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Abstract The increase of hydrogen demand has been one of the focal point recently. Indirect inter-

plant hydrogen integration (IPHI) is a new issue for reducing hydrogen consumption and hydrogen

discharge, in which hydrogen networks for different plants are integrated indirectly through central-

ized partitioning regeneration unit where hydrogen is regenerated for further reuse/recycle. This

work is an extension of the automated targeting technique that was developed for single hydrogen

network and the automated targeting that was developed for inter-plant water integration. The con-

centration cascade model has been developed to optimize hydrogen networks through partitioning

regeneration unit such as pressure swing adsorption (PSA) or membrane separation. Two case stud-

ies from literature are studied to illustrate the applicability of the proposed model.
� 2015 The Author. Production and hosting by Elsevier B.V. on behalf of Egyptian Petroleum Research

Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Hydrogen management is getting essential in refineries and
petrochemical complexes, since refineries face an increasing
challenge of meeting the growing demand for clean fuels.

Along with the legislation for environment protection higher
gasoline and diesel quality specifications have been imple-
mented to reduce pollutants from automotive exhausts. Oil

refineries consume hydrogen in large amounts during the past
decade to remove sulfur and nitrogen compounds and produce
lighter fuel with high quality, since crude oil gets heavier

and contains more sulfur and nitrogen. Thus the hydrogen
supply in many refineries is becoming a critical problem [1,2].
Hydrogen resources are units that either consume or produce

hydrogen. Management of these two resources leads to lower
consumption of hydrogen and improves refinery profitability
[3,4]. The production sources of hydrogen in refining are cat-

alytic reformers, hydrogen plants, ethylene plants and hydro-
gen import. Where the most common hydrogen consumption
units are hydrocracker and hydrotreaters. The hydrogen

demands of hydrogen consumers vary with the changes of
operational load mostly and raw material [5–7]. As the
demand for hydrogen grows, the management and optimiza-
tion of hydrogen system in refinery is becoming increasingly

important [8]. Development process integration has been pro-
ven as a promising approach in maximizing potential resource
conservation [9]. The hydrogen network integration optimizes

the hydrogen network with all the hydrogen demands and
hydrogen supplies. Consequently it can significantly increase
the reuse of the process hydrogen and minimize the hydrogen

utility consumption. The management of hydrogen network
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Nomenclature

Abbreviations

AF annualization factor
AMEM membrane area, m2

AWH annual working hours
A fractional interest rate per year

CCR continuous catalytic reformer unit
CNHT cracked naphtha hydrotreater unit
D length of the cross-plant pipeline, m

DHT diesel hydrotreater unit
Fcp,k feed flowrate to the regenerator from network, k
FFIPHI
FH;k fresh inter-plant hydrogen integration for net-

work, k
FFIPHI
DH;k inter-plant hydrogen discharge flowrate from net-

work, k
FEXP
i;k flowrate exported from source i in network k to the

regenerator
FSKj,k flowrate of sink j for network k
FSRj,k flowrate of source i for network k

gcp,k top product of the regenerator to network k
GPU cm3(STD) * 10�6/cm2 s cmHg
HCU hydrocracker unit

I is a source in hydrogen networks
IPHI inter-plant hydrogen integration
Ipipe capital cost of pipeline, US$

Ipsa capital cost of pressure swing adsorption, US$
Iregenerator capital cost of regenerator, US$
ISO isomerization unit
J is a sink in hydrogen network

JHT jet fuel hydrotreater unit
L number of years
LBcp lower bound of the cross-plant pipeline flowrate

Lcp,k bottom product of the regenerator for network k
LgH2

permeability of hydrogen component through
membrane

LP linear programing
M index for concentration levels
MMSCFd million standard cubic feet per day
NINDIR,k binary variable indicates the existence of a cross-

plant pipeline from the top product of the regener-
ator to all sinks of network, k.

MINLP mixed-integer nonlinear programing

MP mega Pascal
NLP nonlinear programing
P maximum pressure of the pipeline in MPa
Pfeed
n inlet feed pressure to the regenerator

Pproduct
n top product pressure of the regenerator

PSA pressure swing adsorption unit
SK sink

SR source
TAC total annual cost measured by US$
UBcp upper bound of the cross-plant pipeline flowrate

US$ American dollar
Wcost,k unit cost of fresh hydrogen for network, k
XINDIR,k binary variable indicates the existence of a cross-

plant pipeline from all sources of network k to

the regenerator
YF inlet impurity concentration to the regenerator
yH2in feed

hydrogen concentration in the feed of the regener-

ator
yH2in product hydrogen concentration in the top product of

the regenerator

Yi impurity concentration of source I
Yp impurity concentration of the top product of the

regenerator

Yr impurity concentration of the bottom product of
the regenerator

Ymin
r the minimum concentration of all sources in the

participating networks when they are regenerated

individually
Ymax

r the maximum concentration of all sources in the
participating networks when they are regenerated

individually
ZINDIR;k binary variable indicate the existence of a cross-

plant pipeline from the bottom product of the

regenerator to all sinks of network k
dm,k net material flowrate from level m for network k
em,k residue of impurity load from concentration level

m for network k

aL hydrogen recovery
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involves two alternatives: reuse and regeneration [10]. For the
two alternatives, many researchers focused on the optimization

of hydrogen network by graphical or mathematical methods.
For graphical optimization, Towler et al. [1] presented a value
composite curve method to analyze the hydrogen network.

Alves and Towler [2] presented the purity profiles and hydro-
gen surplus profiles to calculate the minimum fresh hydrogen
consumption. Zhao et al. [11] proposed a simple graphical

method for determining fresh hydrogen demand at any con-
centration. El Halwagi et al. [12] presented a rigorous graphi-
cal targeting technique to obtain the minimum fresh hydrogen
utility. Agrawal and Shenoy [13] proposed a unified conceptual

approach for water and hydrogen network. Zhao et al. [14]
improved an iterative targeting method considering multiple
impurities for hydrogen network.
For mathematical optimization, Liu and Zhang [15] intro-
duced a detailed model of regeneration units by selecting an

optimum regeneration unit. Foo et al. [16] presented an alge-
braic algorithmic method based on concentration intervals.
Ng et al. [17,18] introduced the automated targeting technique

based on pinch calculation for resource conservation problems
for hydrogen reuse and hydrogen regeneration system. Lou
et al. [19], presented an improved graphical targeting approach

(pinch sliding approach) for water and hydrogen networks
with different types of regenerator. The minimum flowrates
of utility and regenerator feed are targeted by integrating the
triangle rule and the optimal condition theorem. Zhou et al.

[20], introduced a systematic modeling methodology for both
the economic efficiency and environmental performance of
hydrogen network. The economic efficiency is based on the
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evaluation of total annual cost while the environmental perfor-
mance is based on the CO2 emission of the network. Yang
et al. [9], presented an iterative method for hydrogen network

design involving regeneration reuse. Liao et al. [21], proposed a
new concept, mixing potential to study the disturbance resis-
tance ability of networks. Lou et al. [22], presented a new

method for the design of hydrogen networks with multiple
contaminants. They minimized the utility consumption by
minimizing the thermodynamic irreversibility of the satisfying

process. The thermodynamic irreversibility which is minimized
is the entropy for each sink. Lou et al. [23], introduced robust
optimization as a framework for optimizing hydrogen net-
work. Numbers of scenarios which represent possible future

environments are included. Wu et al. [24] presented a mathe-
matical optimization model for hydrogen network considering
pure hydrogen load and inlet hydrogen concentration of

hydrogen consuming reactors as constraints. Jhaveri et al.
[25] developed five mathematical optimization models for opti-
mizing hydrogen network in refinery. Two models are nonlin-

ear program (NLP) networks and the other three are mixed
integer nonlinear program (MINLP). Wang et al. [10] pro-
posed a linear programing (LP) model for optimal operation

of hydrogen network. Umana et al. [26] provide a framework
to assess the interaction between hydroprocessing reactions
and hydrogen distribution systems to improve overall network
performance. They studied the effect of changes in light hydro-

carbon composition in the recycle and purge of hydrogen con-
suming processes on hydrogen requirements.

A further means to enhance hydrogen recovery is via inter-

plant hydrogen integration (IPHI) between hydrogen networks
of different neighbor plants. Such technique can be used to
achieve greater hydrogen saving than that technique when

hydrogen conservation is implemented in individual plant sep-
arately. However in IPHI each participating plant seeks to
maximize its own benefits [9,28].

Two types of inter-plant hydrogen integration schemes
exist, direct and indirect integrations. in the direct inter-plant
hydrogen integration, hydrogen sources and sinks from differ-
ent networks are integrated directly via cross-plant pipelines

[28]. Hence a hydrogen source in one network may be fed to
another network as a new source. On the other hand in the
indirect inter-plant hydrogen integration, hydrogen sources

and sinks from different networks are integrated indirectly
via a centralized hydrogen partitioning regeneration unit such
as pressure swing adsorption (PSA) or membrane separation.

The first targeting method in inter plant water system is
addressed by Liao et al. [27], they presented the design of flex-
ible multiple plant water networks. The design is based on the
combination of pinch insight with mathematical programing.

Chew et al. [28], analyzed the direct and indirect inter-plant
water integration using mathematical optimization techniques.
Chew and Foo [9], presented an automated targeting for direct

and indirect inter plant water integration.
All the previous works for inter-plant integration are direct

integration and indirect integration for single pass water regen-

eration system with one inlet stream and one outlet stream.
The inter-plant integration with partitioning regeneration sys-
tem with one inlet stream and two outlet streams as used in

inter-plant hydrogen integration are not covered by the litera-
ture. In addition, the capital cost of the regenerator which is
the function of the regenerator capacity (its feed flowrate)
has not been considered in targeting the minimum flowrate
of the fresh utility in inter-plant integration.

In this paper, the automated targeting technique which was

developed by Ng et al. [18] for single hydrogen network and
the automated targeting technique that was developed for
inter-plant water integration by Chew and Foo [9] are

extended into inter-plant hydrogen integration.
In IPHI sources/sinks of different hydrogen networks are

integrated via a centralized partitioning regeneration unit as

pressure swing adsorption (PSA) or membrane separation.
The hydrogen sources for any participating hydrogen network
can either be integrated with the hydrogen sinks in the same
hydrogen network or sent to the regeneration unit or sent to

the discharge. The partitioning regenerator is used to improve
hydrogen source quality sent from the participating networks
giving two product streams, top product stream, and bottom

product stream. The top and the bottom product regenerated
streams of the regenerator can be either reused/recycled in
the participating hydrogen networks or sent to the discharge.

Note that there are no direct connections between the
sources and the sinks of the participating hydrogen networks.
A mixed integer nonlinear program model (MINLP) is formu-

lated in LINGO version 12. The model is solved using a PC
with 1.7 GHz Intel Core i5-4210U CPU Processor.

2. Problem description

The inter-plant hydrogen integration problem that will be con-
sidered in this work can be stated as follows.

There is a set of hydrogen networks k of the fixed flow rate

type problem. Each hydrogen network consists of a set of pro-
cess sources {i= 1,2, . . .Nsources} and a set of process sinks
{j= 1,2, . . .Nsinks}. Each source i, has a flow rate of FSRi,

and a composition of single contaminant, yi and each sink j,
has a flow rate of FSKj, and a maximum composition of single
contaminant, Zj .There are fresh inter-plant hydrogen sources

ðFIPHI
FH;kÞ that can be purchased to supplement additional hydro-

gen requirement of the process sink that is not satisfied by the
process sources. There is a centralized partitioning regenerator

(PSA or membrane unit) between the hydrogen networks for
regenerating the sources from each network.

The indirect inter-plant hydrogen integration among these

hydrogen networks is optimized to achieve the minimum total
annual cost.

3. Automated targeting for partitioning regeneration system

The first automated targeting technique was presented by
El Halwagi and Manousiothakis [29] for the synthesis of mass

exchange network. For in-plant reuse/recycle integration sys-
tem, Ng et al. [30] extended the automated targeting to
resource conservation network (RCN) which is related to the
water cascade analysis developed by Manan et al. [31]. Ng

et al. [32] extended the automated targeting to the property
based resource conservation network and also, to single-
impurity resource conservation networks. For in-plant regen-

eration system, Ng et al. [18] extended the automated targeting
to resource conservation networks for single-pass and parti-
tioning waste regeneration systems. For inter-plant integration

system, Chew and Foo [9] extended the automated targeting to
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Figure 1 Impurity concentration cascade diagram for indirect inter-plant hydrogen integration.
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inter-plant water integration system and inter-plant property-
based integration system for single-pass regeneration system.

However, this previous work did not consider the inter-plant
hydrogen integration with partitioning regeneration system.
In this work, the automated targeting is extended to inter-

plant hydrogen integration system since, the indirect inter-
plant hydrogen integration is based on the use of partitioning
regenerator as a regenerator unit. The first step in the auto-

mated targeting technique for IPHI is the construction of the
hydrogen conservation cascade diagram as presented in
Fig. 1. In the cascade diagram, a total of n sink/source concen-

trations (Ym) for each hydrogen network k are arranged in an
ascending order, starting from the lowest (m= 1) to the high-
est (m = n). Another concentration level is added for fresh

hydrogen source, if it does not exist among the process sinks
and sources. When the fresh hydrogen source is pure, zero con-
centration level is added as a first level and if the fresh hydro-

gen is impure, it will be located at its respective concentration
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level as any source. Also, another two concentration levels for
top (Yp) and bottom product impurity concentration (Yr) of
the regenerator are added. A final concentration level

(100%) is added to calculate the residue impurity load [9,18].
The second step in the concentration cascade diagram is the

building of the material cascade. It is performed across all con-

centration intervals for each hydrogen network. At each con-
centration level m, the flowrate balance takes into account
the sinks and the sources flowrates and the flowrates to and

from the partitioning regeneration unit. The inter-plant flow-
rate that is sent from each source i to the regenerator is called

export flowrate FEXP
i;k , and is put as a sink at its source concen-

tration level on the right of the material cascade. On the other
hand, the inter-plant flowrates that are received from the
regenerator unit to each network k are called the import flow-

rates, gcp,k, Lcp,k, and they are added as sources at their con-
centration levels (Yp, Yr) on the left of the material cascade.
Note that, Yp and Yr impurity concentration levels are the
top and the bottom product concentrations of the partitioning

regeneration unit. As described in Eq. (1), the net material
flowrate from level m for network k (dm,k), is the summation
of the net material flowrate cascaded from the earlier concen-

tration level (dm�1,k) with the net flowrates at concentration

level m
P

i2IFSRi;k �
P

j2JFSKj;k �
P

i;kF
EXP
i;k

� �
m
. The fresh

inter-plant hydrogen integration for each network FIPHI
FH;k, is

added at the first concentration level ðdo ¼ FIPHI
FH;kÞ when the

fresh hydrogen is pure and if the fresh hydrogen is impure, it
will be located at its concentration level as any source in the
individual network. The inter-plant hydrogen discharge

FIPHI
DH;k, is located at the last level of the material cascade in each

network as shown in Fig. 1.

dm;k ¼ dm�1;k þ
X
i2I

FSRi;k �
X
j2J

FSKj;k �
X
i;k

FEXP
i;k

 !
m

k ¼ 1; 2; 3; . . . ;Knetworks ð1Þ
The third step in the concentration cascade diagram is the

building of the load cascade. The residual contaminant load
at each concentration level m (em,k) for each network k as

described in Eq. (2), is composed of two parts. The first part
is the residual contaminant load from the earlier level
ðem�1;kÞ and the second part is the contaminant impurity load

since, the contaminant impurity load is the net material
flowrate at level m � 1 (dm�1,k) and the difference between

the concentration levels Ym�1 and Ym [9,28].

em;k ¼ em�1;k þ dm�1;kðYm � Ym�1Þ rk 2 K; 8m 2 Mlevels

ð2Þ
Note that, the net material flowrate (dm) may take a positive

or negative sign. The positive value is achieved when the mate-
rial flowrate is from the lower concentration level to the higher
concentration level and the negative value is achieved when the

material flowrate is from the higher to the lower concentration
level [9,18].

Note also that, the residual contaminant (em,k) must take

positive value so, Eq. (3) is taken into consideration. Of the
advantages of the automated targeting technique is that it
combined the pinch analysis technique and the mathematical

technique [30] since, the pinch point is determined at the resid-
ual contaminant load (em,k) equal to zero [9].
em;k P 0; 8k 2 K; 8m 2 M ð3Þ
The objective function considered in this work is the mini-

mization of a total annual cost (TAC) that includes operation
cost and annualized capital costs. The operation cost depends
on the fresh hydrogen cost while the capital cost is the regen-

erator and the pipes costs as described in Eq. (4).

TAC ¼
X
k2K

FFIPHI
FH;k �Wcost;k

" #
AWHþ ½ðIregenerator þ IpipeÞ�AF

ð4Þ
where FFIPHI

FH;k and Wcost;k represent the indirect inter-plant

hydrogen fresh flow rate to each network and the unit cost

of each fresh hydrogen, respectively. The fresh hydrogen in
each network is placed at its impurity concentration in the cas-
cade diagram. AWH is the annual working hours per year.

The pressure swing adsorption (PSA) and the membrane
separation are commonly used as regenerators in the regener-
ation of hydrogen networks [18]. The capital cost of the PSA
regenerator ðIpsaÞ can be calculated using Eq. (5) [33].

Ipsa ¼ ½503; 800þ ð347; 400 FcpÞ� ð5Þ
where Fcp is the inlet flowrate of the regenerator and measured

in MMSCFd. When membrane separation is used as a regen-
erator, the capital cost of the regenerator ðIMEMÞ can be calcu-
lated using Eqs. (6) and (7) [15,33].

AMEM ¼ Fcp

LgH2
� Pfeed

n � yH2 in feed � Pproduct
n � yH2 in product

� � ð6Þ

IMEM ¼ ½50; 000þ 400 � AMEM� ð7Þ
where AMEM is the membrane area, LgH2

represents the perme-

ability of hydrogen and measured in GPU (cm3(STD) * 10�6/

cm2 s cmHg), Pfeed
n and Pproduct

n are the inlet pressure and the

top product pressure of the regenerator, and yH2 in feed
and

yH2 in product
are the hydrogen purity in the inlet feed and the

top product of the regenerator respectively.

The pipelines from the sources of the networks to the regen-
erator and from the regenerator to sinks of the networks can
be calculated using Eq. (8) [15].

Ipipe ¼ D

"
420:74XINDIRðkÞ þ 1484:76

0:02352Fcp;k

P

� �

þ 420:74NINDIRðkÞ þ 1484:76
0:02352gcp;k

P

� �

þ 420:74ZINDIRðkÞ þ 1484:76
0:02352Ncp;k

P

� �

þ 420:74MINDIRðkÞ þ 1484:76
0:02352FIPHI

DH;k

P

 !#
ð8Þ

where Fcp,k is the summation of all export flowrates from
sources of network k to the regenerator as described in Eq.

(9), gcp,k is the top flowrate of the regenerator sent to network
k, and Ncp;k is the bottom flowrate of the regenerator (Lcp,k)

sent to network k as described in Eq. (10). FIPHI
DH;k is the dis-

charge hydrogen flowrate that is sent from network k to the

fuel system. P is the max pressure of the pipelines. D is the
length of the cross-plant pipeline. Note that, the pipelines cost
within each individual network are assumed neglected, because
their cost are very small when compared to the other pipelines



Table 1 Hydrogen processes data for case study 1.

Hydrogen sources Flow rates

(MMSCFd)

Impurity

(vol.%)

Hydrogen sinks

(demands)

Flow rates

(MMSCFd)

Impurity

(vol.%)

Network 1 Outlet unit A (SR1) 350 9.0 Inlet unit A (SK1) 400 7.2

Outlet unit B (SR2) 500 15.0 Inlet unit B (SK2) 600 12.4

Outlet unit C (SR3) 223 25.0 Inlet unit C (SK3) 240 22.3

Outlet unit D (SR4) 248 30.0 Inlet unit D (SK4) 270 24.6

Fresh hydrogen To be determined 1.0

Network 2 CCR (SR5) 14.463 17.0 HCU(SK5) 152.26 8.689

HCU (SR6) 75.635 18.28 NHT (SK6) 34.285 22.178

NHT (SR7) 32.95 23.43 DHT (SK7) 181.01 24.792

DHT (SR8) 168.723 28.62 CNHT (SK8) 40.008 30.304

CNHT (SR9) 35.543 33.52

Fresh hydrogen To be determined 1.0
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cost [28]. Binary variable XINDIR(k) indicates the existence of a
cross-plant pipeline from all sources of network k to the regen-
erator [15,33]. NINDIR(k), and ZINDIR(k) indicate the existence
of a cross-plant pipeline from the top and the bottom product

of the regenerator to all sinks of each network. MINDIR(k)
indicates the existence of a cross-plant pipeline from network
k to the fuel discharge.

Fcp;k ¼
X
i2I

FEXP
i;k 8k 2 K ð9Þ

Ncp;k ¼ Lcp;k � FIPHI
DH;k ð10Þ

To annualize the capital cost an annualization factor (AF)
is added as described in Eq. (11) [15].

AF ¼ a � ð1þ aÞL
ð1þ aÞL � 1

ð11Þ

where a, and L are a fractional interest rate per year and the
number of years, respectively. Eq. (12) is the overall material
balance on the regenerator, and it states that the sum of all
export hydrogen flowrates from sources of the participating
Table 2 Individual regeneration results of the two networks

for case study 1.

Regeneration results Network

1

Network

2

Total

Base case

Fresh hydrogen (MMSCFd) 278.13 109.6 387.73

Hydrogen discharge

(MMSCFd)

9.13 29.351 118.481

Regeneration by PSA

Fresh hydrogen (MMSCFd) 208.238 88.956 297.194

hydrogen discharge

(MMSCFd)

19.238 8.707 27.945

Regenerated flowrate

(MMSCFd)

52.084 21.708 73.792

Regeneration by membrane

Fresh hydrogen (MMSCFd) 206.478 88.254 294.732

hydrogen discharge

(MMSCFd)

17.478 8.005 25.483

Regenerated flowrate

(MMSCFd)

54.376 22.705 77.081
networks
P

k2K
P

i2IF
EXP
i;k

� �
to the regenerator must equal the

sum of all hydrogen flowrates from the top product
ðPk2Kgcp;kÞ and all hydrogen flowrates from the bottom pro-

duct
P

k2KLcp;kÞ of the regenerator.

X
k2K

X
i2I

FEXP
i;k ¼

X
k2K

gcp;k þ
X
k2K

Lcp;k ð12Þ

As presented in Fig. 1 all export flowrates from the partic-
ipating hydrogen networks ðPk2KFcp;kÞ are mixed in a single

export cross-plant pipeline (FcpÞ before sending them to the

regenerator as described in Eq. (13), on the other hand, hydro-

gen flowrate from the top product of the regenerator ðgcpÞ is

distributed to the hydrogen networks through cross-plant

pipelines ðPk2Kgcp;kÞ. Also, the hydrogen flowrate from the

bottom product of the regenerator ðLcpÞ is distributed to the

hydrogen networks through cross-plant pipelines ðPk2KLcp;kÞ
as described in Eqs. (14) and (15).

Fcp ¼
X
k2K

Fcp;k ð13Þ
Table 3 Indirect inter-plant hydrogen integration results for

case study 1.

Cases PSA Membrane

Fresh hydrogen flow rate (MMSCFd) for

the two networks

296.6393 294.4314

Hydrogen discharge flow rate (MMSCFd)

for the two networks

27.3903 25.1824

Inlet feed flow rate (MMSCFd) to the

regenerator

73.7800 77.0067

Inlet feed concentration (vol.%) to the

regenerator

31.0337 30.9904

Bottom concentration (vol.%) of the

regenerator

83.425 90.651

Top product of the regenerator

(MMSCFd)

46.3897 51.8243

Bottom product of the regenerator

(MMSCFd)

27.3903 25.1824

No. of cross-plant pipelines (N) 4.0 4.0

Capital cost of the regenerator (MUS$) 26.1349 0.6066

Capital cost of the pipelines (MUS$) 1.486 1.514

Total capital cost (MUS$) 27.6209 2.1206
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gcp ¼
X
k2K

gcp;k ð14Þ

Lcp ¼
X
k2K

Lcp;k ð15Þ
Figure 2 Impurity concentration cascade diagram for network 1 and

case study 1 using membrane.
The overall impurity balance on the regenerator is given by
Eq. (16).X
k2K

X
i2I

FEXP
i;k Yi ¼

X
k2K

gcp;kYp þ
X
k2K

Lcp;kYr ð16Þ
network 2 with the indirect inter-plant hydrogen integration for



Table 4 Saving in the fresh hydrogen and hydrogen discharge

for case study 1.

Cases Fresh hydrogen

(MMSCFd)

Hydrogen discharge

(MMSCFd)

Base case 387.73 118.481

For PSA

Inter-plant

integration

296.6393 27.3903

Saving 91.091 91.091

Saving

percentage %

23.49 76.88

For membrane

Inter-plant

integration

294.4314 25.1824

saving 93.299 93.299

Saving

percentage %

24.06 78.75
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where Yi is the impurity concentration of each source i sent to
the partitioning regenerator. Also, Eqs. (17) and (18) are added
as a material and impurity balance on the regenerator.

Fcp ¼ gcp þ Lcp ð17Þ

FcpYF ¼ gcpYP þ LcpYr ð18Þ
where YF represents the impurity concentration of the feed to
the regenerator. The upper bound of the export flowrate sent

from any source i in network k (FEXP
i;k Þ to the regenerator is

taken as its source flowrate (FSRi;kÞ as described in Eq. (19).

0 6 FEXP
i;k 6 FSRi;k 8i 2 I; 8k 2 K ð19Þ

The upper (UBcp) and lower bounds (LBcp) of the cross-
plant flowrates from each network to the regenerator (Fcp,k),
from top product of the regenerator to each hydrogen network

(gcp,k), from bottom product of the regenerator to each net-
work ðNcp;kÞ, and from each network to the fuel discharge
Table 5 Indirect inter-plant hydrogen integration costs for case stu

Cases Operation cost (MUS$/yr)

(Base case) 258.487

For PSA

Inter-plant integration 197.759

Operating cost saving 60.728

Saving cost percentage % 23.49

PSA cost (MUS$) 26.1349

Pipe cost (MUS$) 1.486

Capital cost (MUS$) 27.6209

Payback period (months) 5.5

For Membrane

Inter-plant integration 196.288

Operating cost saving 62.199

Saving cost percentage % 24.06

Membrane cost (MUS$) 0.6066

Pipe cost (MUS$) 1.514

Capital cost (MUS$) 2.1206

Payback period (day) 13
ðFIPHI
DH;kÞ are used as constraints as described in Eqs. (20)–(23).

The existence of the cross-plant pipelines are indicated by

the binary variables XINDIR;k, NINDIR;k; ZINDIR;k and MINDIR;k.

Note that, the total number of cross-plant pipelines are limited

to N in Eq. (24). Note also that the binary variables in Eqs.
(20)–(23) produced a MINLP formulation.

LBcpXINDIR;k 6 Fcp;k 6 UBcpXINDIR;k ð20Þ

LBcpNINDIR;k 6 gcp;k 6 UBcpNINDIR;k ð21Þ

LBcpZINDIR;k 6 Ncp;k 6 UBcpZINDIR;k ð22Þ

LBcpMINDIR;k 6 FIPHI
DH;k 6 UBcpMINDIR;k ð23Þ

X
k2K

XINDIR;k þ
X
k2K

NINDIR;k þ
X
k2K

ZINDIR;k þ
X
k2K

MINDIR;k 6 N

ð24Þ
For non-negativity of fresh hydrogen Eq. (25) is added to

the model.

FFIPHI
FH;k P 0 ð25Þ
The impurity concentration of the top product of the regen-

erator (Yp) is a fixed characteristic of the regeneration system

in hydrogen network [18], but the impurity concentration of
the bottom product (Yr) is unknown and set to be between a

minimum ðYmin
r;i Þ and a maximum ðYmax

r;i Þ value as presented

in Eq. (26).

Ymin
r;i 6 Yr 6 Ymax

r;i ð26Þ
The minimum and the maximum value of the impurity con-

centration of the bottom product of the regenerator are the
lowest and the highest values of the impurity concentrations
ðYr;iÞ of all sources of the participating networks when they

are regenerated individually without inter-plant hydrogen inte-
gration as described in Eq. (27).
dy 1.

Capital cost (MUS$/yr) Total annual cost (MUS$/yr)

––– 258.487

27.6209*0.231 204.1399

0.4899 196.7778
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Yr;i ¼
Yi � ð100�YiÞ

ð100�YpÞ � aL � Yp

h i
½1� ð100�YiÞ

ð100�YpÞ � aL�
ð27Þ

where Yi and Yp are the impurity concentrations of each
source i and the impurity concentration of the top product
of the regenerator. aL is the hydrogen recovery [18].

4. Case studies

Two case studies are solved to illustrate the indirect inter-plant

hydrogen integration model by conservation cascade diagram.
The first case study illustrates the indirect inter-plant hydrogen
integration when the two networks have the same fresh
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Figure 3 Optimized indirect inter-plant hydrogen integration
hydrogen impurity source. The second case study illustrates
the application of the proposed model when the two networks
have different fresh hydrogen impurity source.
4.1. Case study 1

This case under investigation involves two hydrogen networks

with the same fresh hydrogen impurity. The first network is
taken from Liu [33] and the other network is taken from Jia
[34]. The limiting hydrogen data for the two networks are tab-

ulated in Table 1. The fresh hydrogen and the hydrogen dis-
charge for network 1 are 278.13 MMSCFd (1% impurity),
and 89.13 MMSCFd (18.1% impurity), respectively. The fresh
mbrane  

Fuel  

SK3 SK4
240 270 

FIPHI= 192.0662 

175.2 

64.8 9.4884 

193.1095 

61.1665 

51.8243        
2% 

25.1824 
90.651%  

FIPHI= 102.3652 

19.4051 

26.2583 

SK7 SK8 

131.7859 

  40.008 181.01 

13.7497 

14.463 

6.2356 

15.356 

design for case study 1 (flowrate is given in MMSCFd).



Table 6 Hydrogen processes data for case study 2.

Hydrogen

sources

Flow rates

(MMSCFd)

Impurity

(vol.%)

Hydrogen sinks

(demands)

Flow rates

(MMSCFd)

Impurity

(vol.%)

Network 1 CCR (SR1) 14.463 17.0 HCU (SK1) 152.26 8.689

HCU (SR2) 75.635 18.28 NHT (SK2) 34.285 22.178

NHT (SR3) 32.95 23.43 DHT (SK3) 181.01 24.792

DHT (SR4) 168.723 28.62 CNHT (SK4) 40.008 30.304

CNHT (SR5) 35.543 33.52

Fresh

hydrogen

To be

determined

1.0

Network 2 CCR (SR6) 23.5 25.0 HC (SK5) 124.48 19.7

CNHT (SR7) 40.22 25.0 CNHT (SK6) 44.96 22.89

HC (SR8) 96.99 25.0 DHT (SK7) 12.87 24.75

DHT (SR9) 10.17 30.0 ISO (SK8) 0.04 25.0

JHT (SR10) 7.92 35.0 JHT (SK9) 12.25 27.94

NHT (SR11) 10.14 40.0 NHT (SK10) 15.67 31.181

Fresh

hydrogen

To be

determined

8.0
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hydrogen and hydrogen discharge for the second network are
109.6 MMSCFd (1% impurity), and 29.351 MMSCFd

(25.45% impurity), respectively as described in the base case
without any hydrogen integration. It is required to synthesize
indirect inter-plant hydrogen integration for the two networks.

The cost of fresh hydrogen is taken as US$ 2000/MMSCF
[15,33]. 8000 h/yr is taken as the operating hours per year.
The lower and maximum bounds of the cross-plant pipelines

flowrate are taken as 5 MMSCFd and 500 MMSCFd,
respectively.

The regeneration for the two hydrogen networks is
achieved through a pressure-swing adsorption (PSA) or a

membrane. The PSA product impurity YP is specified as
0.1% and with recovery aL = 90%. For the membrane, the
product impurity YP is specified as 2% and with recovery

aL = 95% [18,35]. The hydrogen permeability of the mem-
brane is set as 500 GPU that is equal to 125 times of the impu-
rity permeability. The inlet and product pressure of the

membrane are assumed to be 11.61 and 3.24 MPa, respec-
tively. The capital cost is annualized for five years, with 5%
interest rate. The piping distances from the regenerator to
the sinks and the sources are assumed to be 500 m at high pres-

sure of 4 MPa [33].
LINGO optimization software version 12 is used to solve

the model presented by Ng et al. [18] for individual regenera-

tion. Table 2 illustrates the minimum fresh hydrogen and
hydrogen discharge flowrates for each network in the base case
and when each network is regenerated individually.

Note that, the capital cost of the regenerator was not cov-
ered in the previous automated targeting presented for individ-
ual regeneration of hydrogen network [18]. In this work the

total annual cost of the inter-plant integration is calculated.
The minimum and maximum impurity concentrations of

the bottom product of the regenerator (Yr) are calculated to
be 49.495 vol.%, and 83.425 vol.%, respectively in case of

using the PSA regenerator using Eq. (27). For indirect inter-
plant hydrogen integration, solving the objective function in
Eq. (4) subjected to the constraints Eqs. (1)–(3), (5), and (8)–

(26) for PSA yields the minimum fresh hydrogen and hydrogen
discharge for the two networks of 296.6393 and 27.3903
MMSCFd, respectively as described in Table 3 (column b).
On the other hand when the membrane separation is used as

a regenerator the minimum and maximum impurity concentra-
tions of the bottom product of the regenerator (Yr) are calcu-
lated to be 61.394 vol.%, and 90.651 vol.%, respectively. The

proposed model is resolved. The constraints in this case are
Eqs. (1)–(3), and (6)–(26). The optimal solution as shown in
Table 3 (column c) shows that, the fresh hydrogen and hydro-

gen discharge for the two networks are 294.4314 and 25.1825
MMSCFd, respectively.

It is noted also from Table 3 that the total capital cost in
case of using the membrane as a regenerator (US$ 2.1206 mil-

lion) is very small when compared with the capital cost of the
PSA (US$ 27.6209 million). Fig. 2 is the cascade indirect inter-
plant diagram for networks 1 and 2 using the membrane as a

regenerator. As shown in this figure, 54.8905 MMSCFd from
source 4 in network 1 and 0.3229 MMSCFd from source 8
and 21.7933 MMSCFd from source 9 in network 2 are sent

as export flowrates to the regenerator. Also, the import flow-
rates that are sent from the top product of the regenerator
to the two networks are 51.8243 MMSCFd for network 1
and zero for network 2. On the other hand, the import flow-

rates that are sent from the bottom product of the regenerator
to the networks are 25.1824 MMSCFD for network 1 and zero
for network 2. All the bottom product of the regenerator that

is sent to the first network is discharged as a fuel. The pinch
point for each network was determined at residual contami-
nant load equal to zero.

As illustrated in Table 4 the saving in total fresh hydrogen
flowrate for the two networks is 91.091 MMSCFd for the PSA
regenerator with a saving percentage of 23.49% and 93.299

MMSCFd for the membrane regenerator with a saving per-
centage of 24.06%. Also, the saving amount of 91.091
MMSCFd is achieved for the hydrogen discharge for the two
networks with saving percentage of 76.88% when PSA is used

as a regenerator and 93.299 MMSCFd with saving percentage
of 78.75% is achieved for the two networks when membrane
separation is used as a regenerator.

Table 5 shows that, US$ 60.728 million per year operation
cost saving with saving percentage equal to 23.49% was



Figure 4 Impurity concentration cascade diagram for network 1 and network 2 with indirect inter-plant hydrogen integration for case

study 2 using membrane.
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achieved in the case of using the PSA as a regenerator. But in
the case of using the membrane separation as a regenerator the
saving in operation cost was US$ 62.199 million per year with

24.06% saving percentage. Table 5 shows also that the total
annual cost is calculated to be US$ 196.7778 million per year
in case of using the membrane separation and this is lower
than its value in the case of using the PSA as a regenerator
(US$ 204.1399 million per year). The increase in the total

annual cost in the case of the PSA is due to the high capital
cost of the PSA.



Table 7 Individual regeneration results of the two networks for case study 2.

Regeneration results Network 1 Network 2 Total

Base case

Fresh hydrogen (MMSCFd) 109.6 45 154.6

Hydrogen discharge (MMSCFd) 29.351 34.24 63.591

Regeneration by PSA

Fresh hydrogen (MMSCFd) 88.95558 28.30452 117.2601

Hydrogen discharge (MMSCFd) 8.706576 6.974516 15.68109

Regenerated flowrate (MMSCFd) 21.70777 19.21649 40.92426

Regeneration by membrane

Fresh hydrogen (MMSCFd) 88.25378 27.79098 116.04476

Hydrogen discharge (MMSCFd) 8.004781 6.460979 14.46576

Regenerated flowrate (MMSCFd) 22.70538 19.89399 42.59937

Table 8 Indirect-Inter plant hydrogen integration results for case study 2.

Cases PSA Membrane

Fresh hydrogen flow rate (MMSCFd) 0.0 + 124.6832 0.0 + 123.0796

Hydrogen discharge flow rate (MMSCFd) 23.1043 21.5006

Inlet feed flow rate (MMSCFd) to the regenerator 142.2406 145.1852

Inlet feed concentration (vol.%) to the regenerator (YF) 26.16 26.38

Residue concentration (vol.%) of the regenerator 86.941 92.829

Top product of the regenerator (MMSCFd) 99.56120 106.2107

Bottom product of the regenerator (MMSCFd) 42.6794 38.9745

No. of cross-plant pipelines (N) 6 6

Capital cost of the regenerator (MUS$) 49.9182 0.9948

Capital cost of the pipelines (MUS$) 2.2937 2.3194

Total capital cost (MUS$) 52.2119 3.3132

Table 9 Saving in the fresh hydrogen and hydrogen discharge

for case study 2.

Cases Fresh hydrogen

(MMSCFd)

Hydrogen discharge

(MMSCFd)

Base case 109.6 + 45.0 63.591

154.6

For PSA

Inter-plant integration 0.0 + 124.6832 23.1043

Saving 29.917 40.487

Saving percentage % 19.35 63.67

For Membrane

Inter-plant integration 0.0 + 123.0796 21.5006

saving 31.520 42.090

Saving percentage % 20.39 66.19

Table 10 Indirect inter-plant hydrogen integration costs for

case study 2.

Cases Operation

cost

(MUS$/yr)

Capital

cost

(MUS$/yr)

Total

annual

cost

(MUS$/yr)

Base case 94.067 ––– 94.067

For PSA

Inter-plant integration 58.1856 12.0609 70.2465

Operating cost saving 35.8814

Saving cost percentage % 38.14

PSA cost (MUS$) 49.9182

Pipe cost (MUS$) 2.2937

Capital cost (MUS$) 52.2119

Payback period (Year) 1.46

For Membrane

Inter-plant integration 57.4372 0.7655 58.2027

Operating cost saving 36.6298

Saving cost percentage % 38.94

Membrane cost (MUS$) 0.9948

Pipe cost (MUS$) 2.3194

Capital cost (MUS$) 3.314

Payback period (day) 33

550 W.M. Shehata
As a result of the above, the payback period which has been
calculated as the ratio of the capital investment and the saving

in the operation cost was very small (13 days) in case of the
membrane separation when compared with its value in case
of PSA (5.5 months). The corresponding indirect inter-plant

hydrogen integration design for the two networks is shown
in Fig. 3 with a total of four cross-plant pipelines.



Indirect inter-plant hydrogen integration 551
4.2. Case study 2

This case study is represented to illustrate the indirect inter-
plant hydrogen integration when the fresh hydrogen of the
participating networks has different fresh hydrogen impurity

concentration. It involves two hydrogen networks. The first
network is taken from Jia [34] and the other one from Liu
[33]. The limiting hydrogen data for the two networks are tab-
ulated in Table 6. The fresh hydrogen and the fuel discharge

for network 1 are as described in case study 1. The fresh hydro-
gen and fuel discharge for the second network are 45.0
MMSCFd (8 vol.% impurity), and 34.24 MMSCFd (30.39

vol.% impurity), respectively as described in the base case
without any hydrogen integration. It is required to synthesize
indirect inter-plant hydrogen integration for the two networks.

The unit cost of fresh hydrogen for the first network is taken as
US$ 2000/MMSCF [33] (fresh hydrogen 1 vol.% impurity)
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Figure 5 Optimized indirect inter plant hydrogen integration
and for the second network it is assumed to be US$ 1400/
MMSCF (fresh hydrogen 8 vol.% impurity). The lower bound
of the cross-plant flowrate is taken as 0.04 MMSCFd and the

upper bound of the cross-plant flowrate is taken as 500
MMSCFd. The properties of the regeneration units are taken
as the previous case study.

It is noted that the two networks have different impurity
concentration of fresh hydrogen. The first network has fresh
hydrogen with 1 vol.% impurity concentration and the other

network has fresh hydrogen with 8 vol.% impurity concentra-
tion. Each fresh hydrogen is located at its impurity concentra-
tion level as shown in Fig. 4. Table 7 summarizes the minimum
fresh hydrogen and hydrogen discharge flowrates for the two

networks when each network is regenerated individually. For
inter-plant integration when the PSA is used as a regenerator
the minimum and maximum impurity concentrations of the

bottom product of the regenerator (Yr) are calculated to be
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67.096 vol.%, and 86.941 vol.%, respectively according to Eq.
(27). The MINLP proposed model is solved using the objective
function in Eq. (4) to minimize the total annual cost. The

results showed that, the minimum fresh hydrogen and hydro-
gen discharge for the two networks of 124.6832 and 23.1043
MMSCFd, respectively as described in Table 8 (column b)

are achieved. On the other hand when the membrane separa-
tion is used as a regenerator the minimum and maximum
impurity concentrations of the bottom product of the regener-

ator (Yr) are calculated to be 78.762 vol.%, and 92.829 vol.%,
respectively. The proposed model is resolved. The optimal
solution as shown in Table 8 (column c) shows that, the fresh
hydrogen and hydrogen discharge for the two networks are

123.0796 and 21.5006 MMSCFd, respectively. The total capi-
tal cost in case of using the membrane as a regenerator (US$
3.3132 million) is very small when compared with the capital

cost of the PSA (US$ 52.2119 million) as concluded in case
study 1. The cascade indirect inter-plant diagram for networks
1 and 2 using the membrane as a regenerator is shown in

Fig. 4. It is noted that 4.1684 MMSCFd from source 4 and
21.7933 MMSCFd from source 5 in network 1 and 22.2335
MMSCFd from source 7 and 96.99 MMSCFd from source 8

in network 2 are sent as export flowrates to the regenerator.
On the other hand, the import flowrates that are sent from
the top product of the regenerator to the two networks are
106.2107 MMSCFd for network 1 and zero for network 2.

Also, the import flowrates that are sent from the bottom pro-
duct of the regenerator to the networks are 21.5006 MMSCFd
for network 1 and 17.4739 MMSCFd for network 2. The bot-

tom product of the regenerator that is sent to the first network
is discharged as a fuel and the bottom product that is sent to
the second network is reused/recycled in the network.

As illustrated in Table 9 the saving in total fresh hydrogen
flowrate for the two networks is 29.917 MMSCFd for the PSA
regenerator with a saving percentage of 19.35% and 31.52

MMSCFd for the membrane regenerator with a saving per-
centage of 20.39%. Also, the saving amount of 40.487
MMSCFd is achieved for the hydrogen discharge for the two
networks with saving percentage of 63.67% when PSA is used

as a regenerator and 42.090 MMSCFd with saving percentage
of 66.19% is achieved for the two networks when membrane
separation is used as a regenerator.

It is noted that all the inter-plant fresh hydrogen is taken
from the second fresh hydrogen of network 2 which has
lower price (US$ 1400/year) than the other fresh hydrogen

of network 1 (US$ 2000/year). So, a high operation cost
saving is achieved as illustrated in Table 10. An operation
cost saving of US$ 35.8814 million/year with a saving per-
centage equal to 38.14% was achieved in case of using the

PSA as a regenerator and the saving in operation cost in
case of using the membrane separation was US$ 36.6298
million/year with 38.94% saving percentage. Table 10 shows

also that the total annual cost is calculated to be US$
70.2465 million per year in case of using the PSA and in
case of membrane separation it is US$ 58.2027 million per

year. The previous results lead to payback period of 33 days
in case of the membrane separation and 1.46 year for PSA.
The corresponding indirect inter-plant hydrogen integration

design for the two networks is shown in Fig. 5 with a total
of five cross plant pipelines that achieve the targeted total
minimum cost.
5. Conclusion

The present study presents the automated targeting for indirect
inter-plant hydrogen integration. A proposed model is pre-

sented for indirect inter-plant hydrogen integration based on
cascade analysis approach in which two types of regenerator
units, pressure swing adsorption or membrane are inserted as

a part of the overall system. The model is applied to determine
the minimum fresh hydrogen consumption and fuel hydrogen
discharge for IPHI. In addition, the calculation of total capital
cost of the regenerator and the pipelines. Two case studies are

studied. In the first case study, the two participating networks
have the same fresh hydrogen impurity concentration (1 vol.%
impurity concentration) and in the other case study the two

networks have different fresh hydrogen impurity concentration
(1 vol.% and 8 vol.% impurity concentration). The conclusion
and the results which can be withdrawn from the study are

that: a significant reduction in the amount of fresh hydrogen
required by the process and the hydrogen discharge in IPHI
are achieved. Also, a higher reduction was achieved in the

operation cost for the participating networks with indirect
inter-plant hydrogen integration when compared with the base
case in the two case studies, since US$ 62.199 million per year
is achieved for case study 1 and US$ 36.6298 million per year

for case study 2 when the membrane separation is used as a
regenerator. All case studies solved showed that the membrane
was the optimum regenerator for the participating networks

due to its low capital cost comparing with the PSA capital cost.
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