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a b s t r a c t

We consider the properties of spiking neural P (SNP) systems that work in a sequential
manner. These SNP systems are a class of computing devices recently introduced as a bridge
between spiking neural nets and membrane computing. The general sequentiality of these
systems was considered previously; now we focus on the sequentiality induced by the
spike number: at each step, the neuronwith themaximum (orminimum) number of spikes
among the neurons that are active (can spike)will fire. This strategy corresponds to a global
view of the whole network that makes the system sequential. We study the properties of
this type of a restriction (i.e. considering the case of sequentiality induced by the function
maximum defined on numbers of spikes as well as the case of the sequentiality induced by
the functionminimum similarly defined on numbers of spikes). Several universality results
are obtained for the cases of maximum and minimum induced sequentiality.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Spiking neural P systems (in short, SNP systems) were recently introduced in [5], and then investigated in [2,11], thus
incorporating in membrane computing [10] ideas from spiking neurons, see, e.g., [1,6,7]. In this paper we consider a new
restriction on the rule application (or neuron firing) in SNP systems. Several authors have recently noticed that themaximal
parallelism way of rule application (which is widely used in membrane systems) is rather non-realistic in some cases. This
factmotivated the consideration of various ‘‘strategies’’ and changes in the rule application inmembrane systems (or neuron
firing in SNP systems); for details we refer the interested reader to [4,9].
Here we consider the spiking restriction on neurons in the following way: if at any step there is more than one active

neuron (one that can spike according to their pre-defined rules) then only the neuron(s) containing the maximum (or, in
other cases, theminimum) number of spikes (among the currently active neurons)will be able to fire. This is in contrast with
the maximal parallel application of the rules, in which case all the active neurons will fire at that specific step. To exemplify
the firing mechanism of the new strategy, let us consider four neurons: n1, n2, n3, n4 that are the only active neurons at
this step (according to their internal rules and the contents of spikes for each of them). In such a case we would find the
maximum number of spikes stored in n1 through n4, say we have the values 5, 3, 7, 1. Then obviously the neuron n3 holds
the maximum number of spikes, and only n3 will fire at the next step. After the spiking of n3, we update the number of
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the spikes in the whole system according to its synapses, and at the next step the neurons n1, n2, n4 together with n3 will
be checked if they can fire (as they may have been rendered inactive by an increment in their number of spikes stored). If
there is a tie for the maximum number of spikes stored in the active neurons, then there are two distinct strategies that will
be considered in the following: max-pseudo-sequentiality (when all the neurons containing the maximum will fire) and
max-sequentiality (when only one of the neurons containing the maximum will fire).
Themainmotivation behind this spiking strategy is the observation that in a population of cells of the same type (neurons

in this case) which have similar types of rules (the spiking rules in our case) one can notice that the cells containing
larger numbers of a specific molecule species are more active (spike faster/more frequently) than the cells containing lower
numbers of the same molecule. Another observation is the fact that the neurons that receive a large number of spikes are
more probable to spike than the neurons that do not receive many spikes. The samemodeling path was taken also when the
integrate-and-firemodels were defined for neurons, which leads to the neurons that receive more spikes to fire faster than
the neurons that receive lower numbers of spikes.
The restriction proposed abovemakes the spiking of the neurons in the system almost sequential (more than one neuron

can spike simultaneously only in the special case described above when there is a tie for the number of spikes contained).
Because of this, we will call this application strategy pseudo-sequential with respect to maximum. One can also consider
the sequential strategy which resolves the ties by choosing for the next spiking neuron nondeterministically one of the
neurons containing themaximum number of spikes at that moment (out of the active neurons). This second strategy will be
called in the followingmax-sequentiality. We will also study in the current paper the dual notion induced by the minimum
function defined on the number of spikes in neurons. We will obtain universality results also for the min-sequentiality and
min-pseudo-sequentiality cases.1
We will consider also the difference between these devices from the point of view of generators versus acceptors;

specifically, we notice a major difference between systems with deterministic neurons working as generators as opposed to
acceptors. We see that the acceptors are universal whereas the generators are only able to generate one single value (thus
are non-universal).

2. Spiking neural P systems

The original definition of spiking neural P systems was given in [5]; the interested reader can find in the reference above
the motivation, basic results etc. Let us recall the basic definition in the following.
A spiking neural membrane system (abbreviated as an SNP system), of degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0),where:

(1) O = {a} is the singleton alphabet (a is called spike);
(2) σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m,where:
(a) ni ≥ 0 is the initial number of spikes contained in σi;
(b) Ri is a finite set of rules of the following two forms:
(1) E|ac → a; d, where E is a regular expression over a, c ≥ 1, and d ≥ 0;
(2) as → λ, for some s ≥ 1,with the restriction that for each rule E|ac → a; d of type (1) from Ri, we have as /∈ L(E)2;

(3) syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses between neurons);
(4) i0 ∈ {1, 2, . . . ,m} indicates the output neuron (i.e., σi0 is the output neuron).

The rules of type (1) are firing (we also say spiking) rules, and their usage is described in the following. If the neuron
σi contains k spikes, and ak ∈ L(E), k ≥ c , then the rule E|ac → a; d can be applied. The application of this rule means
consuming (removing) c spikes (thus only k − c remain in σi), the neuron fires and produces a spike after d time units (as
usual in membrane computing, a global clock is assumed, marking the time for the whole system, hence the functioning
of the system is synchronized). If d = 0, then the spike is emitted immediately, if d = 1, then the spike is emitted in the
next step, etc. If the rule is used in the step t of the computation and d ≥ 1, then we have the following setting: in steps
t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed (this corresponds to the refractory period from neurobiology), so that it
cannot receive new spikes (if a neuron has a synapse to a closed, refractory, neuron and tries to send a spike along it, then
that particular spike is lost). In the step t+d, the neuron spikes and becomes again open, so that it can receive spikes (which
can be used starting with the step t + d+ 1).
The rules of type (2) are the forgetting rules; they are applied as follows: if the neuron σi contains exactly s spikes, then

the rule as → λ from Ri can be used, meaning that all s spikes are removed from σi.
If a rule E|ac → a; d of type (1) has E = ac , thenwewill write it in the following simplified form: ac → a; d. Furthermore,

if d = 0 the rule will omit the delay in the notation: thus a rule (aa)∗|a→ a; 0 will be written from now on as (aa)∗|a→ a.
In each time unit, if a neuron σi can use one of its rules, then a rule from Ri can be used at the next step. Since two firing

rules, E1|ac1 → a; d1 and E2|ac2 → a; d2, can have L(E1) ∩ L(E2) 6= ∅, it is possible that two or more rules can be applied in

1 The paper is an extended and improved version of the work reported in [3], where, among others, the min-sequentiality case was not considered.
2 By L(E)we denote the language associated with the regular expression E.
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a neuron, and in that case only one of them is chosen non-deterministically. Note however that, by definition, if a firing rule
is applicable, then no forgetting rule is applicable, and vice versa.
We note that the rules are used in the sequential manner in each neuron, but neurons were previously considered to

function in parallel with each other. It is important to notice that the applicability of a rule is established based on the total
number of spikes contained in the neuron. Thus, e.g., if a neuron σi contains 5 spikes, and Ri contains the rules (aa)∗|a→ a,
a3 → a, a2 → λ, then none of these rules can be used: a5 is not in L((aa)∗) and not equal to a3 or a2. However, if the rule
a5|a2 → a is in Ri, then it can be used: two spikes are consumed (thus three remain in σi), and one spike is produced and
sent immediately (d = 0) to all neurons linked by a synapse to σi, and the process continues.
Starting from a fixed initial distribution of spikes in the neurons (initial configuration) and using the rules in a

synchronized manner (a global clock is assumed), the system evolves. A computation is a sequence of transitions starting
from the initial configuration. A transition is maximally parallel in the sense that all neurons that can apply at least one rule
must use such a forgetting or spiking rule. However, in any neuron, at most one rule is allowed to fire. Further details about
the motivation of the definition as well as the properties of the original model of SNP systems can be found in [5].
One can associate a set of numbers withΠ in several ways. We follow here the idea of [5] and we consider the intervals

between the very first two consecutive spikes of the output neuron as the numbers computed by such a device. Furthermore,
we will consider only halting computations.
Let us consider in the following the max-sequentiality for SNP systems:

Definition 1 (Max-sequentiality). SNP systems defined as above are working in the max-sequentiality manner if (by
definition) the system is choosing as the spiking neuron at each step only one of the neurons that can fire (thus the system
works in a sequential way), and furthermore, the spiking neuron chosen at each time-step has the maximum number of
spikes stored among all the other active neurons in that step.

Definition 2 (Max-pseudo-sequentiality). Systems can work in max-pseudo-sequentiality manner if (by definition) at each
time-step fire all the neurons that store the maximum number of spikes among all the active neurons at that step.

Of coursemax-sequentiality is forcing the system to work in a sequential manner as at each step at most one neuron can
fire, whereas the max-pseudo-sequentiality allows two or more neurons to fire at the same time if all those neurons hold
exactly the same number of spikes and that number is the highest value of spikes that is stored among all the active neurons
at that moment.
The definitions for min-sequentiality and min-pseudo-sequentiality are obvious dual definitions for the above two

definitions in which the maximum is replaced by minimum.
An SNP system can be used as a computing device in various ways. Here, as in previous papers, we will use them as

generators of numbers.
(Classification of neurons). We can characterize the neurons from such a system to be of three classes as defined in the

following:

(1) A neuron is bounded if every rule in the neuron is of the form ai|aj → a; d, where j ≤ i, or of the form ak → λ, provided
that for a rule ak → λ there is no rule of the form ak|al → a; d in the neuron. Note that there can be several such rules
in the neuron. These rules are called bounded rules. (For notational convenience, we will write ai|ai → a; d simply as
ai → a; d.)

(2) A neuron is unbounded if every rule in the neuron is of the form E|ak → a; d where the language associated with
E is infinite (i.e. we have at least one ∗ or + in the regular expression E). (Again, there can be several such rules in
the neuron.) These rules are called unbounded rules. As an example, the neuron having the following three rules is
unbounded: a2k+3|a5 → a; 1 and a2k+3|a6 → a; 2 and a2k|a2 → a; 1.

(3) A neuron is general if it can have general rules, i.e., bounded as well as unbounded rules. As an example, the neuron
having the following three rules is general: a2k+3|a5 → a; 1 and a15|a6 → a; 2 and a2k|a2 → a; 1.

(Classification of SNP systems). The classification of neurons into the three classes of bounded, unbounded and general
can be extended naturally to systems of neurons in the following way. An SNP system is bounded if all the neurons in the
system are bounded. If, in addition, there are unbounded neurons then the SNP system is said to be unbounded. A general
SNP system has general neurons.
In this paper, we will study SNP systems operating in sequential and pseudo-sequential mode as described above.

Informally, this means that at every step of the computation only active neurons that hold the maximum (or minimum)
number of spikes can execute a firing rule. For each neuron that is spiking at one step only one spiking rule
(nondeterministically chosen) is to be fired.
As defined before in [4], we can consider the effect of the notion of strong sequentiality (or pseudo-sequentiality) and

the weak one on the power of such devices.

(1) Case 1: At every step, there is at least one neuron with a fireable rule (the strong case). We show that:
(a) We obtain universality for unbounded SNP systems with delays.
(b) We also get universality even for systems without delays, but in this case the type of rules needs to be extended (a
neuron can send more than one spike at a time).
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Fig. 1. The addition module for l1 : (ADD r, l2, l3).

(2) Case 2: Not every step has at least one neuron with a fireable rule (the weak case). (Thus, the system might be dormant
until a rule becomes fireable. However, the clock will keep on ticking.) We will consider this second case in the future
studies of such systems. One should note that even for the restrictive previous case we obtain universality, thus we need
to investigate systems with even lower power than in that case.

For the basic definitions and prerequisites we refer the interested reader to [12,10,13]. We will use in the following
universality proofs the fact that register machines are universal, but due to space limitations we will not provide the
prerequisite description of the register machines, the reader is referred to [13] and [8] as this is a common proof technique.
Wewill study in the following the generative power of this restriction in the application strategy of the SNP systems.We

will compare the previous results for the unrestricted sequential SNP systems as defined in [4] with results obtained for the
devices that use the restricted versions of sequentiality proposed above (the max-sequentiality and min-sequentiality).

3. Universality of systems using the max-sequentiality strategy

We will start the description of results of these systems by giving the first theorem about systems based on strongly
max-sequentiality with delays. We will show the universality of such systems as opposed to the result in [4] where the
strongly sequential ones were shown to be not universal.

Theorem 3. Unbounded SNP systems with delays working in a strongly sequential mode induced by the maximum number of
spikes (max-sequentiality) are universal.

Proof. Wewill show that any register machine can be simulated by a systemworking in a max-sequentiality manner, with
rules using delays. Since it is known that the register machines are universal see e.g. [8], this would also prove that SNP
systems as considered are also universal.
As we will see in the following, we will need to use rules with delays only for the neurons simulating the ADD rules in

the register machine.
Let us give a brief description of the construction. In the system we will have neurons associated with each label in the

program code of the register machine, also the registers will be modeled by neurons holding 2n spikes for the value n being
stored in the register. Thus the ADDmodule will need to increase by 2 the number of spikes stored in the neuron associated
with the register r (effectively incrementing the register r in the simulation) and then choose nondeterministically a new
instruction to execute out of the two possibilities given by the ADD instruction.
In the following, in Fig. 1 we give the graphical description of the neurons that can be used to simulate a rule of the form

l1 : (ADD r, l2, l3):
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Fig. 2. The subtract module for l1 : (SUB r, l2, l3).

The template module described in Fig. 1 works as follows: the neuron l1 spikes, signalling that the instruction l1 is being
executed, then the neurons a1 and a2 are activated, since a1 has at this moment two spikes and a2 only one, and due to the
max-sequentiality mode of operation for the system, a1 fires first, but has a delay of size one associated with its rule, at the
next step a2 fires (since at that moment it is the only active neuron), making the spikes from a1 and a2 to arrive at the same
time in the neuron r . We will see later that the neurons of type r can only fire when they hold an odd value, thus receiving
two spikes keeps the neuron r inactive. At the same time a2 sends spikes towards neurons a3 and a4. The job of the neurons
a3 and a4 is to choose nondeterministically which register rule to activate next: l2 or l3. This is achieved by the fact that when
receiving the spikes from a2, both a3 and a4 are activated, both have exactly one spike at this moment, so we need to choose
nondeterministically between them the one to fire next. Depending on the choice, the corresponding instruction l2 (for a3)
or l3 (for a4) is activated. This is done in two steps: a3 (or, in the other case, a4) fires, then it sends to the other neuron a4 (or,
in the other case, a3) another spike, making the forgetting rule applicable, and another spike to the neuron simulating the
label of the next instruction. Since the a4 (or, in the other case, a3) neuron holds two spikes versus one spike for the label
neuron, we first apply the forgetting rule, and then we receive a spike in neuron l3 (or, in the other case, in l2). This means
that the spike from l1 activates the module that increases the number of spikes in neuron r by 2 and then sends one spike
in neuron l2 or l3 nondeterministically choosing which one. All the other neurons remain unchanged with respect to the
initial configuration of the module. It is clear now that the simulation of the ADD rule in the register machine is correctly
performed by the module described in Fig. 1. Since the module arrives in a similar configuration as its start configuration, it
is clear that one can re-use the same module as many times as it is needed, as well as compose through the ‘‘label’’ neurons
several such modules to simulate several ADD instructions from the register machine.
We will now give in Fig. 2 the module simulating the SUB instruction from the register machine. We will show that the

simulation of the SUB instructions is also keeping the configuration similar with the start configuration of such a module
making these modules reusable (composable).
In Fig. 2, when the neuron l1 fires, it sends two spikes, one to the neuron r (modeling the register that is decremented or

checked for zero) and one to the neuron s1. We note that wewill start with two spikes in the neuronsmodeling the registers
(we will take care of the correct counting in the finalizing module). We also start with three spikes in the neuron s1; thus at
the next step the neuron s1 contains exactly 4 spikes, whereas the neuron r contains exactly 2n + 3 spikes, where n is the
contents of the register r in the counter automaton.
We have now two possible cases:

Case I: If the register r is empty, itmeans that the neuron r holds exactly 3 spikes. Since these are the only two active neurons
at this moment (r and s1), then s1 will execute first since it has four spikes (one more than r). This means that all four spikes
in neuron s1 are deleted through the forgetting rule applicable there; then at the next step r spikes sending one spike back
to s1 and activating s2. At the next step s2 fires sending one more spike to s1 and sending another one back to r which
was empty. At the next step s3 fires also replenishing the two initial spikes in r and the third spike in s1. This means that
we reached a configuration similar to the original configuration when l1 spiked, and now l3 is activated (since the register
was empty).
Let us consider the case when the register r would be non-empty which forms Case II. Since the register r holds the value

n which is non-empty, then the neuron r would hold 2n + 3 spikes, with n ≥ 1, thus r will hold at least 5 spikes, more
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Fig. 3. The halting module.

than the four held by s1. This means that r spikes next, sending one spike to s1 and another spike to s2. At the next step s1
will have 5 spikes as opposed to s2 that holds only one, thus s1 spikes removing two spikes. Then at the next step we will
have s1 holding 3 spikes and being inactive, s2 holding 2 and l2 holding one. Thus next s2 will forget its two spikes, making
the configuration as before the module was activated and then the simulation can continue with the instruction labeled l2
(simulated by the neuron l2 which is the only active neuron at this time).
It is clear that the rules from the registermachine are correctly simulated by themodules presented above.What remains

to consider is the finishing stage inwhich the output register is read and processed in our setting.Weneed the output neuron
to fire twice, and the number of clock cycles between the two fires to be exactly n where 2n + 2 is the value stored in the
neuron r corresponding to the output register r in the register machine.
Without loss of generality we can assume that the output register is never decremented (the register machine can be

easily changed by adding another register and a couple of rules that would copy the contents of the output to the new
register that would never be decremented).
Whenwe activate the halting label in the register machine we send a spike to the output neuron (the neuron s1 in Fig. 3).

Thus at the next step s1 spikes (being the only active neuron), then both r and s1 become active. Thus the one holding the
maximum number of spikes will fire. One can notice that in r we are deleting exactly 2 spikes each time, thus s1 will let r
spike as long as the register r (in the register machine) is non-empty, and at each time step two more spikes are removed
(thus the register r is decremented by one each clock cycle). Thus the second time that s1 spikes would have been exactly n
clock cycles after the first spike, making the whole system to correctly simulate the work of the starting register machine.
This completes the proof. �

If we consider the case of extended systems (where the neurons can sendmore than one spike through the synapse in one
clock cycle), then we can easily remove the delay that appears in the template for the ADD instructions that was described
in Fig. 1.

Theorem 4. Extended unbounded systems operating under the max-sequentiality strategy that use only neurons without delays
(thus strongly sequential) are universal.

Proof. We change the ADDmodule depicted in Fig. 1 in the following way: change the rule in a1 to: a2|a→ a2 and remove
the synapse between a2 and r . Everything else remains the same, thus one would use the template from Fig. 2 for the SUB
instructions and use the module described in Fig. 3 for the terminating work. �

In the following section we will consider an even more realistic way of spiking for the neurons in the system: if there are
ties for the maximum number of spikes stored in active neurons, then all the active neurons holding the maximum number
of spikes will fire. This will be the case of max-pseudo-sequentiality that is discussed next.

4. Results concerning the universality of systems using the max-pseudo-sequentiality strategy

We start by noting that there is no nondeterminism at the level of the system: from each configuration to the next, we
know for sure which neuron(s) will fire next (this was not the case with the max-sequentiality discussed in the previous
section, for example one can refer to the work of neurons a3 and a4 in Fig. 1). Since the SUB module from Fig. 2 and HALT
module from Fig. 3 given for the proof of Theorem 3 have always a single neuron holding themaximum, they actually satisfy
also themax-pseudo-sequentiality case. It only remains to describe the ADDmodule for this setting of pseudo-sequentiality.
We will see that we can give a system that does not use delays since the previous ADDmodule was the only module using
this feature; thus we obtain the universality of the systems without requiring delays.

Theorem 5. Unbounded SNP systems without delays working in the max-pseudo-sequentiality mode are universal.

Proof. As we already mentioned above, we only need to describe the ADD module without delays that would be used as
a template for simulating all the ADD instructions from the register machine that we simulate. The module is described
in Fig. 4:
We will explain the work of the module depicted in Fig. 4 in the following. We start with the neuron l1 firing, then the

neurons a1 and a2 are activated as they both receive a spike from l1. Because there is a tie for themaximum spikes contained
in the active neurons, both a1 and a2 fire, sending exactly two spikes to r and another two spikes in a3. We have simulated
the incrementing of register r , so what remains now is the nondeterministic jump to the instruction labeled either l2 or l3.
This will be achieved by sending a single spike at the end of the processing in the module either to the neuron l2 or neuron
l3, which is done with the help of neurons a3 through a8. Because the contents of r will have an even number of spikes, it
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Fig. 4. The addition module for l1 : (ADD r, l2, l3).

is inactive at the next step, thus only a3 can fire. At this moment we will have a nondeterministic choice between firing
using the rule a7|a2 → a or a7|a→ a. The choice is whether the neuron will fire once (with a7|a2 → a) or twice (through
a7|a→ a, and then a6|a→ a).
Case I: Let us assume that a3 uses the rule a7|a2 → a, then at the next step only a4 is active, and after a4 fires, both a5

and a6 are active, but a5 holds 2 spikes and a6 holds 3, thus a6 fires. This means that at the next step a5 (with 3 spikes) and
a7 (with one spike) are active, so a5 fires, erasing all its spikes and then a7 activates the new instruction to be executed, l2.
Let us consider the other case.
Case II: a3 fires the rule a7|a→ a, then at the next step both a3 (with 6 spikes) and a4 (with 1 spike) are active, then a3

spikes once more, making a5 the only active neuron, at the next step a4 with 3 spikes is activated, together with a8. Then a5
and a4 apply their forgetting rules, and then a8 activates the label l3.
Thus we correctly simulated the increment instruction on register r and the module depicted in Fig. 4 reaches a

configuration similar to its start configuration; thus it can be reused as well as linked with other modules. The SUBmodule
from 2 and HALT module from 3 remain the same. This completes the proof. �

An interesting observation is the fact that if one considers deterministic neurons (neurons inwhich the regular languages
associated with each rule are disjoint), then such a system cannot produce nondeterminism. Thus we have immediately the
following result:

Theorem 6. A system of deterministic neurons working in a max-pseudo-sequential manner (as a generator) is non-universal.

Proof. We notice that we cannot have nondeterminism at the level of neurons because they are deterministic. Since the
determinism at the level of the system is also removed by the max-pseudo-sequentiality, then each such system will
generate at most one value for each starting configuration. Obviously such devices that are able to generate only singleton
sets are non-universal. �

This previous result contrasts with the fact that if such devices are used in an acceptor mode, then they are universal:

Theorem 7. A system of deterministic neurons working in a max-pseudo-sequential manner (as an acceptor) is universal.

Proof. Given an acceptor register machine, one can construct an SNP system with input neuron r simulating the work of
the register machine.
We start with the neuron r containing exactly 2n + 2 spikes (for the value n to be accepted or rejected by the register

machine). Then using the ADD module from Fig. 4 and the SUB module from Fig. 2 given above one can simulate correctly
the instructions in the register machine. Thus if we reach the neuron with the label HALT , we should accept the value n,
whereas if we do not reach the neuron HALT , then we should reject the value n. �

Wenowpass to the dual case of considering theminimum rather thanmaximumwhen choosingwhich neuronwill spike
next. What this means is that at any step we will be choosing the active neuron that has the minimum number of spikes.

5. Universality of systems using the min-sequentiality strategy

As opposed to Theorem 3, we obtain the universalitywithout delays for the casewhen considering theminimumnumber
of spikes in neurons rather than the maximum. Since we have the min-sequentiality without delays then the system will
also operate in a so-called strongly sequential mode. This result is obtained in the case when the output is realized through
accumulation of spikes in the output neuron rather than the time elapsed between the two spikes of the output neuron.
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Fig. 5. The addition module for l1 : (ADD r, l2, l3), min-sequentiality.

Theorem 8. Unbounded SNP systems operating under the min-sequentiality strategy without delays are universal. In this case
we consider the output to be given as the number of spikes in a given neuron.

Proof. Wewill show that any register machine can be simulated by a system working in a min-sequentiality manner, with
rules without delays.
Let us give a brief description of the construction: In the system we will have neurons associated with each label

in the program code of the register machine, also the registers will be modeled by neurons holding 2n spikes for the
value n being stored in their respective register. Thus the ADD module will increase by 2 the number of spikes stored
in the neuron associated with the register r (effectively incrementing the register r in the simulation) and then choose
nondeterministically a new instruction to execute out of the two possibilities given by the ADD instruction.
In the following Fig. 5 we give the graphical description of the neurons used to simulate a rule of the form l1 :

(ADD (r), l2, l3):
Let us give the description of the work of the module depicted in Fig. 5. When the neuron l1 fires it increases the number

of spikes stored in neuron r and activates the neuron a1. At this point the register r has at least two spikes stored (since it
starts with 2, and the SUB instruction (as wewill see in Fig. 6) will never decrement it beneath 2), thus the next neuron firing
is a1 (having only one spike). When a1 fires a2 and a3 receive each one spike. Neuron r receives one more spike at this step
effectively incrementing the register r . By increasing with 2 spikes the contents of neuron r we have effectively simulated
an increment in the value of the register r (2 spikes mean the addition of value 1 to the contents of the register). At the next
step we have a tie between the neurons a2 and a3 with respect to the minimum number of spikes stored in each of them.
Depending on which neuron wins the tie (a2 or a3) then the next instruction in the register machine is chosen (l2 or l3). The
process proceeds in the following way: a2 fires, then l2 will store 3 spikes and a3 only 2, so a3 will first use the forgetting
rule a2 → λ and then l2 will fire, signalling the beginning of the simulation of instruction with label l2. In a similar way we
have also the case for the activation of l3. It is clear now that the ‘‘helper’’ neurons will have the same number of spikes as
they had in the initial configuration of the system, thus this module can be re-used any number of times (depending on how
many times the instruction is used in the register machine).
Let us now pass to the case of modeling the SUB instructions in the register machine. We will need to consider both the

case when the register is non-empty and the case of the empty register.
For an instruction l1 : (SUB r, l2, l3) we will have the following module in Fig. 6 that simulates the work of the register

machine instruction:
We will now describe in detail the work of the SUBmodule from Fig. 6: for the case when r 6= 0 we will have the neuron

r containing at least five spikes, since at the same step β1 contains only four spikes, we have that the next neuron that fires
is β1. It fires and then β2 and β3 receive one spike each. β2 has only one spike, so it will fire at the next step, then β3 will now
store 4 spikes and cannot fire as it does not contain any rule applicable for 4 spikes. Thus, at this step we have that neuron r
is firingmaking its number of spikes even (and in this way brings β1 to its original number of three spikes); also it pushes β3
to five spikes and at the same time the neuron α1 will reach six spikes. Since β3 stores less spikes than α1 (5 < 6) we then
have β3 firing at the next step. During the next clock-cycle α1 is receiving its seventh spike and β4 is activated (it will hold
eight spikes). Obviously α1 has less spikes than β4, thus α1 forgets all its spikes and during the next step β4 fires activating
β5. During the next few steps the neurons β5, β6, β7, β8 are used to replenish the contents of the neuron α1 to five spikes
that it had originally, and after this sequence of fires, l2 is activated by sending one spike to that neuron. Obviously we will
have the same configuration for the neurons in the system as the initial configuration, and the contents of the neuron r was
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Fig. 6. The subtract module for l1 : (SUB r, l2, l3), min-sequentiality.

decremented by 2 and the next instruction label was chosen as l2. Considering all of the above, it should be clear that the
work of the instruction SUB in the case when the register is non-empty is correctly simulated by the given module.
We now pass to the second case, when r = 0. In this setting the neuron r contains exactly 3 spikes whereas the neuron

β1 contains 4 spikes. Because of this, at the next step we will have the neuron r firing. α1 receives its sixth spike, β1 receives
its fifth spike and β3 receives its third. Thus at the next step β3 forgets all its spikes, then β1 forgets all its spikes, and finally,
α1 fires. The neurons α2 and α3 are then activated sequentially and used to replenish β1 and β3 to their original levels
(3 and respectively 2 spikes). These neurons are used to replenish as well the contents of register r to the value 2. Finally
the instruction l3 is activated by the spike being sent to the register l3.
It is clear that the rules from the register machine are correctly simulated by the modules presented above.
Sincewe consider the casewhen the output is by definition the contents of a specific register and becausewe can assume

without loss of generality that the output register is never decreasing we can change briefly the ADD modules that are
involving the output register: we will use as a template the ADDmodule presented as above in Fig. 5, but since there is no
decrement instruction associated with this register, there is no need for storing double the number of spikes with respect
to the value of the register. Thus only for the output register, if we store the value 8 in the register rout , we will have 8 spikes
in the neuron labeled rout . We can remove the synapse between a1 and rout in the ADD module depicted in Fig. 5 and the
behavior needed is achieved.
It should be clear now that at the end of the simulation the neuron rout will hold exactly the same number of spikes as

the value of the register rout in the register machine, thus we have correctly simulated the register machines and proved the
universality of SNP systems that work in a min-sequential way without delays and which have the output considered as the
number of the spikes stored in a specific neuron in the final configuration of the system. �

Wehave showed that systems based onmin-sequentiality are universal; the questionwhethermin-pseudo-sequentiality
is universal or not is still open. One can note immediately (from the proof of Theorem 8) that the module from Fig. 5 would
not work correctly in the pseudo-sequentiality case, thus the proof is not trivial.

6. Final remarks

We plan to continue the investigation of this special type of strategy that induces the sequentiality (or pseudo-
sequentiality) of the system. We are working on improving the results obtained; especially in the min-sequentiality case
we believe that universality can be obtained also for the more restrictive case of the output being the time that elapsed
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between two consecutive spikes of the output neuron rather than the number of spikes stored at the moment of the halting
computation.
Another direction would be to consider SNP systems that are stochastic with respect to the next spiking neuron in the

following sense: each active neuron has a probability of spiking that increases with the number of spikes stored in the
neuron. Such a strategy would yield probabilistic results for the computation, which we believe would be very interesting
to characterize and study. We will pursue more avenues of research in this direction as we believe that this model could be
very relevant to an experimental implementation of such a stochastic system.
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