number. �
4. Examples of one-relator restricted Lie algebras

It is essential in Theorem 1 that a restricted subalgebra that maps onto a nonabelian free
restricted Lie algebra need not be the whole algebra. Here we give two different constructions
of restricted Lie algebras, defined by n generators and r = 1 relation, which cannot be mapped
homomorphically onto a nonabelian free restricted Lie algebra, although the difference n− r can
be made arbitrarily high.

The first one works in the case of finite fields, while the second can be applied in the case
of arbitrary fields of characteristic p > 0, and is an analogue of a group-theoretical example by
J. Stallings [10].

Let F be a finite field of characteristic p > 0 and G a nonabelian simple finite-dimensional
restricted Lie algebra with two generators. Let Ln be a free restricted Lie algebra of any rank
n � 2 and N the intersection of the finite number of the kernels of all homomorphisms of Ln

onto G. Choose a minimal subset {ϕ1, . . . , ϕm} in the set of all the above homomorphisms such
that Kerϕ1 ∩ · · · ∩ Kerϕm = N . Set

Ki = Kerϕi, Ni =
⋂
j 	=i

Kj , and Ni = Ni/N for any i = 1, . . . ,m.

Let P be the direct product of m copies of G, and θ a homomorphism of Ln into P given by
θ(x) = (ϕ1(x), . . . , ϕm(x)). Then θ induces an injective homomorphism θ̄ :Ln/N → P given
by θ̄ (x) = (ϕ1(x + N), . . . , ϕm(x + N)). Obviously, the sum Q = ∑m

i=1 Ni is direct and under
θ̄ each Ni maps isomorphically onto the ith component of P . Thus θ̄ is surjective and Ln/N =
Q = ⊕m

i=1 Ni . Now we choose any element v ∈ Ln/N all of whose components in the direct
sum are nonzero. Let w be an arbitrary preimage of v in Ln, that is, v = w + N .

Proposition 6. A restricted Lie algebra M = Ln/ idp
Ln

{w} is an example of an n-generator,
1-relator algebra that cannot be mapped homomorphically onto L2.

Proof. Let us show that the image of w under every homomorphism ϕ of Ln onto G is different
from zero. Indeed, if ϕ(w) = 0 and K = Kerϕ then K/N is a nonzero ideal in the direct sum
Ln/N = ⊕m

i=1 Ni . Each of the summands is a nonabelian simple algebra, isomorphic to G.
A standard argument (see, e.g., [4, Chapter III, Section 5]) shows that if an element of K/N has
a nontrivial projection on certain Ni then Ni ⊂ K/N . But v = w + N has nontrivial projections
on all summands. Hence K/N = Ln and ϕ = 0, a contradiction.

Suppose now, to the contrary of the claim of Proposition 6, that α :M → L2 is a homomor-
phism of M onto L2. Since G is a 2-generator restricted Lie algebra, there is an epimorphism
ψ :M → G. If ε :Ln → M is the natural homomorphism then ψε :Ln → G is a homomorphism
of Ln onto G such that ψε(idp

Ln
{w}) = {0}, hence ψε(w) = 0. This is a contradiction with the

above mentioned property of w. �
Remark 1. It is quite obvious that the same argument applies also in the case of ordinary Lie
algebras and associative algebras and allows us to produce an n-generator 1-relator algebra over a
finite field or over Z, which cannot be mapped homomorphically onto a free 2-generator algebra.
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Moreover, since the group A5 is a noncommutative 2-generator simple group, a similar argument
gives an example of an n-generator 1-relator group, which cannot be mapped homomorphically
onto a nonabelian free group.

In the case of groups, examples of n-generator 1-relator groups which cannot be mapped
homomorphically onto a nonabelian free group, with a longer argument, are due to Lyndon–
Stallings [10]. We use a simplified version of this argument to produce similar examples of
restricted Lie algebras over any fields (finite or infinite) of characteristic p > 0.

Before we go over to the second construction, we need to mention a simple fact, about the
vector space bases of free nilpotent restricted Lie algebras. If {x1, . . . , xn} is a free generating
set of a free restricted Lie algebra L then according to [1, Section 2.7.2], a basis of L can be
given in the form of the set W of all elements w[pk] where w runs through the set of usual Hall’s
monomials (which form a vector space basis of the ordinary free Lie algebra with the same free
generating set), and k = 0,1,2, . . . . A subset Tc consisting of all w[pk] where the degree of w

is at least c + 1 can be easily shown to span an ideal Jc such that L/Jc is nilpotent of class c.
It immediately follows that in the free nilpotent restricted Lie algebras of class c all monomials
w[pk] with w of degree at most c and k = 0,1,2, . . . are linearly independent.

Lemma 3. Let F be a field of characteristic p > 0, Pn a free nilpotent of class 2 restricted Lie
algebra with n � 2 free generators y1, y2, . . . , yn. Let

w =
∑

1�i<j�n

[yi, yj ][p
kij ]

where all kij are pairwise different natural numbers. Then under every homomorphism of Pn

onto P2 the element w maps onto a nonzero element.

Proof. Suppose that z1, z2 are free generators of F2. Let ϕ be a homomorphism of Pn onto P2.
Let also ϕ̄ be an induced homomorphism of Pn onto P2 = P2/([P2,P2] + P [p ]), which is a
free abelian restricted Lie algebra with zero p-map and free generators z̄1, z̄2. By composing
with an appropriate automorphism of P2, we may assume that ϕ̄(y1) = z̄1 and ϕ̄(y2) = z̄2, and
ϕ̄(yi) = αi1z̄1 + αi2z̄2, for some scalars αi1, αi2, and i = 3, . . . , n. Therefore, ϕ(y1) = z1 + u1,
ϕ(y2) = z2 + u2 and ϕ(yi) = αi1z1 + αi2z2 + ui where all u1, . . . , un are linear combinations of
[z1, z2] and p-powers of z1 and z2. This follows because in the case of free nilpotent restricted
Lie algebras, any automorphism (essentially, a nonsingular linear transformation) of P2 extends
to an automorphism of P2. Every substitution of a ui into a commutator, thanks to the nilpotency
class 2 and the main identity (1) of restricted Lie algebras gives us zero. And so the image w,
possibly twisted by certain automorphism of P2 takes the form of

∑
1�i<j�n

γij [z1, z2][p
kij ]

where γij are some scalars, and γ12 = 1. All [z1, z2][pkij ] are pairwise distinct elements of a
standard basis of P2, hence the image of w is nonzero, as claimed. �

Now the following is true.
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Proposition 7. Let Ln be a free restricted Lie algebra, with free generators x1, . . . , xn. Choose
an element

v =
∑

1�i<j�n

[xi, xj ][p
kij ] ∈ Ln

where all kij are pairwise different natural numbers. Then the n-generator, 1-relator restricted
Lie algebra M = Ln/ idp

Ln
{v} cannot be mapped homomorphically onto a nonabelian free re-

stricted Lie algebra.

Proof. If M could be mapped homomorphically onto a nonabelian free restricted Lie algebra,
then we would also have a homomorphism ψ :M → P2 where P2 as in the previous Lemma 3.
Under ψ we would have that all the commutators of degree three or larger are mapped into
zero. Thus we have a homomorphism of Ln onto P2 which annihilates v and all commutators of
degree three or larger. This, in its turn, induces a homomorphism of Pn onto P2 mapping w, the
image of v under the natural homomorphism of Ln onto Pn, into zero. By Lemma 3, this is not
possible. �
5. Lackenby–Olshanskii–Osin theorem for restricted Lie algebras

Our aim in this section is the proof of Theorem 2, which is an analogue of some group-
theoretical results in [6] and [7] in the case of restricted Lie algebras.

Before we prove this theorem we need few lemmas.

Lemma 4. Let G be a Lie algebra, N an ideal of G, g an element of N . Let C ⊂ CG(g) where
CG(g) is the centralizer of g in G. Suppose that T is any totally ordered subset of G whose union
with C + N spans G as a vector space. Denote by Z the set

{
(ad t1) · · · (ad tk)(g)

∣∣ t1 � · · · � tk ∈ T
}
.

Then the ideal of G generated by g coincides with the ideal of N generated by Z. In the case
where G is a restricted Lie algebra over a field of characteristic p > 0, and all the ideals are
restricted, we can replace Z by a subset Zp consisting of all monomial in which the degree of
any ti is at most p − 1.

Proof. Since N is an ideal of G, the above elements are in N . Now by the definition of the uni-
versal enveloping algebra U(G), any ideal of G is a left module for the adjoint representation of
U(G). Thus the ideal of G generated by g is a submodule of the left U(G)-module G generated
by g. Using PBW-theorem [4, Chapter 5], if we choose a totally ordered basis of G, in which
the elements nα of N precede some elements tβ of T and these precede some elements cγ of C,
then any element of U(G) is a linear combination of the ordered monomials of the form

nα1 · · ·nαk
tβ1 · · · tβl

cγ1 · · · cγm.

The action of U(G) on G is the unique extension of the adjoint representation. If we apply the
above monomial to g and recall that C is the centralizer of g we will see that in N the ideal in
question is generated by the elements (ad tβ1) · · · (ad tβl

)(g) with tβ1 � · · · � tβl
, as claimed.
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In the case where G is a restricted Lie algebra over a field of characteristic p > 0 the universal
enveloping algebra should be replaced by the restricted enveloping algebra up(G). Then the
restricted ideals of G are left up(G)-submodules closed under the p-operation. As mentioned
in the Introduction, when we generate an ideal we can first apply the action of up(G) and then
take all possible p-powers. Thus the argument as just above applies also in this case. By PBW-
theorem for the restricted enveloping algebras [4, Chapter 5] any element xα , tβ , and cγ enters the
monomials of the basis to the degree at most p − 1, as claimed. Thus the proof is complete. �

Our next lemma is as follows.

Lemma 5. For any finite collection of nonzero elements g1, . . . , gk of a free restricted Lie al-
gebra L and any number n ∈ N there is m ∈ N with the following property. For every q � m

there is a restricted ideal N of finite codimension in L such that for all 1 � i � k we have

Span{gi, g
[p]
i , . . . , g

[pn−1]
i } ∩ N = {0} but g

[pq ]
i ∈ N .

Proof. It is sufficient to prove this lemma in the case where L is finitely generated. If x1, . . . , xr

is the set of free generators of L then there is a natural filtration on L in which an element w[pn]
of the canonical basis has filtration pnd if w is a commutator in x1, . . . , xr of degree d . An
arbitrary g ∈ L has filtration f if f is the least filtration of the basic elements in its expression
through the basis. The set of elements of filtration at least f is a restricted ideal of L which we
denote by If . Obviously each such ideal is of finite codimension in L. Now suppose m0 is the
maximum filtration of the elements g1, . . . , gk . Choose m = m0p

n + 1. For each q � m, we set
N = Im. If di is the filtration of gi then the filtration of g

[ps ]
i equals dip

s . By our choice of m,

for each i, 1 � i � k, the elements gi, g
[p]
i , . . . , g

[pn−1]
i are linearly independent modulo N . But

if q � m then for any element a ∈ L we always have a[pq ] ∈ Im. �
One more result we need for the proof of Theorem 2 is the following.

Proposition 8. Let L be a free restricted Lie algebra of rank r � 2, g1, . . . , gk arbitrary elements

of L. Let Jq be a restricted ideal of L generated by the elements g
[pq ]
1 , . . . , g

[pq ]
k , where q is a

natural number. Then L = L/Jq is large for all but finitely many q ∈ N.

Proof. Without loss of generality we may assume that all g1, . . . , gk are nonzero. By Lemma 5,
there exists m ∈ N such that for any q � m there is a restricted ideal N of finite codimension

such that for all i = 1, . . . , k we have the elements gi, g
[p ]
i , . . . , g

[pk]
i are linearly independent

modulo N , but g
[pq ]
i ∈ N . In particular, the codimension of algp{gi}+N is bounded from above

by j − k − 1 where dimL/N = j . Now we want to show that the image N of N in L is a large
algebra. Let Ti be a minimal set of elements of L such that the union of Ti and algp{gi} + N

spans L as a vector space. Then according to Lemma 4, and considering that algp{gi} ⊂ CL(gi),
we have that N is isomorphic to the quotient algebra of N by the restricted ideal generated by
the elements of the set Z where Z = ⋃k

i=1 Zi and

Zi = {
(ad t1)

l1 · · · (ad tsi )
lsi

(
g

[pq ]
i

) ∣∣ {t1, . . . , tsi } = Ti, 0 � l1, . . . , lsi < p
}
.

Now since dimL/N = j , according to the analogue of Schreier’s Formula [1, Theorem 2.7.5]
for the number of generators of a subgroup of a free group, the number of generators of N is
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pj (r − 1) + 1 � pj + 1. The codimension ri of algp{gi} + N is at most j − k − 1 and so the
number of elements in each Zi is at most pj−k−1. In this case the total number of defining
relations for N is at most kpj−k−1 < pj−1 � pj − 1. The difference between the number of
generators and relations will be at least 2 and so Theorem 1 applies proving that N is a large
restricted Lie algebra. Since N is of finite codimension in L this latter is a large restricted Lie
algebra, as required. �

Now we can comment on Proposition 2.

Proof. If N is an ideal of L of codimension j , g /∈ N and h ∈ algp{g}∩N then the same proof as
just above, with k = 1, shows that the number of generators of N is still pj (r − 1) + 1 � pj + 1
and idp

L{g[pn]} is generated as an ideal of N by pj−1 elements. The difference is greater than
pj + 1 − pj−1 � 2. As before, we use Theorem 1 to derive that N/ idp

L{h} is large. This proves
Proposition 2, which is important in the proof of Theorem 3. �

The following lemma shows that the situation in restricted Lie algebras can be very different
from that in groups. In the case of groups, if we are given an element g of a normal subgroup H

of index d in a group G, then the normal subgroup of G generated by g is a normal subgroup of
H generated by the conjugates x1gx−1

1 , . . . , xdgx−1
d ∈ H for some x1, . . . , xd ∈ G. In the case

of restricted Lie algebras, we have instead the following.

Lemma 6. Let G be a restricted Lie algebra, H a restricted ideal of G such that dimG/H = d ,
g ∈ H , n ∈ N. Let I = idp

G{g[pn]} be the restricted ideal of G generated by g[pn], where d � n,

J = idp
H {g[pn−d ]} the restricted ideal of H generated by g[pn−d ]. Then I ⊂ J .

Proof. By Lemma 4, I as an ideal of H is generated by the elements of the set defined as follows

Z = {
(ad t1)

l1 · · · (ad td )ld
(
g[pn]) ∣∣ {t1, . . . , td} = T , 0 � l1, . . . , ld < p

}
, (2)

where T spans G with H . Applying induction by d with obvious basis for d = 0, it is enough
to show that (ad t)i(g[pn]) ∈ idp

H {g[pn−1]}, for i = 0,1, . . . , p − 1. If i > 0 then using the main
identity of restricted Lie algebras (1) and the Leibniz rule, one can write a commutator formula
as follows. All commutators are left-normed, that is [u,v,w] = [u, [v,w]], for any u,v,w ∈ G.

(ad t)i
(
g[pn]) =

[
t, . . . , t︸ ︷︷ ︸

i

, g[pn]] = −
[
t, . . . , t︸ ︷︷ ︸

i−1

,
[
g[pn], t

]]

= −
[
t, . . . , t︸ ︷︷ ︸

i−1

,
[
g[pn−1], . . . , g[pn−1]︸ ︷︷ ︸

p

, t
]]

=
[
t, . . . , t︸ ︷︷ ︸

i−1

,
[
g[pn−1], . . . , g[pn−1]︸ ︷︷ ︸

p−1

,
[
t, g[pn−1]]]].

Thus, applying the Leibniz rule, we can write

(ad t)i
(
g[pn]) =

∑
k ,...k

[
(ad t)k1

(
g[pn−1]), [. . . , [(ad t)kp−1

(
g[pn−1]), (ad t)kp

(
g[pn−1])]]].
1 p
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It is required, in the latter sum, that k1 +· · ·+ kp = i and kp > 0. Now for each j = 1, . . . , p one

has (ad t)kj (g[pn−1]) ∈ H . Also, because i < p, some kj = 0. Thus, indeed, if i > 0, the expres-

sion in question is in the ideal generated by g[pn−1]. If i = 0 then (ad t)0(g[pn]) = (g[pn−1])[p] is
in the restricted ideal generated by g[pn−1]. �

Now we can complete the proof of Theorem 2.

Proof. As just proved, In is contained in the ideal Jm generated in H as a restricted ideal by
the elements g

[pm]
1 , . . . , g

[pm]
k , where m = n − d and d = dimG/H . If we prove that the homo-

morphic image H/Jm of H/In is large, then also H/In is large. Since H/In is an ideal of finite
codimension in G/In, we will be able to conclude that G/In is a large restricted Lie algebra.

Now let ε be a homomorphism of H onto a nonabelian free restricted Lie algebra L, as-
sumed in the statement of our theorem. Set Km = ε(Jm). Then H/Jm admits a surjective
homomorphism onto L/Km. Now Km is generated in L, as a restricted ideal, by the elements
ε(g1)

[pm], . . . , ε(gk)
[pm]. By Lemma 8, for any set of elements ε(g1), . . . , ε(gk) ∈ L, there is

a number M such that if m > M and Km is the restricted ideal generated by ε(g1)
[pm], . . . ,

ε(gk)
[pm] then L/Km is large. Hence H/Jm is large by Proposition 3, claim (i), as desired. Thus

the proof is complete. �
6. Constructing nil restricted Lie algebras

In what follows we will use the derived p-series {δi(G) | i = 0,1, . . .} of derivation stable
ideals of a restricted Lie algebra G defined as follows. We set δ0(G) = G and

δi(G) = [
δi−1(G), δi−1(G)

] + (
δi−1(G)

)[p ] for i � 1.

Obviously, G/δ1(G) is finite-dimensional as a finitely generated abelian restricted Lie alge-
bra with all elements of nil-index p. By [1, 2.7.5] then δ1(G) is a finitely generated restricted
Lie algebra. Continuing in the same way, we obtain that each algebra δi−1(G)/δi(G) is finite-
dimensional and each δi(G) is finitely generated, for i = 1,2, . . . . Thus each algebra G/δi(G)

is finite-dimensional and applying (1) and Engel’s theorem [1, 1.7.3] we easily derive that each
G/δi(G) is nilpotent as a Lie algebra.

The following lemma is immediate using an argument similar to the one used in Lemma 5.

Lemma 7. For any finite-dimensional subspace V of a free restricted Lie algebra L there exists
d ∈ N such that δd(L) ∩ V = {0}.

The next proposition is a version of Theorem 2.

Proposition 9. Let G be a finitely generated restricted Lie algebra. Suppose that P is an ideal
of finite codimension in G that can be mapped homomorphically onto a nonabelian free re-
stricted Lie algebra. Then for any element g ∈ P there is m ∈ N such that if g[pn] ∈ δm(P )

then δm(P )/ idp
G{g[pn]} can be mapped homomorphically onto a nonabelian free restricted Lie

algebra.

Proof. Let a = dimG/P . We start with proving a weaker claim.
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Lemma 8. Given an arbitrary g ∈ P there exists m such that if g[pn+a ] ∈ δm(P ) then
δm(P )/ idp

G{g[pn]} can be mapped homomorphically onto a nonabelian free restricted Lie al-
gebra.

Let ε be a surjective homomorphism ε :P → L, L a free restricted Lie algebra and h = ε(g).
If h = 0 then we set m = 1. Suppose g[pn] ∈ δ1(P ) and I = idp

G{g[pn+a]}. Then by Lemma 6, I

is contained in Q = idp
P {g[pn]}. Thus δ1(P )/I is naturally mapped onto δ1(P )/Q. Since under

ε the element g is mapped into 0, ε induces a homomorphism ε̄ of P/Q onto L. Applying
Proposition 4, part (i), we find that δ1(P )/Q maps homomorphically onto a nonabelian free
restricted Lie algebra. So in the case where h = 0, the proof is complete.

Thus we may assume that h 	= 0. By Lemma 7, there is d ∈ N such that h /∈ δd(L). We set M =
δd(L). Then h[pd ] ∈ M . If we denote by J the ideal of L generated by h[pd ] then by Proposition 2,
M = M/J is a large Lie algebra with a presentation in which the number of generators exceeds
the number of relations at least by 2. In this case, according to Proposition 1 after Theorem 1,
there is a restricted ideal N of M such that M/N is a nil cyclic restricted Lie algebra of nil-index
c, for a natural number c, and there is a surjective homomorphism η :N → L1 where L1 is a
nonabelian free restricted Lie algebra. It follows from the definition of the derived p-series that
δc(M) ⊂ N . Since δc(M) is an ideal of finite codimension in N , we may apply Proposition 4,
Part (i), to derive that δc(M) can be mapped homomorphically on a free restricted Lie algebra.

Let us set m = d + c. Assume g[pn] ∈ δm(P ). Using Lemma 6, we conclude that I =
idp

G{g[pn+a]} as a restricted ideal of P is contained in the ideal Q = idp
P {g[pn]}. Thus δm(P )/I

maps homomorphically onto δm(P )/Q. If we apply a homomorphism induced by ε :P → L

then δm(P )/J will be mapped onto δd+c(L)/R = δc(M)/R where R = idp
L{h[pn]}. Since R ⊂ J ,

there is a natural homomorphism of δc(M)/R onto δc(M) which is mapped onto a free restricted
Lie algebra, as it was shown above. Thus we have established Lemma 8.

Now we can complete the proof of Proposition 9. Indeed, once m, as in Lemma 8, has been
found, choose n0 minimal such that g[pn0 ] ∈ δm(P ). Then choose a maximal number m′ � m

such that g[pn0+a ] ∈ δm′(P ). Note that g[pn0+a−1] /∈ δm′(P ). This m′ is the number m sought for g

in Proposition 9. For, if g[pn′ ] ∈ δm′(P ) then g[pn′−a ] ∈ δm(P ) and so δm(P )/ idp
G{g[pn′ ]} can be

mapped homomorphically on a nonabelian free restricted Lie algebra. Since δm′(P )/ idp
G{g[pn′ ]}

is a subalgebra of finite codimension in δm(P )/ idp
G{g[pn′ ]}, by Proposition 3(ii), it can be mapped

homomorphically on a free restricted Lie algebra. �
Now we can give a construction of infinite-dimensional finitely generated nil restricted Lie

algebras and their generalizations claimed in Theorem 3 and Corollaries 1, 2 and 3. This con-
struction is an analogue of a group-theoretic construction due to Olshanskii–Osin [7].

Proof. Let G be a finitely generated restricted Lie algebra and P an ideal that can be mapped ho-
momorphically onto a free restricted Lie algebra. Let {f1, f2, . . .} be the list of all elements of P .
We set G0 = G, P0 = P and suppose we already constructed restricted Lie algebras Gi ⊃ Pi

which are the homomorphic images of G and P (and of Gi−1, Pi−1 for i > 0), with the same
kernel, so that δri (Pi) maps homomorphically on a nonabelian free restricted Lie algebra for
some ri ∈ N and in which all the images of f1, . . . , fi are nilpotent. Let gi+1 denote the image
of fi+1 in Gi . Then we choose ri+1 > ri and n = n(i) ∈ N, according to Proposition 9, so that
g

[pn] ∈ δri+1(Pi) and also δri+1(Pi)/ idp {g[pn]} maps homomorphically onto a nonabelian free
i+1 Gi i+1
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restricted Lie algebra. We set Gi+1 = Gi/ idp
Gi

{g[pn]
i+1 } and Pi+1 = Pi/ idp

Gi
{g[pn]

i+1 }. By Proposi-
tion 4, Part (i), δri+1(Pi+1) maps homomorphically on a nonabelian free restricted Lie algebra.
Since δri (Pi) maps homomorphically on a nonabelian free restricted Lie algebra and ri+1 > ri ,
it easily follows that δri+1(Pi) is a proper subalgebra of δri (Pi). Therefore,

dimPi+1/δri+1(Pi+1) = dimPi/δri+1(Pi) > dimPi/δri (Pi). (3)

Let Ki denote the common kernel of the natural homomorphisms G → Gi and P → Pi .
Clearly, P = P/

⋃∞
i=0 Ki is a nil restricted ideal in the restricted Lie algebra G = G/

⋃∞
i=0 Ki .

Further we set P̃ = P/
⋂∞

r=0 δri (P ), G̃ = G/
⋂∞

r=0 δri (P ). Then P̃ is nil and residually finite-
dimensional nilpotent, G̃ is residually finite-dimensional, and G̃/P̃ ∼= G/P . To show that G̃ is
infinite-dimensional, we observe that Ker(P → Pi) ⊂ δri (Pi), for every i. Hence P/δri (Pi) ∼=
Pi/δri (Pi). Now by (3), dimPi/δri (Pi) → ∞ as i → ∞. Therefore P̃ is infinite-dimensional
since it maps homomorphically onto Pi/δri (Pi) for every i. �

Now we derive the Corollaries 1, 2 and 3.
In the case of Corollary 1, we know from Proposition 1 that any restricted Lie algebra G

presented as described has an ideal P such that G/P is cyclic nil. If we apply to G and P

the construction of the previous theorem, we obtain a finitely generated G̃ with a nil-ideal P̃

such that G̃/P̃ ∼= G/P is nil. Obviously, then G̃ is itself nil. Also, by Engel’s theorem, any
finite-dimensional nil Lie algebra is nilpotent. Whence our claim about G̃ being residually finite-
dimensional nilpotent.

Corollary 2 is a direct consequence of Corollary 1.
As for Corollary 3, we start with a finitely generated infinite-dimensional nil restricted Lie

algebra G, over an algebraic closure F of F . Then we can consider an ordinary Lie algebra Ĝ

generated by a finite generating set X of G over F . As mentioned earlier, any element in G is
a linear combination with coefficients in F of p-powers of the Lie monomials in X, that is, the
p-powers of the elements in Ĝ. Were Ĝ finite-dimensional then using another basic identity of
restricted Lie algebras, (x + y)[p] = x[p] + y[p] + w(x,y) for any x, y in L and w(x,y) in the
ordinary Lie subring generated by x, y, we would easily obtain G finite-dimensional (over F ).
Notice, that by (1) each adg is nilpotent. So Ĝ is an example of an infinite-dimensional finitely
generated Engel Lie algebra.
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