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Abstract

We investigate the entanglement entropy in gravity duals of confining large Nc gauge theories using
the proposal of [S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96 (2006) 181602, hep-th/0603001; S. Ryu,
T. Takayanagi, JHEP 0608 (2006) 045, hep-th/0605073]. Dividing one of the directions of space into a
line segment of length l and its complement, the entanglement entropy between the two subspaces is given
by the classical action of the minimal bulk hypersurface which approaches the endpoints of the line segment
at the boundary. We find that in confining backgrounds there are generally two such surfaces. One consists
of two disconnected components localized at the endpoints of the line segment. The other contains a tube
connecting the two components. The disconnected surface dominates the entropy for l above a certain crit-
ical value lcrit while the connected one dominates below that value. The change of behavior at l = lcrit is
reminiscent of the finite temperature deconfinement transition: for l < lcrit the entropy scales as N2

c , while
for l > lcrit as N0

c . We argue that a similar transition should occur in any field theory with a Hagedorn spec-
trum of non-interacting bound states. The requirement that the entanglement entropy has a phase transition
may be useful in constraining gravity duals of confining theories.
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1. Introduction

Consider a (d + 1)-dimensional quantum field theory (QFT) on R
d+1 in its vacuum state |0〉.

Divide the d-dimensional space into two complementary regions,

A = R
d−1 × Il,

(1)B = R
d−1 × (R − Il),

where Il is a line segment of length l. The entanglement entropy between the regions A and B

is defined as the entropy seen by an observer in A who does not have access to the degrees of
freedom in B , or vice versa (see e.g. [1] for a recent review and references to earlier work). It
can be calculated by tracing the density matrix of the vacuum, ρ0 = |0〉〈0|, over the degrees of
freedom in B and forming the reduced density matrix

(2)ρA = TrB ρ0.

The quantum entanglement entropy SA is then given by

(3)SA = −TrA ρA lnρA.

The above construction can be generalized in a number of ways. In particular, one can replace
the vacuum state |0〉 by any other pure or mixed state, and choose the submanifold of R

d , A, to
be different than (1). In this paper we will restrict to the choices above, which are sufficient for
our purposes.

The entanglement entropy (3) is in general UV divergent. To leading order in the UV cut-off
a it scales like [2,3]

(4)SA � Vd−1

ad−1

where Vd−1 is the volume of R
d−1 in (1). Note that (4) is independent of l. This turns out to

be a general feature—the entropy is defined up to an l independent (infinite) additive constant.
In particular, ∂lSA and differences of entropies at different values of l approach a finite limit
as a → 0. In (d + 1)-dimensional CFT with d > 1, the finite l-dependent part of the entropy is
negative and proportional to Vd−1/ld−1, while for d = 1 it goes like ln l.

If the QFT in question has a gravity dual [4], it is natural to ask whether the entanglement
entropy can be calculated using the bulk description. This problem was addressed in [5]. For the
case of (d + 1)-dimensional large Nc conformal field theories with AdSd+2 gravity duals, the
authors of [5] proposed a simple geometric method for computing the entanglement entropy and
subjected it to various tests. This method is to find the minimal area d-dimensional surface γ

in AdSd+1 such that the boundary of γ coincides with the boundary of A, which in the case (1)
consists of two copies of R

d−1 a distance l apart. The quantum entanglement entropy between
the regions A and B is proportional to the classical area of this surface,

(5)SA = 1

4G
(d+2)
N

∫
γ

ddσ

√
G

(d)
ind,

where G
(d+2)
N is the (d + 2)-dimensional Newton constant and G

(d)
ind is the induced string frame

metric on γ . Note that the surface γ is defined at a fixed time and (5) gives the entanglement
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entropy at that time. For static states, such as the vacuum, the resulting entropy is time indepen-
dent.1 Also, since γ is extended in the transverse R

d−1 (1), the entropy (5) is proportional to its
volume Vd−1. Thus, in this case it is better to consider the entropy per unit transverse volume.

In non-conformal theories, the volume of the 8 − d compact dimensions and the dilaton are
in general not constant. A natural generalization of (5) to the corresponding ten-dimensional
geometries is [5,7]

(6)SA = 1

4G
(10)
N

∫
d8σ e−2φ

√
G

(8)
ind.

The entropy is obtained by minimizing the action (6) over all surfaces that approach the boundary
of A (1) at the boundary of the bulk manifold, and are extended in the remaining spatial direc-
tions. Since G

(10)
N = 8π6α′4g2

s , this gives an answer of order N2
c in the ’t Hooft limit Nc → ∞

with gsNc held fixed.
It was shown in [5] that for AdS3 the prescription (5) successfully reproduces the known form

of the entanglement entropy in two-dimensional conformal field theory, and that it gives sensible
results when applied to some higher-dimensional vacua, such as AdS5 × S5. Nevertheless, some
aspects of the proposal are not well understood. In particular, it is not clear how to extend it
beyond leading order in 1/Nc.

In this paper we apply the proposal of [5,7] to confining backgrounds, such as [8,9]. One of
the motivations for this investigation is to subject the proposal (6) to further tests. Another is to
study the l dependence of the entanglement entropy, which is in general difficult to determine in
strongly coupled field theories.

Gravitational backgrounds dual to confining gauge theories typically have the following struc-
ture. As one moves in the radial direction away from the boundary, an internal cycle smoothly
contracts and approaches zero size at the infrared (IR) end of space. The radial direction together
with the shrinking cycle make a type of cigar geometry, with the IR end of space corresponding
to the tip of the cigar.

We will see that in such geometries there are in general multiple local minima of the action (6)
for given l. One of those is a disconnected surface, which consists of two cigars extended in R

d−1

and separated in the remaining direction in R
d by the distance l. A second one is a connected

surface, in which the two cigars are connected by a tube whose width depends on l. Since the
two geometries are related by a continuous deformation, there is a third extremum of the action
between them, which is a saddle point of (6). A natural generalization of the proposal of [5] to
this case is to identify the entanglement entropy with the absolute minimum of the action. We
will see that this leads to a phase transition in the behavior of the entanglement entropy as a
function of l.2

For the disconnected solution, SA (6) does not depend on l. As mentioned above, the actual
value of SA depends on the UV cut-off, but if we are only interested in differences of entropies,
or the derivative of the entropy with respect to l, we can set it to zero. For the connected solution,
SA depends non-trivially on l. For small l, it is smaller than that of the disconnected one. Thus, it
dominates the entropy (6). For l > lcrit the action of the connected solution becomes larger than
that of the disconnected one, and it is the latter that governs the entropy. Thus, in going from

1 Generalizations of the proposal of [5] to time-dependent states were discussed in [6].
2 This phenomenon has already been noted in one specific example [7]—the static “AdS bubble”, which is equivalent

to the background of D3-branes on a circle that we study in Section 4 (we thank T. Takayanagi for pointing this out to
us).
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l < lcrit to l > lcrit, ∂lSA goes from being of order N2
c to being of order N0

c . One can think of
this change of behavior as a phase transition which, as we show, is typical in large Nc confining
theories.

Similar transitions between connected and disconnected D-brane configurations play a role in
other contexts. In [10] an analogous transition is responsible for screening of magnetic charges
in confining gravitational backgrounds; in [11] it governs the pattern of metastable supersym-
metry breaking vacua in a brane construction of supersymmetric QCD. An important difference
is that in all these cases the transitions involve the rearrangement of real branes, whereas the
hypersurface whose area is being minimized here does not seem to have such an interpretation.

The plan of the rest of the paper is as follows. In Section 2 we present a general analysis of a
class of gravitational backgrounds that arises in the construction of holographic duals of confin-
ing gauge theories. We show that in this class there are multiple local minima of the action (6), as
discussed above. With some mild assumptions, we also show that for small l the global minimum
of the action corresponds to a connected solution, while for large l it corresponds to a discon-
nected one. We also show that the connected solution does not exist for sufficiently large l.

In Sections 3–5 we illustrate the discussion of Section 2 with a few examples. Section 3 con-
tains an analysis of the geometry of Nc D4-branes wrapped around a circle with twisted boundary
conditions for the fermions. For gsNc 	 1 this system reduces at low energies to pure Yang–
Mills (YM) theory, while for gsNc 
 1 it can be analyzed using the near-horizon geometry of
the D4-branes [8]. In Section 4 we describe the analogous D3-brane system, which for gsNc 	 1
gives rise to YM in 2 + 1 dimensions. Some of the results of this section were obtained already
in [7]. Section 5 contains an analysis of the warped deformed conifold (KS) background [9],
which corresponds to a cascading, confining SU(M(k + 1)) × SU(Mk) supersymmetric gauge
theory. This theory approaches pure SU(M) SYM theory in the limit gsM 	 1, while the dual
supergravity description is reliable in the opposite limit, gsM 
 1.

In Section 6 we connect the results of Sections 2–5 to large Nc confining field theories such
as pure YM. To leading order in 1/Nc, such theories are expected to reduce to free field theories
of the gauge singlet bound states. The latter are expected to have a Hagedorn density of states at
high mass, ρ(m) ∼ mα exp(βH m). The entanglement entropy in such theories can be calculated
by summing the contributions of the individual states. We show that this sum over states has a
very similar character to the finite temperature partition sum, with l playing the role of the inverse
temperature β . It converges for sufficiently large l and diverges below a critical value of l, since
the large entropy overwhelms the exponential suppression of the contribution of a given state
of large mass. In the thermodynamic case, this phenomenon is related to the appearance of a
deconfinement transition. By analogy, it is natural to expect that here it signifies a transition
between an entropy that goes like N0

c at large l, and one that goes like N2
c below a critical value.

Since the gravitational analysis reproduces this feature of the dynamics, we conclude that the
system with gsNc 
 1 is in the same universality class as the one with gsNc 	 1.

In Section 7 we comment on our results and discuss other systems which one can analyze
using similar techniques. We also point out some general issues related to the proposal of [5].

2. Holographic computation of entropy

The gravitational backgrounds we will consider have the string frame metric

(7)ds2 = α(U)
[
β(U)dU2 + dxμ dxμ

] + gij dyi dyj ,
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where xμ (μ = 0,1, . . . , d) parametrize R
d+1, U is the holographic radial coordinate, and yi

(i = d + 2, . . . ,9) are the 8 − d internal directions. The volume of the internal manifold,

(8)Vint =
∫ 8−d∏

i=1

dyi
√

detg,

and the dilaton, φ, are taken to depend only on U .
The radial coordinate U ranges from a minimal value, U0, to infinity. As U → U0, a p-cycle

in the internal (8 − d)-dimensional space shrinks to zero size, so Vint(U0) = 0. The vicinity of
U = U0 looks locally like the origin of spherical coordinates in R

p+1 (times a compact space),
and we assume that all the supergravity fields are regular there. In particular, α(U) and φ(U)

approach fixed finite values as U → U0. The fact that α(U0) > 0 implies that the string tension
is non-vanishing. This is the gravitational manifestation of the fact that the dual gauge theory is
confining.

Examples of backgrounds in this class that will be discussed below are the geometries of
coincident D3- and D4-branes on a circle with twisted boundary conditions [8], in which the
shrinking cycle is a circle (p = 1), and the KS geometry [9] in which it is a two-sphere (p = 2).
In the D3-brane and KS cases, the dilaton is independent of U .

We would like to use the proposal (6) to calculate the entanglement entropy of A and B (1) in
the geometry (7). Denoting the direction along which the line segment Il in (1) is oriented by x,
the entropy per unit volume in the transverse R

d−1 is given by

(9)
SA

Vd−1
= 1

4G
(10)
N

l/2∫
−l/2

dx
√

H(U)

√
1 + β(U)(∂xU)2

where we introduced the notation

(10)H(U) = e−4φV 2
intα

d.

Due to the shrinking of the p-cycle, we have H(U0) = 0. Thus, as U varies between U0 and
∞, H(U) varies between 0 and ∞. It provides a natural parametrization of the radial direction
of the space (7). Near U0, one has H ∼ r2p , where r ∈ [0,∞) is a natural radial coordinate,
dr = √

β(U)dU .
The quantity (10) is simply related to the warp factor we get upon dimensionally reducing on

the (8 − d)-dimensional compact manifold. The resulting (d + 2)-dimensional Einstein frame
metric may be written as

(11)ds2
d+2 = κ(U)

[
β(U)dU2 + dxμ dxμ

]
.

A standard calculation shows that κ(U)d = H(U). It is a common assumption that the warp
factor κ(U) is a monotonic function of the holographic radial coordinate. In particular, finiteness
of the holographic central charge [12],

(12)c ∼ βd/2κ3d/2(κ ′)−d ,

requires κ to be monotonic. Since it goes to zero as U → U0 and to infinity as U → ∞, it must
be that κ ′ > 0 for all U . This implies H ′(U) > 0, a fact that will be useful below.
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We need to find the shape U(x) that minimizes the action (9) subject to the constraint U(x →
± l

2 ) → ∞. Denoting by U∗ the minimal value of U along this curve,3 and using the fact that the
action does not depend directly on x, its equation of motion can be integrated once and written
in the form

(13)∂xU = ± 1√
β

√
H(U)

H(U∗)
− 1.

Integrating once more we find

(14)l
(
U∗) = 2

√
H

(
U∗) ∞∫

U∗

dU
√

β(U)√
H(U) − H(U∗)

.

Plugging (13) into (9) we find

(15)
SA

Vd−1
= 1

2G
(10)
N

U∞∫
U∗

dU
√

β(U)H(U)√
H(U) − H(U∗)

.

In the examples we study below, and probably much more generally, the integral in (14) turns
out to be convergent, while that in (15) is not. This is the reason for the appearance of the UV
cut-off U∞ in the latter and its absence in the former.

As mentioned earlier, the entropy SA depends on the cut-off only via an l independent con-
stant, which cancels in differences of entropies. This can be seen from (15) as follows. Denoting
by U∗

1 and U∗
2 the solutions of (14) for l = l1 and l = l2, respectively, we have

(16)SA(l1) − SA(l2) ∼
∞∫

dU
√

β(U)H(U)

[(
1 − H(U∗

1 )

H(U)

)−1/2

−
(

1 − H(U∗
2 )

H(U)

)−1/2]

where we omitted an overall multiplicative constant and focused on the behavior of the integral
in the UV region U → ∞. In that region H(U) → ∞, and we can approximate the integrand in
(16) by

(17)SA(l1) − SA(l2) ∼ (
H

(
U∗

1

) − H
(
U∗

2

)) ∞∫
dU

√
β(U)

H(U)
.

The integrand in (17) behaves as U → ∞ in the same way as that in (14). Thus, if the latter is
finite and does not require introduction of a UV cut-off, the same is true for the former.

To find the dependence of the entropy on l we need to determine U∗(l) by solving (14), and
then use it in (15). In the next sections we will study specific examples of this procedure; here
we would like to make some general comments on it.

Consider first the limit U∗ → ∞. Physically, one would expect l(U∗) to go to zero in this
limit since as l → 0 the minimal action surface should be located at larger and larger U . In terms
of (14) this means that although the prefactor

√
H(U∗) goes to infinity, the integral goes to zero

faster, such that the product of the two goes to zero as well. We will see below that this is indeed
what happens in all the examples we will consider.

3 If the curve is smooth, this value is attained at x = 0, where ∂xU = 0.
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It turns out that l (14) also goes to zero in the opposite limit U∗ → U0. The prefactor
√

H(U∗)
goes to zero in this limit, and as long as the integral does not diverge rapidly enough to overwhelm
it, l → 0. Since any divergence of the integral as U∗ → U0 must come from the region U � U∗ �
U0, it is enough to estimate the contribution to it from this region. In terms of the coordinate r

defined above, one has

(18)l(r∗) ∼ r
p∗

∫
r∗

dr√
r2p − r

2p∗
.

For p > 1 one finds that for small r∗, l(r∗) ∼ r∗; for p = 1, l(r∗) ∼ r∗ ln r∗. In both cases, l → 0
in the limit r∗ → 0 (or, equivalently, U∗ → U0).

We see that for small l the equation of motion (13) has two independent solutions, one with
large U∗ and the other with U∗ � U0. The former is a local minimum of the action (15) while
the latter is a saddle point. We can interpolate between them with a sequence of curves which
differ in the minimal value of U , such that the solution with large U∗ is a local minimum along
this sequence, while the one with U∗ � U0 is a local maximum.

This implies that there must be another local minimum of the effective action, with U∗ smaller
than that of the saddle point. This solution cannot correspond to a smooth U(x), since then
it would be captured by the above analysis. Therefore, it must correspond to a disconnected
solution, which formally has U∗ = U0, but is better described as two disconnected surfaces that
are extended in all spatial directions except for x, and are located at x = ± l

2 .
The entropy corresponding to this solution is given by (see (15))

(19)
SA

Vd−1
= 1

2G
(10)
N

U∞∫
U0

dU
√

β(U)H(U).

By the above analysis it must be smaller than that of the connected solution with U∗ � U0, but
may be larger or smaller than that of the connected local minimum with large U∗.

We saw before that l(U∗), (14), goes to zero both at large U∗ and as U∗ → U0. If the su-
pergravity background is regular, one can show that between these two extremes l is a smooth
function of U∗, that remains finite everywhere. The simplest behavior it can have is to increase
up to some point where ∂l/∂U∗ = 0, and then decline back to zero as U∗ → ∞. We will see that
this is indeed what happens in all the examples we study below.

Denoting the value of l(U∗) at the maximum by lmax, this behavior implies that smooth so-
lutions to the equation of motion (13) only exist for l � lmax. As l → lmax from below, the
local minimum and saddle point discussed above approach each other, merge and annihilate for
l > lmax.

At first sight, the fact that there are no solutions to (13) for l > lmax may seem puzzling,
but it is important to remember that this analysis only captures smooth connected solutions. As
discussed above, for all l we have in addition a disconnected solution for which U ′(x) is infinite.
For l > lmax the entanglement entropy SA is governed by this solution and is given by (19). For
l < lmax one needs to compare the entropies of the connected and disconnected solutions and find
the smaller one. This difference can be written as

(20)
2G

(10)
N

Vd−1

(
S

(conn)
A − S

(disconn)
A

) =
∞∫

U∗
dU

√
βH

(
1√

1 − H(U∗)
H(U)

− 1

)
−

U∗∫
U0

dU
√

βH.
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It is physically clear and easy to see from (20) that for small l the connected solution with large
U∗ has the lower entropy. As l increases, there are in general two possibilities. The connected
solution can remain the lower action one until l = lmax, or there could be a critical value lcrit <

lmax above which the right-hand side of (20) is positive, so that the disconnected solution becomes
the dominant one. In the first case there would be a phase transition at l = lmax; in the second,
the transition would occur at lcrit, and in the range lcrit < l < lmax, the connected solution would
be a metastable local minimum. In all the examples we study below it is the second possibility,
lcrit < lmax, that is realized: as we increase l, the transition occurs before the connected solution
ceases to exist. This is similar to the first-order finite temperature deconfinement transitions found
in gravitational duals of confining gauge theories [8,13–15].

3. D4-branes on a circle

The low energy dynamics of Nc D4-branes in type IIA string theory is governed by (4 + 1)-
dimensional supersymmetric Yang–Mills theory with gauge group U(Nc) and ’t Hooft coupling
λ = gsNcls . In order to reduce to 3 + 1 dimensions and break supersymmetry, we compactify
one of the directions along the branes, x4, on a circle of radius R4, x4 ∼ x4 +2πR4, with twisted
boundary conditions for the fermions.

The low energy dynamics of this system, which was studied in [8], depends on the dimen-
sionless parameter λ4 = λ/R4, and can be investigated using different tools in different regions
of parameter space. For λ4 	 1, it corresponds to pure Yang–Mills theory with gauge group
U(Nc) and ’t Hooft coupling λ4 (at the scale R4). In the opposite limit, λ4 
 1, one can use a
gravitational description in terms of the near-horizon geometry of the branes4

(21)

ds2 =
(

U

R

)3/2[(
R

U

)3
dU2

f (U)
+ dxμ dxμ

]
+ R3/2U1/2 dΩ2

4 +
(

U

R

)3/2

f (U)
(
dx4)2

,

(22)e−2φ =
(

R

U

)3/2

,

where R is related to the five-dimensional ’t Hooft coupling via the relation R3 = πλ, and

(23)f (U) = 1 −
(

U0

U

)3

, U0 = 4π

9

λ

R2
4

.

As U → U0, the radius of the x4-circle goes to zero; (U,x4) form together a cigar geometry of
the type described in the previous sections.

Comparing (21), to (7) we identify α,β,Vint as,

(24)α =
(

U

R

)3/2

, β =
(

R

U

)3 1

f (U)
,

(25)Vint = 8π2

3

(
R3U

) × 2πR4

(
U

R

)3/4√
f (U) = 32π3R15/4

9U
1/2
0

U7/4
√

f (U).

4 Here and below we set α′ = 1.
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Fig. 1. l(U∗) for D4-branes on a circle.

The combination (10) is given in this case by

(26)H(U) = R6
(

32π3

9

)2 U2(U3 − U3
0 )

U0
.

Note that H ′(U) > 0 for all U � U0, as mentioned in the previous section.
The explicit form of the background can be used to verify the assertions of Section 2 about the

behavior of l(U∗). In particular, it is easy to check that the integral (14) converges. For U∗ 
 U0
it is given by

(27)l
(
U∗) = 2R3/2 × 2

√
π

Γ ( 3
5 )

Γ ( 1
10 )

1√
U∗ .

We see that l indeed goes to zero in the limit U∗ → ∞, as expected. Similarly, one can check that
it goes to zero in the opposite limit U∗ → U0. The full curve l(U∗) can be computed numerically
and is plotted in Fig. 1. It has the qualitative structure anticipated in Section 2. The maximum of
the curve occurs at U∗ � 1.2U0, with

(28)lmax � 1.418R4.

At larger values of l, there is no smooth solution to the equations of motion (13).
Turning to the entanglement entropy SA, following the discussion of Section 2 we need to

calculate the entropies of the connected solution (15) and the disconnected one (19), and compare
them. The calculations of the individual entropies must be done with the UV cut-off U∞ in place,
but the difference of entropies is insensitive to it (see (16), (20)).

For the disconnected solution, the entropy can be calculated in closed form:

(29)S
(disconn)
A = 8π3

9

V2R
9/2

U
1/2
0 G

(10)
N

(
U2∞ − U2

0

)
.

For the connected one it is given by (15), which in general has to be computed numerically. For
small l one can again perform the integral using the fact that in this case U∗ 
 U0. One finds

(30)S
(conn)
A (l) = 8π3

9

V2R
9/2

U
1/2

G
(10)

(
U2∞ − 256

[√
πΓ ( 3

5 )

Γ ( 1 )

]5
R6

l4

)
.

0 N 10
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Fig. 2. Entropies of the connected (blue and red) and disconnected (black) solutions for the wrapped D4-brane geometry.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Comparing to (29) we see that for small l the connected solution has lower entropy, in agreement
with the general discussion of Section 2. The fact that the entropy (30) scales like 1/l4 at small l

is indicative of (5 + 1)-dimensional scale invariant dynamics. This is what one expects, since at
short distances the dynamics on the wrapped D4-branes is described by the (2,0) superconformal
field theory in 5 + 1 dimensions. Indeed, we find

(31)S
(conn)
A (l) − S

(disconn)
A = −V2(2πR4)(2πR10)

32
√

π

3

[
Γ ( 3

5 )

Γ ( 1
10 )

]5
N3

c

l4
+ · · ·

which is precisely the entanglement entropy of Nc coincident M5-branes compactified on a circle
of radius R4 and the M-theory circle of radius R10 = gs found in [5].

A naive use of (29), (30) suggests that the disconnected solution becomes the lower entropy
one at l ∼ R3/2/U0 ∼ R4, not far from lmax (28). Of course, the small l approximation leading to
(30) is not valid there, and in order to determine the precise position of the transition we need to
evaluate (15). The result of that evaluation is shown in Fig. 2, where we also exhibit the entropy
of the disconnected solution and, for completeness, that of the saddle point discussed in Section 2
as well.

We see that, as expected, the saddle point entropy is larger than that of the connected and
disconnected local minima for all l. It approaches that of the connected one as l → lmax, and the
disconnected one as l → 0. The entropies of the connected and disconnected solutions cross at
l = lcrit < lmax given by

(32)lcrit � 1.288R4.

As explained in Section 2, the entropy is governed by the connected solution and exhibits non-
trivial dependence on l for l < lcrit, while for l > lcrit it is governed by the disconnected one and
is l independent (to leading order in 1/Nc).

4. D3-branes on a circle

In this section we study the system of Nc D3-branes wrapped around a circle of radius R3
with twisted boundary conditions for the fermions. The discussion is largely parallel to that of
the previous section, and some of the results already appear in [7], so we will be brief.
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Fig. 3. l(U∗) for D3-branes on a circle.

Before the compactification, the low energy theory on the D3-branes is N = 4 SYM with
’t Hooft coupling λ = gsNc. For finite R3 one finds at long distances a (2 + 1)-dimensional
confining theory. For λ 	 1 that theory is (2 + 1)-dimensional YM with ’t Hooft coupling λ3 =
λ/R3 [8]. For λ 
 1 one can instead use a gravitational description in terms of the near-horizon
geometry of the Nc D3-branes,

(33)ds2
10 =

(
U

L

)2[(
L

U

)4
dU2

h(U)
+ dxμ dxμ

]
+ L2 dΩ2

5 +
(

U

L

)2

h(U)
(
dx3)2

,

(34)h(U) = 1 −
(

U0

U

)4

,

where

(35)L4 = 4πλ, U2
0 = πλ

R2
3

,

and the dilaton is constant, φ(U) = 0. Comparing (33) to (7) we find

(36)α =
(

U

L

)2

, β =
(

L

U

)4 1

h(U)
, Vint = 2π4R3L

4U
√

h(U).

The combination (10) is given by

(37)H(U) = (
2π4R3

)2
L4U6h(U).

It is again monotonically increasing with U , as expected.
All the calculations of the previous section can be done in this case as well. The integral (14)

is again convergent. For small l (and large U∗) one finds

(38)l
(
U∗) = 2

√
π

Γ ( 2
3 )

Γ ( 1
6 )

L2

U∗ .

The extension to all U∗ is plotted in Fig. 3. The qualitative shape of l(U∗) is similar to the
D4-brane case shown in Fig. 1. The maximum occurs at U∗ � 1.113U0, and

(39)lmax � 1.383R3.
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Fig. 4. Entropies of the connected (blue and red) and disconnected (black) solutions for the wrapped D3-brane geometry.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The entropy of the disconnected solution is given by

(40)S
(disconn)
A = π4R3L

4V1

2G
(10)
N

(
U2∞ − U2

0

)
,

where V1 is the length of the strip. The entropy of the connected solution is exhibited in Fig. 4.
For small l one has

(41)S
(conn)
A (l) = π4R3L

4V1

2G
(10)
N

(
U2∞ − 4

[√
πΓ ( 2

3 )

Γ ( 1
6 )

]3
L4

l2

)
.

Therefore, for small l we find

(42)S
(conn)
A (l) − S

(disconn)
A = −2

√
π

[
Γ ( 2

3 )

Γ ( 1
6 )

]3

V1(2πR3)
N2

c

l2
+ · · ·

which is the entanglement entropy of the (3 + 1)-dimensional N = 4 SYM theory compactified
on a circle of radius R3 [5].

As is clear from Fig. 4, the transition between the connected and disconnected solutions hap-
pens again at a value of l smaller than lmax. The numerical evaluation gives

(43)lcrit � 1.2376R3.

5. Cascading confining gauge theory

The background dual to the cascading SU(M(k+1))×SU(Mk) supersymmetric gauge theory
is the deformed conifold

∑4
i=1 z2

i = ε2 warped by M units of RR 3-form flux. The relevant metric
is [9],

(44)ds2
10 = h−1/2(τ ) dxμ dxμ + h1/2(τ ) ds2

6 ,

where ds2 is the metric of the deformed conifold
6
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ds2
6 = 1

2
ε4/3K(τ)

[
1

3K3(τ )

(
dτ 2 + (

g5)2) + cosh2
(

τ

2

)[(
g3)2 + (

g4)2]
(45)+ sinh2

(
τ

2

)[(
g1)2 + (

g2)2]]
.

Here

(46)K(τ) =
(
sinh(2τ) − 2τ

)1/3

21/3 sinh τ
,

and the warp factor is given by

(47)h(τ) = (gsMα′)222/3ε−8/3

∞∫
τ

dx
x cothx − 1

sinh2 x

(
sinh(2x) − 2x

)1/3
.

The dilaton is constant and we set it to zero. For the details of the angular forms gi , see [9,16].
The cascading gauge theory has a continuous parameter, gsM . The theory approaches the pure

SU(M) SYM theory in the limit gsM → 0, while the dual supergravity description is reliable in
the opposite limit, gsM → ∞. In this limit the geometry describes a gauge theory with two
widely separated scales: the scale of glueball masses,

(48)mglueball = ε2/3

gsMα′ ,

and the scale of the string tension at the IR end of space (the tip of the cigar),
√

Ts ∼√
gsMmglueball.
The metric (44), (45) is of the form (7) with

(49)α ≡ h−1/2, β ≡ h(τ)ε4/3

6K2(τ )
.

Using
∫

g1 ∧ g2 ∧ g3 ∧ g4 ∧ g5 = 64π3, we get

(50)Vint = 4π3

√
6

h5/4ε10/3K sinh2(τ ).

Thus, all the general formulae of Section 2 apply, with U replaced by the standard deformed
conifold radial variable τ .

We find

(51)H(τ) = e−4φV 2
intα

3 = 8π6

3
ε20/3h(τ)K2(τ ) sinh4(τ ).

H can be seen to be monotonically increasing with τ as noted in Section 2 from general consid-
erations. The general equation (14) with these identifications gives l(τ∗) for the KS background.
As in the previous sections, the integral is convergent. For large τ ∗, we can approximate l(τ )

using the asymptotic forms valid at large τ ,

(52)h(τ) → 21/33(gsMα′)2ε−8/3
(

τ − 1

4

)
e−4τ/3, K → 21/3e−τ/3,

H(τ) → π6ε4(gsMα′)2
(

τ − 1

4

)
e2τ ,

√
β → 2−2/3ε−2/3(gsMα′)

√
τ − 1

4
e−τ/3.
(53)
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Fig. 5. l(τ∗) for the KS geometry.

This leads to the simplified expression,

(54)l
(
τ ∗) = 21/3ε−2/3gsMα′

∞∫
τ∗

√
τe−τ/3 dτ√
τe2τ

τ∗e2τ∗ − 1
.

The main contribution is from the region τ ∼ τ ∗; shifting τ → τ∗ + y and keeping the lowest
order term in y we conclude that for large τ ∗,

(55)l
(
τ ∗) = 21/33

√
πΓ (2/3)

Γ (1/6)
ε−2/3gsMα′√τ ∗e−τ∗/3.

As earlier, l goes to zero as τ ∗ → ∞. One can also verify, as outlined in Section 2, that as τ ∗ → 0,
l goes to zero again. The full curve, computed numerically, is presented in Fig. 5. We see that
it shows the same qualitative behavior as the other cases (Figs. 1, 3). The maximum occurs at
τ ∗ ≈ 2.1 with

(56)lmax ≈ 1.00m−1
glueball.

We now turn to the entanglement entropy SA. As earlier, we have to calculate and compare
the entropies of the connected (15) and disconnected (19) surfaces. As discussed in Section 2,
each of these entropies must be computed with a UV cut-off in place, but the difference of the
entropies is UV finite. The entropy of the disconnected solution is found to be

(57)S
(disconn)
A = V2

M2ε4/3

22/316π3α′2

(
3

2
τ∞e2τ∞/3 − 21

8
e2τ∞/3 + 2.194

)

where the finite additive constant was computed numerically. For the connected solution, we first
consider an analytic approximation valid for small l:

(58)SA

(
τ ∗) = V2

M2ε4/3

22/316π3α′2

τ∞∫
τ∗

(τ − 1/4)3/2e5τ/3 dτ√
(τ − 1/4)e2τ − (τ ∗ − 1/4)e2τ∗ .
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Approximating this integral as we did for l(τ ∗), we find

(59)

SA

(
τ ∗) = V2

M2ε4/3

22/316π3α′2
M2ε4/3

(
3

2
τ∞e2τ∞/3 − 21

8
e2τ∞/3 − 3

√
πΓ (2/3)

2Γ (1/6)
τ ∗e2τ∗/3

)
.

Thus, for l 	 1/mglueball,

(60)S
(conn)
A − S

(disconn)
A = −V2

243Γ ( 2
3 )3

32π3/2Γ ( 1
6 )3

g2
s M

4

l2
log2(mglueballl) + · · · .

In the cascading theory the effective number of colors is a logarithmic function of the distance
scale [9,16,17]:

(61)Neff(l) = 3

2π
gsM

2 log(mglueballl) + · · · .
We see that the finite piece of the entropy is

(62)−V2
27

√
πΓ ( 2

3 )3N2
eff(l)

8Γ ( 1
6 )3l2

+ · · · .

For a (3 + 1)-dimensional conformal gauge theory, the finite piece of the entanglement entropy
is indeed of the form N2

c (V2/l2). Following [5], we may use a minimal surface in AdS5 × T 11 to
find the entanglement entropy in the dual SU(N) × SU(N) SCFT [18]5:

(63)−V2
27

√
πΓ ( 2

3 )3N2

8Γ ( 1
6 )3l2

.

Hence, the result (62) we find for the cascading gauge theory is a reasonably modified form of
the conformal behavior. The same distance-dependent effective number of colors was found in
evaluation of correlation functions in the cascading theory [19,20].

Going beyond the small l limit, we present the result of the numerical evaluation of SA in
Fig. 6 which compares the connected, disconnected and saddle point entropies. As expected, the
saddle point entropy is always the largest and approaches the disconnected solution for small
l and the connected solution as l → lmax. The connected solution has the lowest entropy for
small l and is the dominant contribution in this regime. The point at which the connected and
disconnected solutions cross is lcrit < lmax, which is found to be

(64)lcrit ≈ 0.95m−1
glueball.

For l > lcrit, the O(N2
c ) entropy is l-independent as explained in Section 2.

6. Comparison to field theory

It is natural to ask whether the transition at finite l that we found in confining gravitational
backgrounds also occurs in large Nc asymptotically free gauge theories, such as pure YM or
N = 1 SYM with gauge group SU(Nc). The location of such a transition would have to be

5 The extra factor of 27/16 compared to the result (42) for AdS5 ×S5 comes from the fact that vol(T 11) = 16 vol(S5).
27
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Fig. 6. Entropies of the connected (blue and red) and disconnected (black) solutions for the KS geometry. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

around the QCD scale, lcritΛQCD ∼ 1. At such scales the theory is strongly coupled and it is
difficult to evaluate the entanglement entropy SA directly.

To proceed one can use the fact that, at large Nc, confining gauge theories are expected to
reduce to free field theories of glueballs, whose density of states grows like

(65)ρ(m) � mαeβH m

at large mass m. The inverse Hagedorn temperature βH is of order 1/ΛQCD, and α is a constant.
Both are difficult to calculate from first principles. Most of the states that contribute to (65)
are unstable resonances whose width goes to zero as Nc → ∞. More generally, all interactions
between the glueballs go to zero in this limit. At finite Nc the spectrum (65) is effectively cut-off
at some large mass scale.

We can use the above picture to calculate the entanglement entropy at large Nc, by summing
the contributions of the glueballs. To avoid UV divergences, we will consider the quantity

(66)C = l
dSA(l)

dl

which, as mentioned in the previous sections, does not depend on the UV cut-off. Consider, for
example, a free scalar field of mass m. It is clear that the non-trivial dependence of (66) on l is via
the combination ml. We will be interested in the region ml 
 1, where C(ml) can be calculated
as follows. In 1 + 1 dimensions, the large l form of C(ml) has been obtained in [21]; it is given
by

(67)C1(ml) = ml

4
K1(2ml) �

√
πml

8
e−2ml.

A four-dimensional free scalar field can be thought of as an infinite collection of two-dimensional

ones, labeled by the momentum in the transverse R
2, �k, with mass m(�k) =

√
m2 + �k2. Summing

over these momentum modes we find the (3 + 1)-dimensional version of (67),

(68)C3(ml) = V2

(2π)2

∫
d2�k C1

(
m(�k)l

) � V2

32π

√
πm2

√
ml

e−2ml.
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We see that the contribution of a single scalar field to the entanglement entropy is exponentially
suppressed at large mass.6 This is similar to the exponential suppression of its contribution to the
canonical partition sum at finite temperature, with the role of the inverse temperature β played
here by 2l.

For a theory with a Hagedorn spectrum (65) of bound states, the total entropy is obtained by
summing over all states,

(69)Ctotal =
∫

dmρ(m)C3(m) ∼
∞∫

dmmβe(βH −2l)m.

The integral converges for l > βH /2 and diverges otherwise. This is the analog of the usual
Hagedorn divergence of the canonical partition sum at the Hagedorn temperature. There, the
physical picture is that for temperatures below some critical temperature, that is believed to be
somewhat below the Hagedorn one [22,23], the system is in the confining phase and the thermal
free energy scales like N0

c . Above that temperature, the system is in a deconfined phase and the
free energy scales like N2

c .
Similarly, for the entanglement entropy in gauge theory we expect that for l above some lcrit

that is somewhat larger than βH /2 the entanglement entropy is of order N0
c and is given by the

convergent integral (69), while for l < lcrit the entropy is of order N2
c , in agreement with the

divergence of (69).
The resulting picture is qualitatively similar to what we got from the gravity analysis in Sec-

tions 2–5. Of course, as usual, the details are expected to differ because in the gravity regime
the theory contains two widely separated scales. One is the scale of the lightest glueball masses,
which goes like 1/R4 in the D4-brane analysis of Section 3, like 1/R3 in that of Section 4, and
like mglueball (48) in the KS geometry. The other is the scale of massive string excitations living
near the tip of the cigar,

√
Ts , which is parametrically higher than the glueball scale. Since the

exponential density of states comes from these string modes, we expect βH to be of order T
−1/2
s .

The transition point lcrit in the gravity regime is instead determined by the inverse of the
lightest glueball mass, and is parametrically larger than the Hagedorn scale T

−1/2
s . Thus, as we

decrease l, the transition at l = lcrit to entanglement entropy of order N2
c happens long before

βH , lcrit 
 βH . For example, in the cascading theory lcrit/βH ∼ √
gsM .

In the asymptotically free field theory regime, there is a single scale ΛQCD and everything
happens around it. One can interpolate between the two regimes by tuning the ’t Hooft coupling
(e.g. making gsM small in the KS example). Our results suggest that no phase transition is
encountered along such an interpolation—the two regimes are in the same universality class.

The arguments presented above apply directly to large Nc theories. It would be interesting to
investigate whether the phase transition we found continues to exist at finite Nc, and to character-
ize its order. Studying the entanglement entropy in pure glue SU(Nc) lattice gauge theory would
therefore be very interesting.

7. Discussion

In this paper we applied the holographic method for calculating the entanglement entropy,
introduced in [5], to confining theories with gravity duals. In the simple case of entanglement
between a strip of width l and its complement, we found an interesting phase transition as a

6 The same is true for fermions and other higher spin fields.
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function of l: for l < lcrit the entropy is dominated by the action of a connected surface, while for
l > lcrit by that of a disconnected one. After a subtraction of an l-independent UV divergent con-
tribution, we conclude that the entropy is O(N2

c ) for l < lcrit and O(1) for l > lcrit. This transition
is qualitatively similar to the confinement/deconfinement transition at finite temperature.

Studying the thermal phase transition in confining gravitational backgrounds requires finding
a SUGRA solution with an event horizon, and comparing its action with that of another solution
which is horizon-free but has the Euclidean time periodically identified [8]. In general, these
calculations are complicated and require a considerable amount of numerical work (see, for ex-
ample, [13–15]). Studying the qualitatively similar transition for the entanglement entropy is
much simpler; instead of finding new SUGRA solutions, one needs to find locally stable surfaces
in previously known backgrounds.

We also argued that a transition similar to the one we observed using the methods of [5] should
occur in any confining large Nc gauge theory. This reasoning, and the several examples we have
presented, make it plausible that any consistent gravity dual of a confining theory has to exhibit
this phase transition. This is a useful prediction for any confining gauge/gravity dual pairs that
remain to be discovered.

The existence of the transition in the cases we have discussed is linked to p-cycles of the
internal geometry that shrink in the IR. One could ask if this is the most general situation that
results in the phase transition. As we showed, the monotonic function H(U) = e−4φV 2

intα
d has

to vanish at the IR “end of space”, U = U0. On the other hand, α(U0) should be non-vanishing
for the string to retain its tension in the IR. This seems to restrict us to the vanishing of e−2φVint.
Thus, we should consider models where there are shrinking cycles and/or φ diverges in the IR.

Curiously, one of the most widely used gravitational models of confinement [24], AdS5 with a
hard IR wall at U = U0, exhibits neither of these phenomena because both φ and Vint are assumed
to be constant. Therefore, for such a model the transition of the entanglement entropy does not
seem to occur. This is not surprising, since the notion of the disconnected solution wrapping the
entire geometry is not a priori well-defined in this case. A related problem is that the equations
of motion are not satisfied at U = U0, hence the boundary conditions are ambiguous there.

There may exist a definition of the boundary conditions that allows the disconnected solution
and produces a phase transition of the entanglement entropy (an encouraging sign is that the
thermal deconfining transition does take place in the hard-wall model [25]). Indeed, when the
hard wall model was considered in [5] the contribution from the part of the minimal surface lying
along the hard IR wall was not included in the calculation; hence, it was treated as a disconnected
surface. Justifying such a prescription may be a good problem for the future.

Another popular phenomenological model is the “soft wall” model where space–time has the
geometry of AdS5, while φ(U) blows up in the IR [26]:

(70)ds2
5 = U2(U−4 dU2 + dxμ dxμ

)
, φ(U) = U−2.

Here, there is no shrinking internal cycle but the blow-up of the dilaton causes H(U) to rapidly
approach zero at U = 0.7 In general, if H(U) ∼ Upe−k/Uq

as U → 0, one finds a finite lmax
(above which the connected solution does not exist) provided β(U) has a pole of order 2q + 2
or less at U = 0. One can show this by similar means to those employed in Section 2 where only
shrinking cycles were considered. In all the models considered in this paper so far, q = 0 and

7 For the soft-wall model α(U) = U2, hence the string loses its tension at U = 0. However, the model is typically
treated as a five-dimensional field theory, so it is not clear if the string tension requirement needs to be imposed.
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β had a pole of order less than 2. On the other hand, the soft wall model corresponds to q = 2
while β(U) = 1/U4 and hence still satisfies the criterion for the existence of a finite lmax. For
the soft-wall model one finds that there is indeed a transition between the disconnected solution
stretching from U = 0 to U = ∞ and the connected one that becomes unstable for l > lcrit and
stops existing at lmax.

We see that the entanglement entropy may be useful as a simple test of holographic models
of confinement. More ambitiously, it would be nice to show that, if the confining background
satisfies the supergravity equations of motion (neither the hard-wall nor the soft-wall do), then
there is a phase transition of the entanglement entropy.

Finally, it is important to understand the underlying reasons for the success of the geometric
method of [5]. This prescription is designed to capture only the leading, O(N2

c ), term in the
entanglement entropy. While it has a superficial similarity to probe brane calculations, it does
not seem to be consistent to think of the bulk surface that appears in the construction as a brane.
Indeed a brane with the worldvolume action (6) would have tension proportional to 1/g2

s , and
would back-react on the geometry at leading order in gs . In any case, branes with the right
properties do not seem to exist (see e.g. [27]). We need to formulate the problem in semiclassical
gravity whose solution to leading order in G

(10)
N is the minimization problem proposed in [5].

Hopefully, this can pave the way to finding the O(N0
c ) corrections to the entanglement entropy

and comparing them with field theory.
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