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Abstract

We consider generalizations of the definitions of one-dimensional tilting and cotilting modules
which agree with the classical notions of tilting and cotilting modules of finite homological
dimension.
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1. Introduction

The classical notion of tilting and cotilting modules was first considered in the case
of finite-dimensional algebras by Brenner and Butler [3] and by Happel and Ringel [10]
in the 80s. The tilting (cotilting) modules considered in these papers are finitely generated
and of projective (injective) dimension one. In [13] Miyashita considered finitely generated
tilting modules of finite projective dimension, while generalizations of tilting modules of
projective dimension one over arbitrary rings have been considered by many authors: Colby
and Fuller [5], Colpi and Trlifaj [6]. In [6] an infinitely generated moddles said to be
tilting if GenT = T, where Ger is the class of modules which are epimorphic images
of direct sums of copies & andT* is the class of module® such that ExXt(T, M) = 0.

This definition generalizes the classical notion of tilting modules and its natural dual gen-
eralizes the classical notion of cotilting modules. In [1] Angeleri Higel and Coelho carry
over an extensive study of infinitely generated tilting and cotilting modules of finite ho-
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mological dimension over arbitrary rings producing the important result that tilting and
cotilting classes provide for special precovers and special preenvelopes (see Section 2 for
definitions). In this paper we generalize to thelimensional case the notions introduced

by Colpi and Trlifaj in the one-dimensional case and we prove that the classes of modules
satisfying our new definitions coincide with the classes of tilting and cotilting modules
studied by Angeleri Hiigel and Coelho. Moreover, our results in the tilting case, are gener-
alizations of results in [11].

2. Preliminaries

R will denote an associative ring with identity a®dMod the class of lefiR-modules.
We recall the notion of cotorsion pair introduced by Salce [14]. Given a clssf
modules, let denote

LM ={X € R-Mod | Exth(X, M) =0forall M e M} and
M+ ={X € R-Mod | Exty (M, X) =0 forall M € M}.

A pair (A, B) of classes oR-modules is called a cotorsion pairif =18 andB = A+L.
A is called the cotorsion-free class, whids called the cotorsion class. Given a cldgs
of modules, the pairs

Gaa= ("M (“M)) and = (H(M). M)

are cotorsion pairs, called the cotorsion padrsneratedand cogeneratedby M,
respectively.

For everyR-moduleM, ProdM (Add M) will denote the class of modules isomorphic
to summands of direct products (direct sums) of copiesviof CogenM will denote
the class of theR-modules cogenerated by, namely the class of modules which are
embeddable in a product of copiesMf and GenM will denote the class of thR-modules
generated by, namely the class of modules which are epimorphic images of direct sums
of copies of M. It is evident that anrR-module N € CogenM if and only if, for every
0 # x € N there is a morphisnf € Homg (N, M) such thatf (x) # 0 and anR-module
N € GenM if and only if, for every O£ x € N there is a finite number of morphisms
fi e Homg(M, N) such thatc € ), Im f;.

We recall now the definitions of tilting and cotilting modules of dimension one
introduced by Colpi and Trlifaj [6].

Definition 1. If R is any ring, ankR-moduleU is said to be Ieotilting if - U = Cogent.
Definition *1. If R is any ring, ank-moduleT is said to be ltilting if 7+ = GenT.
Thus, in the above terminology, if is a 1-cotilting module, thehU = Cogenl is the

cotorsion-free class of the cotorsion pair generatetf bRpually, if 7 is a 1-tilting module,
thenT! = GenU is the cotorsion class of the cotorsion pair cogeneratefi.iyote that
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for any R-module M, - M (respectivelyM ') is closed under submodules (respectively
epimorphic images) if and only if the injective (respectively projective) dimensias id
(respectively pd1) of M is less than or equal to 1; thus a 1-cotilting (respectively 1-tilting)
module has injective (respectively projective) dimension at most one and this explains the
terminology used in Definitions 1 and *1.

As proved in [2,6,7], the above definitions are respectively equivalent to the following.

Definition 2. An R-moduleU is 1-cotilting if the following three conditions hold:

(1) idU < 1;
(2) Ext,(U*, U) =0 for every cardinal;
(3) there exists an exact sequence
0—-Uy—>Upg— E—Q,
whereF is an injective cogenerator &-Mod andUg, Uy € ProdU'.

Definition *2. An R-moduleT is 1-tilting if the following three conditions hold:

(1) pd7T <1;
(2) Exti (T, T™) = 0 for every cardinak;
(3) there exists an exact sequence

0—- R—>Ty— T — 0,

whereTp, T1 € AddT.
In the one-dimensional case the following alternative definitions are available.

Definition 3. An R-moduleU is 1-cotilting if and only ifU satisfies conditions (1), (2) of
Definition 2 and

(3) for any R-moduleM, Homg (M, U) =0 and Ex} (M, U) = 0 imply M =0.

Definition *3. An R-moduleT is 1-tilting if and only if T satisfies conditions (1), (2) of
Definition *2 and

(3) for any R-moduleM, Homg (T, M) =0 and Exi;(T, M)=0imply M =0.

We recall the notions gprecover special precoverandcoverintroduced by Enochs
and Xu in [9,15]. If X' is any class of modules an8l € X, a homomorphismp e
Homg (X, M) is called anX-precoverof the R-module M, if for every homomorphism
¢’ € Homg (X', M) with X’ € X there exists a homorphisyit. X’ — X such thapy’ = ¢f .

An X-precovergp € Homg (X, M) is called anX-coverof M if for every endomor-
phism f of X such thatp = ¢f, f is an automorphism oX. An X'-precoverp of M is
said to bespecialif ¢ is surjective and Kep € X'+.
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The notions ofX-preenvelope, speciak-preenvelopgand X'-envelopeare defined
dually.

A classX is said to be grecovering( preenvelopingcovering enveloping if every
R-module admits at’-precover §'-preenvelope’-cover,X-envelope).

The following two results, dual to each other, will be used throughout.

Lemma 2.1 [4, Proposition 1.8]Let N, M be R-modules. Assume that € CogenM and
M* e LM, for every cardinal. Then there exists an exact sequence

0—-N-—>M - L0, whereL ctM.
Proof. Itis enoughto lef = Homg(N, M). O

Lemma 2.2 [6, Lemma 1.2].Let N, M be R-modules. Assume tha&f € GenM and
M™ e M+, for every cardinal.. Then there exists an exact sequence

0L ->MD SN 0, whereL € M+.

Proof. Itis enoughto lef =Homr(M,N). O

3. n-Cotilting and r-tilting modules

We recall the generalization of the notion of tilting and cotilting modules to modules
of finite homological dimension introduced by Angeleri Hiigel and Coelho in [1] and
investigated also by Krause and Solberg in [12].

Definition 4. An R-moduleU is n-cotilting if and only if the following three conditions
hold:

(C1) idU < n;
(C2) ExtR(U*, U) =0 for eachi > 0 and for every cardinal;
(C3) there exists a long exact sequence
O—-U - ---—>U;—Uy— E— 0,
whereE is an injective cogenerator &-Mod, U; € ProdU, for every 0<i <r.

U is said to be partiat-cotilting if it satisfies conditions (C1) and (C2).

Definition *4. An R-moduleT is n-tilting if and only if the following three conditions
hold:

(T1) pdT <n;
(T2) Ext,(T,T™) =0 for eachi > 0 and for every cardinal;
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(T3) there exists a long exact sequence
O->R—>Ty—Tr— ---—T,—0,
whereT; € AddT, for every 0<i <r.
T is said to be partiat-tilting if it satisfies conditions (T1) and (T2).
It is easy to show (see Proposition 3.5), that/iis ann-cotilting module, then in the
long exact sequence in (C3)can be chosen to be less than or equal.tbhus, in the case
n = 1, the above definition agrees with the one introduced in Section 2. Analogously, the

same remark holds for 1-tilting modules.
For any class\t of R-modules we will consider the following classes:

Lo M = {X € R-Mod | Exti (X, M) =0, VM € M, Vi > 1},
LiM ={X € R-Mod | Exty (X, M) =0, YM € M},
12/ M = [X € R-Mod | Exty (X, M) =0, VM € M, Vi > j}.
ML, MLi andM+>i are defined dually. 1M = {M}, we will use the notation$> M,
LimM,t>iM andMte, MY, Mt>i,
Useful generalizations of Lemmas 2.1 and 2.2 are given by the following result which
is a slight generalization of [1, Lemma 2.4].

Lemma3.1[1, Lemma 2.4]Let N, M be R-modules.

(i) Assume thalv € CogenM, N € t~M, and M* € L+~ M, for every cardinal.. Then
there exists an exact sequence

0> N—>M —-1L—->0 whereL ety

(i) Assume thalv € GenM, N € M+~ and M*» e M1~ for every cardinalr. Then
there exists an exact sequence

0L —->MD SN 0, whereL ¢ M.
An application of the preceding lemma yields the following result.

Lemma3.2. LetU be ann-cotilting module. AnrR-moduleM belongs tot> U if and only
if there exists an infinite exact sequence of the form

O M->U"r>5UY > ... U% — ...,

for some cardinalg; . In particular, -~ U is closed under direct products.
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Dually, let T be ann-tilting module. AnR-moduleM belongs toT - if and only if
there exists an infinite exact sequence of the form

N G N Sy LC VRN SNy ¢ )
for some cardinals; . In particular, 7 is closed under direct sums.

Proof. The statement concerningcotilting modules has been noted in [12, Proposi-
tion 5.4]. The dual statement for antilting module T follows easily by the fact that
T+~ C GenT (see [1, Lemma 2.3]), by Lemma 3.1(ii), and by dimension shifting.

If U is a 1-cotilting module, ther~U = LU = Cogenl/. If U is an n-cotilting
module, then it is no longer true thateU = Cogenl/, but as proved in [1, Lemma 2.3],
L~y c Cogent. Dually, if T is a 1-tilting module, the+~ = T+ = GenT, and if T
is ann-tilting module, thenT+>~ C GenT'. In Proposition 3.6 we will see that suitable
notions of CogepU and of Gep T will yield the equalities'~U = Cogen U and
T1~ = Gen, T, for n-cotilting modules/ andn-tilting modulesT .

For anyn-cotilting moduleU, let X =t~ U andX; = L=y, Similarly, for anyn-tilt-
ing moduleT, let X = T+, x; = 71>/,

Remark 1. Note that, if ¥ = 1> M, for some modulé/, thenX+~ = X1 and similarly,
if X =M1=, thentex =1X (see[1, Lemma1.2]).

In [1, Theorem 3.1, Proposition 3.3] it is proved that= +>~ U (respectivelyt’ = T+~)
is precovering (respectively preenveloping) and, moreover, that for evanpdule M
there exists a specialt’-precoverX 2, M of M such that Kep € X (respectively
a specialt¥-preenvelope/ 2, X of M such that Cokep € L X).

Another important result proved in [1, Lemmas 2.3, 2.4] states tltaisfann-cotilting
module, then¥ N X1 = ProdU and if T is ann-tilting module, then¥ N1X = AddT.
We will use this result throughout the paper.

For anyR-moduleM of injective dimension at mogt, we choose an injective resolution

0—>Mﬁ>10£>11—>---ﬁ>1,1—>0,

where for everyj > 0, I; is injective and we leC; = Ker f; 1 for everyj > 0.

Lemma 3.3. In the above notations, we haver* M = 1iC, and L2+t M = L1>i ¢y, for
everyi > 1,k >0.

Proof. It follows immediately by considering the long exact sequences induced by apply-
ing the functor Homg (—, M) to the short exact sequences0C, — I, — C,4+1 — 0, for
eachr >0. O

; L2j .
We now turn to the classési U andT defined above.
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Lemma 3.4. Assume thaU is ann-cotilting R-module and let¥; = L>iU. For every
J = 2, X; consists of theR-modulesM such that there exists an exact sequence of the
form

0->Uj-1—>Xj 0—>-—>X1—>Xo—>M—0, (1)

whereU;_; € ProdU andX; € Loy, for every0 < i < j — 2. In particular, & is closed
under productsfor everyj > 1.

Dually, assume thaf" is ann-tilting R-module and lett; = T+>i. For everyj > 2,
X; consists of th&kR-modulesM such that there exists an exact sequence of the form

O-M—->Xo—>X1—> > Xj2—>Tj_1—0, (1)

whereT;_; e AddT andX; T1= for every0 <i < j — 2. In particular, X; is closed
under direct sumdor every; > 1.

Proof. By a dimension shifting argument it is immediate to check that the sequence (1)
yields Ext}/ (M, U) = Ext,(U;_1, U) = 0 for everyi > 1, henceM € X;. To prove

the converse we proceed by induction priet j =2 and letM € A». Consider a special
precover 0— Y — X — M — 0 of M whereX € X, Y € X*. Clearly, Ex{,(Y, U) =
Ext‘;rl(M, U), foreveryi > 1. Thus,Y € '=>U = X, henceY € X N X+ which coincides

with ProdU by [1, Lemmas 2.3, 2.4]. S0 & Y - X - M — 0 is a sequence of
type (1) for M. Assuming the statement true for any2 < j, we prove it forj + 1.

Let M € X;41 and let 0—» Y — X' — M — 0 be a specialt’-precover of M. Since

X' e X andM € 1>+1U, it is evident thatY € 1>/U = X;. Thus, by induction, there
exists a sequence

0—-Uj1—Xj2—--—>Xo—>Y—=0, (2)
with U;_; € ProdU, X; € +=U. From (2) we obtain the sequence
0— U}—)X;_1—>---—>X’l—>X6—>M—>O,
WhereU;. =U;_1, X,’.Jrl = X;, for 1<i < j — 2, X, = X’ which satisfies the wanted
conditions.
To prove the second statement note that, by [12, Lemma 3.2, is closed under
products. Let nowW M, }.c4 be a family of modules belonging t&;, for j > 2. By the
first part of the proof, for each, there exist sequences

0—>Uj-14—> Xj—204— - — Xoa—> My —0;

hence we obtain the sequence

0— HUjfl,oz_>l_[XjfZ,a_>"‘_>l_[X0,a_>l_[Ma_>O'
o o o o
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SinceX is closed under products, the sequence (2) showq fhat, € &.
The dual statement is easily seen to be trug.

Using the preceding lemma we can now prove the following result.

Proposition 3.5. Let U be ann-cotilting R-module. LetE be an injective cogenerator of
R-Mod for which condition(C3)is satisfiedi.e., E fits in the exact sequence

O—-U,—» ---—>U;1—>Uyg— E—QO,

with U; € ProdU, for everyO < i < r. Thenr <idU can be chosen and the minimal
lengthr of any such sequence is exadtly/.

Dually, let T be ann-tilting R-module. Consider the exact sequence given by condi-
tion (T3)

O-R—>Ty—Tr— - ---—T—0,

whereT; € AddT, for everyO <i < r. Thenr < pdT can be chosen and the minimal
lengthr of any such sequence is exagiyT .

Proof. The fact thatr can be chosen so that< id U is well-known (see [13]), but for
convenience we recall its proof. Consider the sequence

00 L s Eso

satisfying condition (C3) and assume> idU. Let K;11 = Kerf;, henceK, =

U, € X1, whereX = t~U. SinceX" is closed under cokernels of monomorphisms, we
getK; € X1, forevery 1< i < r; thus, in particular, ifn =id U, K,, € X. By dimension
shifting we have

Exty (K, U) = Extd™ (K1, U) = Ext™ (E, U),

for everyi > 1; hencek,, € X. Since,X N X+ = ProdU (see [1]), we conclude that
K., € ProdU and thus- =m can be chosen in the above sequence.

We show now that cannot be strictly smaller than id. Assume idJ =m andr < m.
By dimension shifting we obtain, as above,

0=Exty(K,, U) = Exty" (E, U),

foreveryi > 1; henceE € X, 11 = L>ri1y, By Lemma 3.4X, +1is closed under products,
henceE” € X, 41, for every cardinaly. Let N be an arbitraryR-module; sinceF is an

injective cogenerator, there exists an exact sequence

0—- N— E"— N;— 0,
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which gives rise to the exact sequence
0= Ext, Y (E?°, U) — Exty™ (N, U) — Extg™(Ny, U).

Repeating the same argument we can emlgdn a productEY? with cokernel N2
obtaining the exact sequence

0= Ext;"?(E", U) — Exty"2(N1, U) — Exty3(Na, U).
After 0 < k =m — r steps we obtain
0= Exty™ (EY1,U) — Extg™ (Ni—1, U) — Extz (N, U).

Since idU = m, Ext;"* (N, U) = 0, hence going back steps we conclude that

Extjjl(N, U) = 0. SinceN was arbitrary, we get the contradictionlio< r.
The dual result is proved by dual argumentss

Definition 5. For every R-module U denote by CogenlU the class consisting of the
R-modulesM for which there exists an exact sequence of the form

O-M->UN>UR—>...5 U™

for some cardinalg;; and by Cogeg U the class oR-modulesM for which there exists
an infinite exact sequence of the form

O- MU UR > ... 5 U > ...
for some cardinalg;.
Dually, for everyR-moduleT denote by GenT the class consisting of thR-modules
M for which there exists an exact sequence of the form

T(an) > > T(O‘Z) — T(al) — M — O

for some cardinalg; ; and by Gen, T the class ofR-modulesM for which there exists an
infinite exact sequence of the form

e Tl e e a0
for some cardinals; .

First, we note the following.
Proposition 3.6. Let U be ann-cotilting R-module. Thert=~U = Coger U. Moreover
Cogen U = Cogen ., U = Cogen, U, for everyk > 0.

If T is ann-tilting R-module, therf 1t~ = Gen, T. Moreover Gen, T = Gen, .« T =
Gen, T, for everyk > 0.
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Proof. By Lemma 3.2, every modul#f in X = U fits in an infinite exact sequence of
the form

O-M->Ur>5U* > ... 5% > ...

for some cardinalg;, thus there exists also a sequence of the same type and of length
So X C Cogern U. For the other implication, leM € Cogen U and consider an exact
sequence

0 ML yn 2 gre g

Let L; = Cokerf;; by dimension shifting, Ef;;(M, U) = Ext*t(L,, U), for everyi > 1.
Hence,M € X, since idU < n. Thus, CogepU = X. To prove the second statement, note
that, clearly, Cogeg U < Cogen, U < Cogen U. Conversely, it € Cogen U, then

M e X, hence as noted at the beginning of the pragi Cogen, U. The statement about
n-tilting modules is proved dually. O

Our next goal is to prove the converse of Proposition 3.6. The final result (see
Theorem 3.11) will be proved in several steps. First, we need two lemmas.

Lemma3.7. Let M be anR-module and le0 —- A — B & C — 0 be an exact sequence.
If A, C e CogenM andC €M, thenB e CogenM.
Dually, if A, C € GenM andA € M+, thenB € GenM.

Proof. Let 0# x € B; if x € A, then there existg € Homg(A, M) such thatf (x) # 0.
Since Ex}e(C, M) =0, f is extendible to a mapf’: B — M, hence f'(x) # 0. If

x ¢ A, then(x) # 0. Since C € CogenM, there is a mapg:C — M such that
g(m(x)) #0.Thusg' = gom € Homg (B, M) andg’(x) # 0. The dual statement is proved
accordingly. O

A stronger version of the preceding lemma is given by the following.

Lemma 3.8. Let M be an R-module such that/* € L~ M for every cardinalr and
LeM C CogenM. Let0 — A — B — C — 0 be an exact sequence.Afe Cogen, M
andC e+~ M, thenB e Cogen, M, for everym > 1.

Dually, let M be an R-module such that® e ML~ for every cardinali and
Mt~ C GenM. Let0 - A — B — C — 0 be an exact sequence.dfe Gen, M and
A € Mt~ thenB e Gen, M, for everym > 1.

Proof. The proofis by induction om. The casen = 1 follows by Lemma 3.7. Assuming
the result true for any ¥ j <m, we prove it form + 1. Consider an exact sequence

0-A—-BZ%Z C—0,
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whereA e Cogen, ., M andC € 1~ M. Choose a sequence
0O—-AL M - A1—>0

with A1 € Cogen, M. Since, Ex}(C, M’) =[], Exth(C, M) = 0, we have an epimor-
phism

Homg (B, M7) — Homg (A, M) — 0,

thus i is extendible to a magp:B — M’. Our hypotheses now allow to apply
Lemma 3.1(i); hence there exists an exact sequence

0—>C% M - C;—0,
whereC; € -~ M. Consider the following commutative diagram:

0 0 0

0 0 0

where¢ is defined byy (b) = p(b) + (v o m)(b), for everyb € B, and the third row is
obtained by lettingV = Cokerg. In the third row we havet; € Cogen, M, C1 € t= M,
hence, by inductive hypothesi8] € Coger, M. Thus, the second column yields €
Cogen,, 1 M.

The dual statement is proved accordinglyl

We can now prove the following result.

Lemma 3.9. Let M be anR-module such that~M = Cogery M. ThenM is a partial
n-cotilting R-module.

Dually, let M be anR-module such that/ -~ = Gen, M. ThenM is a partial n-tilting
R-module.
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Proof. We have to show tha¥ satisfies conditions (C1) and (C2) of Definition 4. Clearly,
M satisfies (C2), sincé/* € Coger M for every cardinak. We show now that idf < n.
Let N be an arbitraryk-module and consider a projective resolutiomaf

PjLPj_1—>---—>P1£>P0ﬁ>N—>O;

let K,,+1 = Ker f,, for everym < j. For every projective modul®; in the above sequence
there is a cardinat; and an exact sequence

0P —>M"—>C;—0 (E)

with C; € =M. In fact, P; € +=M, hence, by hypothesi®; € Cogerny M < CogenM.
Applying Lemma 3.1(i), we obtaid; € -~ M. We now claim:

(A) K, € Cogen, M, for everym.

We prove the claim by induction om. If m =1, thenK; € Pp € CogenM. Assume
the claim true for every ¥ j < m. The sequences

0— Kp+1—> Ppn—> Ky —0

and (E) yield the exact sequence

Pm Molm
N
Km+l Km+l

0— — Cp, — 0.

Since Py, /K1 = K, and C,, € -2 M, the inductive step and Lemma 3.8 allow
to conclude thatM*" /K,,,1 € Cogen, M. It follows that K,,1 € Cogen,,; M and
claim (A) is proved.

In particular, K,, € Cogeny M, hencek, € Leopr. Applying a dimension shifting
argument to the projective resolution &f considered at the beginning of the proof, we
obtain Ext;"1 (N, M) = Exts (K,, M) = 0; hence idV < n, sinceN was arbitrary.

The dual statement is proved similarly, starting with an injective resolutian.

Proposition 3.10. Let M be anR-module such that~M = Coger M. ThenM is an
n-cotilting R-module.

Dually, let M be an R-module such thaf/+~ = Gen, M. ThenM is an n-tilting
R-module.

Proof. Inview of Lemma 3.9M is a partiak-cotilting R-module and, moreovete M C
CogenM. Thus, as remarked in the last four lines of [1], the proof of [1, Proposition 3.3]
carries over giving the conclusion thi#t is n-cotilting.

The dual statement is proved analogously, but applying [1, Theorem 44].

We can now state our main result which follows immediately by Propositions 3.6
and 3.10.
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Theorem 3.11. Let U be anR-module. TherU is n-cotilting if and only ifCogen U =
Loy, Dually, an R-moduleT is n-tilting if and only if Gen, T = Tt

In Section 2 we recalled that there are three equivalent definitions of 1-tilting and
1-cotilting modules. We ask now whether Definitions 3 and *3 have a correspondent
formulation forn-tilting andn-cotilting modules.

To this aim, consider the conditions:

(C3) Homg(N, U) =0 and Ex},(N,U) =0, for everyi > 1 imply N = 0.
(T3) Homg(T, N) =0 and Exk (T, N) =0, for everyi > 1 imply N = 0.

It is immediate to check that i/ is ann-cotilting module, therU satisfies (C1), (C2),
(C3); analogously, ifT is ann-tilting module, thenT" satisfies (T1), (T2), (T3 but the
converse is not true as it is shown by the following example due to G. D’Este.

Example 1 (G. D’Este[8]). Let R denote theK -algebra given by the quiver

with relationab = 0. LetU = i be the indecomposable projective corresponding to the
vertex 2. Thenid/ = 2 andU satisfies (C2)U satisfies (C3, since the simple module 2 is
the unique indecomposable such that Hah U) = 0 and Ex§ (2, U) = Exth (1, U) #0.

But U is not 2-cotilting, since it is not faithful, hence it does not cogeneRat8imilarly,

let, T = ; be the indecomposable injective corresponding to the vertex 2. Thdh=2l

and T satisfies (T1), (T2)T satisfies (T3, since the simple module 2 is the unique
indecomposable such that H@itT", 2) = 0 and Exﬁ(T, 2)= Ext}e(T, 1)#£0.ButT is

not 2-tilting, since it does not generate the injective envelopR.of

The nextresult shows that conditions (C3) and (T3) can be replaced byc Cogen/
andT -+~ C GenT, respectively.

Lemma 3.12. Let U be a partialn-cotilting R-module. Then

(1) CogenU C +=U.
(2) U is n-cotilting if and only if-~ U < CogerU .

Dually, letT be a partialn-tilting R-module. Then

(*1) Gen, T C T+,
(*2) T is n-tilting if and only if T+~ € GenU.
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Proof. 1. LetM € Cogern U and consider an exact sequence

f2

£>U°‘2—>

O%Mﬁ) Uolj_ . fa—1 Uol,,.

Let M1 = Cokerf;. By dimension shifting, EX(M, U) = Extit' (M,, U), for every
i >1; henceM e 1>~U. Statement (2) is proved in [1, p. 249].

Dually, (*1) is proved by a dimension shifting argument and (*2) is condition (ii) of
Theorem4.4in[1]. O
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