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The sums of several interesting infinite series were recently expressed in terms of 
the Psi (or Digamma) functions. The object of this paper is to present a systematic 
account of these (and of numerous similar or more general) series whose sums can 
be found in the literature in various equivalent forms. Some relevant unifications 
and further generalizations are also indicated. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

We begin by recalling a well-known (rather classical) result, which gives 
the sum of an infinite series in terms of the Psi (or Digamma) function 

l)(z) =; {log T(z)} =z, (1.1) 

in the form 

f (v), -=Il/(n)-Ij(n-V) 
n= 1 n(A), 

(Re(A--v)>O;I#O, -1, -2 ,... ), (1.2) 
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where (A), is the familiar Pochhammer symbol defined by 

W+n) 1, 
(4n=-= 

i 

if n =0, 
n(n+l)*..(n+n-l), if ncN = (1,2, 3, . ..}. 

(1.3) 

The summation formula (1.2) and its obvious special cases were revived, in 
recent years, as illustrations emphasizing the usefulness of fractional 
calculus in evaluating infinite sums. For a detailed historical account of 
(1.2), and of its various consequences and generalizations, see one of the 
latest works on the subject by Nishimoto and Srivastava [9]. 

In terms of a generalized hypergeometric rFs series defined by 

( r<s, lzl<co;r=s+l, /z1<1;r=s+l, IzI=l,and 

Re( f: Pj- i aj)>o), 
j=l j=l 

provided that no zeros appear in the denominator, the summation formula 
(1.2) can be rewritten at once as 

(v#O;Re(l-v)>O) 

(1.5) 
(v = 0; Re(lZ) > 0), 

which was proven, by using a simple technique involving I’Hiapital’s 
theorem on limits, by Luke [7, p. 1111. Making use of essentially the 
same technique, Kalla and Al-Saqabi [S] gave an alternative proof of the 
equivalent result (1.2) without applying the operators of fractional calculus. 
More importantly, they recorded the following additional consequences of 
the same technique’ [5, p. 16, Sect. 31: 

5 (-l)“(a), 
ff=l 41 +a), =$( > l+$ -$(l +a); (1.6) 

1 Formula (1.7) is the corrected version of the corresponding result in Kalla and Al-Saqabi 
C5, P. 16, Eq. W)l. 
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J, *(a ~~;~;;; b)H 

T(l+b-a+m)zJl-a)z-(l+b) 
=r(l+b-a)r(l-a+m)T(l+b) {W +N+Y), (1.8) 

where (as claimed in [S, p. 161) mENo= Nu (O}, and y= -tj(l) is the 
Euler-Mascheroni constant; 

ng n(1,2 :‘p:;:pa:: (2b) ” 

=$(;++)+++b)-t,$++b)-$(;) 

(Re(2b - a) > - 1); 

ng, n(b) ‘(YYbyf!L m) 

=i(b-u+m)+ti;b)-$(b+m)-$(b-u) b E No); 

E (aIn @L 
n=l n(a--m),n! 

=11/(1--a+m)-$(1-u)-~(1-b)--~ 

(Re(b)<l -m;mEN,,); 

fl n(a+ :;);zlj:;c- 1) n n 

b(c-u- 1) 
= (c- l)(bbu) {+(l +‘)+?I 

u(c-b- 1) 
- (c- l)(b-u) {ILcl +b)+Y) 

or, equivalently, 

nE!, n(uc+-x;,: n) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 
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(a), (1 + (1Pb)” @L (c)n 
n=l 4(1/2b), (1 +a), (1 +a-b)n (1 +a--), 

=I)(1 +a-6)+$(1 +a-C)-#(l +a)-$(1 +a-b-c) 

(Re(u-b-c)> -l), (1.14) 

and 

(a + m), (b), f(u - b + m) f(u) 

n(a), (1 + b), = r(u+m)r(u-b) ‘V+(l+b)+y’ 

(m E N,; see [S, p. 17]), (1.15) 

provided, in each case, that no zeros appear in the denominators. 
In this paper we aim at presenting a systematic account of each of the 

series (1.6) to (1.15), and of numerous other series related to them. We also 
consider some relevant unifications and further generalizations of many of 
these results. 

2. VALIDITY AND NOVELTY OF THE SUMMATION FORMULAS (1.6) TO( 1.15) 

First of all, a closer look at the right-hand side of (1.8) will reduce it 
readily to the form 

,,z, n(u ‘2; ‘; ;; b), n 

r(l+b-u+m)r(l--a) 

-r(l+b-u)r(l-u+m) 

Replacing a by a + m, and noting that 

r(l +b-u)T(l -u-m) (1 

Ml +b)+d (m E N,). (2.1) 

-a)-, (a-b), =- 
r(l+b-a-m)r(l-u)=(l+b-a)-, (a), 

f(u - b + m) T(u) 
=r(u+m)T(u-b) (m E Md, 

(2.1) immediately implies the summation formula (1.15). On the other 
hand, (1.15) with a replaced by a - m (m E N,) similarly yields the summa- 
tion formula (1.8). Thus the two summation formulas (1.8) [or (2.1)] and 
(1.15) are the same result written in two seemingly different forms. More 
importantly, the series occurring on the left-hand sides of (1.8), (2.1), and 
(1.15) diverge for each m E IV. It follows that the summation formulas (1.8), 
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(2.1), and (1.15) are valid only when m = 0, in which case each 
results reduces to the form 

$ (b), 
x=1 41 +b)n 

=$(l+b)+y 

or, equivalently, 

365 

of these 

(2.2) 

(2.3) 

Formula (2.2) or (2.3) is a widely recorded special case of the well- 
known result (1.2) when 

v=b and i=l+b, 

since I(I( 1) = -y. Consequently, the corrected (convergent) version (2.2) of 
the summation formulas (1.8), (2.1), and (1.15) is an obvious consequence 
of the familiar result (1.2). 

Next we turn to the summation formula (1.12). Just as the transition 
from (2.2) to (2.3), the equivalent form (1.13) follows readily from (1.12) 
when we apply the definition (1.3) to Pochhammer quotients like 

Thus it would suflice to consider (1.13). Indeed, observing that 

c+n-1 c-u-l 1 c-b-l 1 -- 
(a+n)(b+n)= b-u a+n b-a b+n’ 

the left-hand side of (1.13) can be rewritten in the form 

.zl n(aYn~(hin)=chail nz, i$Gj 

c-b-l Oc 1 - 
b-a c- 

,,=, n(b+n)’ 

(2.4) 

(2.5) 

(2.6) 

If we now apply (2.3) to sum each series on the right-hand side of (2.6), we 
are led at once to the summation formula (1.13). Since (2.3) is a (widely 
recorded) special case of the well-known result (1.2), the summation 
formula (1.12) or (1.13) may be looked upon as being an interesting 
corollary of (1.2) itself. 
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In view of the elementary identity (2.4), the summation formula (1.6) 
assumes the form 

f C-1)” -=y~(l+f.)-d(l+o)}, 
“=I O+fi) a 

(2.7) 

which is essentially the same as the known result’ (cf. [3, p. 102, 
Eq. (6.1.14)]) 

f C-1)” -‘{p(l+3)-ln2), 
n=l n(J+cm) 2 

(2.8) 

where (and in what follows) p(z) is defined by 

As a matter of fact, since 

(2.8) with 1= a and ,U = 1 yields (2.7), and (2.7) with a = 1/,u leads to (2.8). 
Making use of the hypergeometric notation (1.4), the summation 

formula (1.6) becomes 

3 F 2 [ 
1, 1, 1 + a; 

2, 2 
-1 

+a; 
1 =F i $(l+a)-++$z)j (2.11) 

or, equivalently, 

3F2 [ 1, 1, a; = - ln 2, -1 1 + a; 1 ~Vta) 21, (2.12) 

which was recorded, for example, by Prudnikov et al. [ 10, p. 547, 
Entry 7.45161. 

The following hypergeometric forms of the summation formulas (1.9) 
and (1.10) can easily be written from the definition (1.4): 

1, 1, 1 +a, 1 +b; 
2,4(3+a),1+2b; 

1 1 

(Re(26 - a) > - 1); (2.13) 

2 Formula (2.8) appears erroneously in Hansen [3, p. 102, Eq. (6.1.14)] where b(y/x) 
should be corrected to read #?(( y/x) + 1). 
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l,l,l+a,l-m; 1 
2,1 +b, 2+a-b-m; 1 

b(l +a-b-m) = 
ma 

{J/(b-a)+$(b+m)-$(b)-$(b-a+m)j 

(mEN). (2.14) 

Replacing a, b, and m by a - 1, b - 1, and m + 1, respectively, and applying 
the relationship 

l+qz) = I)( 1 -z) - 7c cot nz, (2.15) 

this last result (2.14) can be rewritten as 

1, 1, a, -m; 

2,b, l+a-b-m; 
1 =(b-l)ta-b-m) 

1 (m+ l)(a- 1) 
{$(b+m)+$(l +a-b) 

-$(b-l)-$(a-b-m)) 

(m E W. (2.16) 

Each of the hypergeometric summation formulas (2.13), (2.14), and 
(2.16) is a known result. Formula (2.13) was given by Lavoie [6, p. 2721, 
and (2.14) in the equivalent form (2.16) is recorded, for example, by 
Prudnikov et al. [lo, p. 556, Entry 7.5.3.433. As a matter of fact, (2.16) 
with a = A + m (m E N,) was given earlier by Luke [S, p. 167, Eq. 5.2(21)]. 

Formula (1.7) is a limiting case of (1.9) when b + 00. Equivalently, the 
hypergeometric summation formula 

+${*(;+;a)--*(;)) (2.17) 

follows immediately from the known result (2.13) upon letting b + co. 
The summation formula (1.11) [with a replaced trivially by a + m 

(mE N,)] was recorded by Hansen [3, p. 131, Eq. (6.6.94)]. 
We conclude this section by remarking that the summation formula 

(1.14) (of Kalla and Al-Saqabi [ 53) does not seem to have been noticed 
earlier. Indeed, in view of the elementary identity (2.4), we can rewrite 
(1.14) in the form 

m a+2n 
c- 

(b), (c)n 
n=, n(a+n) (1 +a-b), (1 +a-~), 

=$(l +a-b)+$(l +a-c)-$(l +a) 

-Il/(l +a-b-c) (Re(a-b-c)> -1). (2.18) 
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3. UNIFICATIONS AND GENERALIZATIONS 

Suppose that F’(n) is a polynomial in x of degree < r - 2, and let 

(3-l) 

where (and in what follows) the parameters A,, . . . . 1, are constrained by 

Then, clearly, 

Ajpk # lkpj (j # k; j, k = 1, . . . . r). 

.e (~j~k-~k~j)-’ (k= 1, 
J 1 
j#k 

and 

kil Ak fi lj=((n,-&) i +=o. 
j=l k=l k 
i#k 

. ..) r) 

(3.2) 

(3.3) 

(3.4) 

Making use of (3.1), (3.4), and the summation formula (2.3), it is easy to 
derive an interesting unification (and generalization) of numerous results 
like (1.13), (2.2), and (2.3) in the form 

=-- ~,~~-‘p(-~)e(l+~)~~(Lirk-~k~j)-‘, (3*5) 

i#k 

provided that each of the inequalities in (3.2) holds true. 
In precisely the same manner, we can show for a polynomial Q(x) in x 

of degree <r - 1 that 

=- 
~~~;-‘Q(-~)s(‘+~)~~(i..i-,k~j)-‘, (3.6) 

where B(z) is defined by (2.9), and each of the inequalities in (3.2) is 
assumed to hold true. 
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The summation formulas (3.5) and (3:6) can be suitably specialized to 
yield scores of hitherto scattered results. If, for example, we set 

r=3 and P(x)=p+qx 

in (3.5), we shall obtain an interesting generalization of (1.13) in the form 

(3.7 

provided that JL/p, p/a, and t/q are unequal. Indeed, since I/?( 1) = -y, (3.7 
does yield ( 1.13) when we set 

p=c-l,q=1,I=O,~=l,p=a,a=1,~=b,and~=1. 

On the other hand, (3.7) with 

p=t; and 4=rl 

immediately reduces to a result given, for example, by Bromwich [ 1, p. 522, 
Example 421 and Hansen [3, p. 103, Eq. (6.1.18) 3. As a matter of fact, 
Hansen [3, p. 106, Eq. (6.1.65); p. 108, Eq. (6.1.89)] records two other 
special cases of the summation formula (3.7) when 

(i)p= 1 and q=o; (ii)p= -1 and q= 1. 

A summation formula, analogous to (3.7) would follow from (3.6) upon 
setting 

r=3 and Q(x) = (P + qx)(u + 0~). 

We thus obtain 

Oc (-l)“(p+qn)(ti+un) c 
n=l (A+m)(P+an)(5+v) 

(3.8) 

which, for u = 1 and u = 0, provides the aforementioned analog of (3.7). 
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Among the various special cases of the summation formula (3.8), 
recorded in the literature, we mention only the following three: 

(i) u=&u=q,~=l,andq=O; 
(ii) u=t,u=q,p=-l,andq=l; 

(iii) u=l,v=O,p= -l,andq=l, 

given in Hansen [3, p. 103, Eq. (6.1.23); p. 105, Eq. (6.153); p. 108, 
Eq. (6.1.91)]. In fact, the first one of these known special cases [3, p. 103, 
Eq. (6.1.23)] contains (1.6), (2.7), and (2.8) as its obvious further particular 
cases. 

For positive integer values of the parameter quotients &/,uk (k = 1, . . . . r), 
the general results (3.5) and (3.6) were given by Chrystal [2, p. 248, 
Eq. (9); p. 253, Exercise 381 and Jolley [4, p. 218, Entries 1107 and IlOg]. 
On the other hand, Hansen [3, p. 115, Eq. (6.1.193); p. 122, Eqs. (6.3.56) 
and (6.3.58)] recorded the special cases of (3.5) and (3.6) when 

P(x)= (x- 1)” (s=O, 1,2, . ..) r-2) 

and 

Q(x)=(x-1)’ (s = 0, 1, 2, . . . . r - l), 

respectively, and Prudnikov et al. [lo, p. 573, Entry 7.10.2.3 J gave the 
generalized hypergeometric forms of (3.5) and (3.6) when 

P(x) = Q(x) = 1. 

Finally, we recall a unification (and generalization) of numerous results 
including, for example, (1.6), (l.lO), (1.14), (2.7), (2.8), (2.11), (2.12), 
(2.14), (2.16), and (2.18) in the form 

m a+2n c- (b),(c), (1+2a-b-c+m), (-m), 
n=,n(a+n) (1 +a-b), (1 +a-C)” (b+c-a-m), (1 +a+m), 

=$(l +a-b)+$(l +a-c)+$(l +a+m)+lj(l +a--b-c+m) 

-*(l +a)-$(1 +a-b-c)-+(l +a--b+m) 

-$(l +a-c+m) tm E w, (3.9) 

which was derived recently by Srivastava [12] as an interesting conse- 
quence of Dougall’s theorem [ll, p. 244, Eq. (111.14)]. 

Letting m + co, (3.9) readily yields the summation formula (1.14) in its 
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equivalent form (2.18). Moreover, if we replace c on both sides of (3.9) by 
1 + a - c, and then let a + co, we shall obtain [cf. Eqs. (2.14) and (2.16)] 

g .(c),:4’2-2- m), 

=$(c)+lj(c-b+m)-$(c-b)-$(c+m) (m E NoI, (3.10) 

which is essentially the same as the summation formula (1.10). Obviously, 
in their limiting case when m + co, both (3.10) and (1.10) would at once 
correspond to the well-known summation formula (1.2). 

When c -+ -co, the general summation formula (3.9) reduces to 

~~,ifS%)(l+a~~~~"+)~+m)n 

=$(l +a--b)+ll/(l +a+m)-$(l +a) 

-$(l +a--b+m) (m E WA (3.11) 

which, upon letting m -+ co, yields 

c m a (-1)“(b)n =()(I +u-b)-+(l+u) n=l n(u+n)(l +a-b), 
(Re(u - 2b) > -2). (3.12) 

Formula (1.6), as well as its equivalent forms (2.7) (2.8) (2.11) and 
(2.12), would correspond to the special case of (3.12) when b = (1/2)u. 
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