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Abstract

We consider generalizations of the definitions of one-dimensional tilting and cotilting mo
which agree with the classical notions of tilting and cotilting modules of finite homolog
dimension.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The classical notion of tilting and cotilting modules was first considered in the
of finite-dimensional algebras by Brenner and Butler [3] and by Happel and Ringe
in the 80s. The tilting (cotilting) modules considered in these papers are finitely gen
and of projective (injective) dimension one. In [13] Miyashita considered finitely gene
tilting modules of finite projective dimension, while generalizations of tilting module
projective dimension one over arbitrary rings have been considered by many authors
and Fuller [5], Colpi and Trlifaj [6]. In [6] an infinitely generated moduleT is said to be
tilting if GenT = T ⊥, where GenT is the class of modules which are epimorphic ima
of direct sums of copies ofT andT ⊥ is the class of modulesM such that Ext1(T ,M)= 0.
This definition generalizes the classical notion of tilting modules and its natural dua
eralizes the classical notion of cotilting modules. In [1] Angeleri Hügel and Coelho
over an extensive study of infinitely generated tilting and cotilting modules of finite
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mological dimension over arbitrary rings producing the important result that tilting
cotilting classes provide for special precovers and special preenvelopes (see Secti
definitions). In this paper we generalize to then-dimensional case the notions introduc
by Colpi and Trlifaj in the one-dimensional case and we prove that the classes of m
satisfying our new definitions coincide with the classes of tilting and cotilting mod
studied by Angeleri Hügel and Coelho. Moreover, our results in the tilting case, are g
alizations of results in [11].

2. Preliminaries

R will denote an associative ring with identity andR-Mod the class of leftR-modules.
We recall the notion of cotorsion pair introduced by Salce [14]. Given a classM of
modules, let denote

⊥M = {
X ∈R-Mod

∣∣ Ext1R(X,M)= 0 for allM ∈ M
}

and

M⊥ = {
X ∈R-Mod

∣∣ Ext1R(M,X)= 0 for allM ∈ M
}
.

A pair (A,B) of classes ofR-modules is called a cotorsion pair ifA = ⊥B andB = A⊥.
A is called the cotorsion-free class, whileB is called the cotorsion class. Given a classM
of modules, the pairs

GM = (⊥M,
(⊥M

)⊥)
and CM = (⊥(

M⊥)
,M⊥)

are cotorsion pairs, called the cotorsion pairsgeneratedand cogeneratedby M,
respectively.

For everyR-moduleM, ProdM (AddM) will denote the class of modules isomorph
to summands of direct products (direct sums) of copies ofM. CogenM will denote
the class of theR-modules cogenerated byM, namely the class of modules which a
embeddable in a product of copies ofM, and GenM will denote the class of theR-modules
generated byM, namely the class of modules which are epimorphic images of direct
of copies ofM. It is evident that anR-moduleN ∈ CogenM if and only if, for every
0 �= x ∈ N there is a morphismf ∈ HomR(N,M) such thatf (x) �= 0 and anR-module
N ∈ GenM if and only if, for every 0�= x ∈ N there is a finite number of morphism
fi ∈ HomR(M,N) such thatx ∈ ∑

i Imfi .
We recall now the definitions of tilting and cotilting modules of dimension

introduced by Colpi and Trlifaj [6].

Definition 1. If R is any ring, anR-moduleU is said to be 1-cotilting if ⊥U = CogenU .

Definition *1. If R is any ring, anR-moduleT is said to be 1-tilting if T ⊥ = GenT .

Thus, in the above terminology, ifU is a 1-cotilting module, then⊥U = CogenU is the
cotorsion-free class of the cotorsion pair generated byU . Dually, if T is a 1-tilting module,
thenT ⊥ = GenU is the cotorsion class of the cotorsion pair cogenerated byT . Note that
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for anyR-moduleM, ⊥M (respectivelyM⊥) is closed under submodules (respectiv
epimorphic images) if and only if the injective (respectively projective) dimensionM
(respectively pdM) of M is less than or equal to 1; thus a 1-cotilting (respectively 1-tilti
module has injective (respectively projective) dimension at most one and this expla
terminology used in Definitions 1 and *1.

As proved in [2,6,7], the above definitions are respectively equivalent to the follow

Definition 2. An R-moduleU is 1-cotilting if the following three conditions hold:

(1) idU � 1;
(2) Ext1R(U

λ,U)= 0 for every cardinalλ;
(3) there exists an exact sequence

0 → U1 →U0 → E → 0,

whereE is an injective cogenerator ofR-Mod andU0,U1 ∈ ProdU .

Definition *2. An R-moduleT is 1-tilting if the following three conditions hold:

(1) pdT � 1;
(2) Ext1R(T ,T

(λ)) = 0 for every cardinalλ;
(3) there exists an exact sequence

0→ R → T0 → T1 → 0,

whereT0, T1 ∈ AddT .

In the one-dimensional case the following alternative definitions are available.

Definition 3. An R-moduleU is 1-cotilting if and only ifU satisfies conditions (1), (2) o
Definition 2 and

(3′) for anyR-moduleM, HomR(M,U)= 0 and Ext1R(M,U)= 0 imply M = 0.

Definition *3. An R-moduleT is 1-tilting if and only if T satisfies conditions (1), (2) o
Definition *2 and

(3′) for anyR-moduleM, HomR(T ,M)= 0 and Ext1R(T ,M)= 0 implyM = 0.

We recall the notions ofprecover, special precover, andcover introduced by Enoch
and Xu in [9,15]. If X is any class of modules andX ∈ X , a homomorphismφ ∈
HomR(X,M) is called anX -precoverof theR-moduleM, if for every homomorphism
φ′ ∈ HomR(X

′,M) with X′ ∈X there exists a homorphismf :X′ → X such thatφ′ = φf .
An X -precover,φ ∈ HomR(X,M) is called anX -coverof M if for every endomor-

phismf of X such thatφ = φf , f is an automorphism ofX. An X -precoverφ of M is
said to bespecialif φ is surjective and Kerφ ∈X⊥.
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The notions ofX -preenvelope, specialX -preenvelope, andX -envelopeare defined
dually.

A classX is said to be aprecovering( preenveloping, covering, enveloping) if every
R-module admits anX -precover (X -preenvelope,X -cover,X -envelope).

The following two results, dual to each other, will be used throughout.

Lemma 2.1 [4, Proposition 1.8].LetN , M beR-modules. Assume thatN ∈ CogenM and
Mλ ∈ ⊥M, for every cardinalλ. Then there exists an exact sequence

0→ N →MI → L→ 0, whereL ∈ ⊥M.

Proof. It is enough to letI = HomR(N,M). ✷
Lemma 2.2 [6, Lemma 1.2].Let N,M be R-modules. Assume thatN ∈ GenM and
M(λ) ∈M⊥, for every cardinalλ. Then there exists an exact sequence

0 → L→ M(I) →N → 0, whereL ∈M⊥.

Proof. It is enough to letI = HomR(M,N). ✷

3. n-Cotilting and n-tilting modules

We recall the generalization of the notion of tilting and cotilting modules to mod
of finite homological dimension introduced by Angeleri Hügel and Coelho in [1]
investigated also by Krause and Solberg in [12].

Definition 4. An R-moduleU is n-cotilting if and only if the following three condition
hold:

(C1) idU � n;
(C2) ExtiR(U

λ,U) = 0 for eachi > 0 and for every cardinalλ;
(C3) there exists a long exact sequence

0 → Ur → ·· · →U1 → U0 →E → 0,

whereE is an injective cogenerator ofR-Mod,Ui ∈ ProdU , for every 0� i � r.

U is said to be partialn-cotilting if it satisfies conditions (C1) and (C2).

Definition *4. An R-moduleT is n-tilting if and only if the following three condition
hold:

(T1) pdT � n;
(T2) Exti (T , T (λ)) = 0 for eachi > 0 and for every cardinalλ;
R
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0 → R → T0 → T1 → ·· · → Tr → 0,

whereTi ∈ AddT , for every 0� i � r.

T is said to be partialn-tilting if it satisfies conditions (T1) and (T2).

It is easy to show (see Proposition 3.5), that ifU is ann-cotilting module, then in the
long exact sequence in (C3),r can be chosen to be less than or equal ton. Thus, in the case
n = 1, the above definition agrees with the one introduced in Section 2. Analogous
same remark holds for 1-tilting modules.

For any classM of R-modules we will consider the following classes:

⊥∞M = {
X ∈R-Mod

∣∣ ExtiR(X,M)= 0, ∀M ∈ M, ∀i � 1
}
,

⊥jM = {
X ∈R-Mod

∣∣ ExtiR(X,M)= 0, ∀M ∈ M
}
,

⊥�jM = {
X ∈R-Mod

∣∣ ExtiR(X,M)= 0, ∀M ∈ M, ∀i � j
}
.

M⊥∞ , M⊥j , andM⊥�j are defined dually. IfM = {M}, we will use the notations⊥∞M,
⊥jM, ⊥�j M andM⊥∞ , M⊥j , M⊥�j .

Useful generalizations of Lemmas 2.1 and 2.2 are given by the following result w
is a slight generalization of [1, Lemma 2.4].

Lemma 3.1 [1, Lemma 2.4].LetN , M beR-modules.

(i) Assume thatN ∈ CogenM, N ∈ ⊥∞M, andMλ ∈ ⊥∞M, for every cardinalλ. Then
there exists an exact sequence

0 → N →MI → L→ 0, whereL ∈ ⊥∞M.

(ii) Assume thatN ∈ GenM, N ∈ M⊥∞ , andM(λ) ∈ M⊥∞ , for every cardinalλ. Then
there exists an exact sequence

0 → L→ M(I) →N → 0, whereL ∈M⊥∞ .

An application of the preceding lemma yields the following result.

Lemma 3.2. LetU be ann-cotilting module. AnR-moduleM belongs to⊥∞U if and only
if there exists an infinite exact sequence of the form

0 → M →Uα1 →Uα2 → ·· · → Uαn → ·· · ,

for some cardinalsαi . In particular,⊥∞U is closed under direct products.
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Dually, let T be ann-tilting module. AnR-moduleM belongs toT ⊥∞ if and only if
there exists an infinite exact sequence of the form

· · · → T (αn) → ·· · → T (α2) → T (α1) →M → 0,

for some cardinalsαi . In particular,T ⊥∞ is closed under direct sums.

Proof. The statement concerningn-cotilting modules has been noted in [12, Propo
tion 5.4]. The dual statement for ann-tilting moduleT follows easily by the fact tha
T ⊥∞ ⊆ GenT (see [1, Lemma 2.3]), by Lemma 3.1(ii), and by dimension shifting.✷

If U is a 1-cotilting module, then⊥∞U = ⊥U = CogenU . If U is an n-cotilting
module, then it is no longer true that⊥∞U = CogenU , but as proved in [1, Lemma 2.3
⊥∞U ⊆ CogenU . Dually, if T is a 1-tilting module, thenT ⊥∞ = T ⊥ = GenT , and if T
is ann-tilting module, thenT ⊥∞ ⊆ GenT . In Proposition 3.6 we will see that suitab
notions of Cogenn U and of Genn T will yield the equalities⊥∞U = Cogenn U and
T ⊥∞ = Genn T , for n-cotilting modulesU andn-tilting modulesT .

For anyn-cotilting moduleU , letX = ⊥∞U andXj = ⊥�j U . Similarly, for anyn-tilt-
ing moduleT , letX = T ⊥∞ , Xj = T ⊥�j .

Remark 1. Note that, ifX = ⊥∞M, for some moduleM, thenX⊥∞ =X⊥ and similarly,
if X =M⊥∞ , then⊥∞X = ⊥X (see [1, Lemma 1.2]).

In [1, Theorem 3.1, Proposition 3.3] it is proved thatX = ⊥∞U (respectivelyX = T ⊥∞ )
is precovering (respectively preenveloping) and, moreover, that for everyR-moduleM
there exists a specialX -precoverX φ−→ M of M such that Kerφ ∈ X⊥ (respectively
a specialX -preenvelopeM φ−→X of M such that Cokerφ ∈ ⊥X ).

Another important result proved in [1, Lemmas 2.3, 2.4] states that ifU is ann-cotilting
module, thenX ∩ X⊥ = ProdU and if T is ann-tilting module, thenX ∩ ⊥X = AddT .
We will use this result throughout the paper.

For anyR-moduleM of injective dimension at mostn, we choose an injective resolutio

0 → M
f0−→ I0

f1−→ I1 → ·· · fn−→ In → 0,

where for everyj � 0, Ij is injective and we letCj = Kerfj+1 for everyj � 0.

Lemma 3.3. In the above notations, we have⊥i+kM = ⊥i Ck and ⊥�i+kM = ⊥�i Ck , for
everyi � 1, k � 0.

Proof. It follows immediately by considering the long exact sequences induced by a
ing the functor HomR(−,M) to the short exact sequences 0→ Cr → Ir → Cr+1 → 0, for
eachr � 0. ✷

We now turn to the classes⊥�j U andT
⊥�j

defined above.
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Lemma 3.4. Assume thatU is an n-cotilting R-module and letXj = ⊥�j U . For every
j � 2, Xj consists of theR-modulesM such that there exists an exact sequence of
form

0 →Uj−1 → Xj−2 → ·· · → X1 → X0 →M → 0, (1)

whereUj−1 ∈ ProdU andXi ∈ ⊥∞U , for every0 � i � j − 2. In particular, Xj is closed
under products, for everyj � 1.

Dually, assume thatT is ann-tilting R-module and letXj = T ⊥�j . For everyj � 2,
Xj consists of theR-modulesM such that there exists an exact sequence of the form

0 →M → X0 →X1 → ·· · →Xj−2 → Tj−1 → 0, (1)

whereTj−1 ∈ AddT andXi ∈ T ⊥∞ , for every0 � i � j − 2. In particular, Xj is closed
under direct sums, for everyj � 1.

Proof. By a dimension shifting argument it is immediate to check that the sequenc
yields Exti+j−1

R (M,U) ∼= ExtiR(Uj−1,U) = 0 for everyi � 1, henceM ∈ Xj . To prove
the converse we proceed by induction onj . Let j = 2 and letM ∈ X2. Consider a specia
precover 0→ Y → X → M → 0 of M whereX ∈ X , Y ∈ X⊥. Clearly, ExtiR(Y,U) ∼=
Exti+1

R (M,U), for everyi � 1. Thus,Y ∈ ⊥∞U =X , henceY ∈ X ∩X⊥ which coincides
with ProdU by [1, Lemmas 2.3, 2.4]. So 0→ Y → X → M → 0 is a sequence o
type (1) forM. Assuming the statement true for any 2� k � j , we prove it forj + 1.
Let M ∈ Xj+1 and let 0→ Y → X′ → M → 0 be a specialX -precover ofM. Since
X′ ∈ X andM ∈ ⊥�j+1U , it is evident thatY ∈ ⊥�j U = Xj . Thus, by induction, ther
exists a sequence

0 →Uj−1 →Xj−2 → ·· · →X0 → Y → 0, (2)

with Uj−i ∈ ProdU , Xi ∈ ⊥∞U . From (2) we obtain the sequence

0 → U ′
j → X′

j−1 → ·· · → X′
1 →X′

0 → M → 0,

whereU ′
j = Uj−1, X′

i+1 = Xi , for 1 � i � j − 2, X′
0 = X′ which satisfies the wante

conditions.
To prove the second statement note that, by [12, Lemma 3.2],X = X1 is closed unde

products. Let now{Mα}α∈Λ be a family of modules belonging toXj , for j � 2. By the
first part of the proof, for eachα, there exist sequences

0 →Uj−1,α →Xj−2,α → ·· · → X0,α → Mα → 0;
hence we obtain the sequence

0 →
∏

α

Uj−1,α →
∏

α

Xj−2,α → ·· · →
∏

α

X0,α →
∏

α

Mα → 0.
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SinceX is closed under products, the sequence (2) shows that
∏

α Mα ∈ Xj .
The dual statement is easily seen to be true.✷
Using the preceding lemma we can now prove the following result.

Proposition 3.5. LetU be ann-cotilting R-module. LetE be an injective cogenerator o
R-Mod for which condition(C3) is satisfied, i.e., E fits in the exact sequence

0 → Ur → ·· · →U1 → U0 →E → 0,

with Ui ∈ ProdU , for every0 � i � r. Thenr � idU can be chosen and the minim
lengthr of any such sequence is exactlyidU .

Dually, let T be ann-tilting R-module. Consider the exact sequence given by co
tion (T3)

0 →R → T0 → T1 → ·· · → Tr → 0,

whereTi ∈ AddT , for every0 � i � r. Thenr � pdT can be chosen and the minim
lengthr of any such sequence is exactlypdT .

Proof. The fact thatr can be chosen so thatr � idU is well-known (see [13]), but fo
convenience we recall its proof. Consider the sequence

0 →Ur
fr−→ · · · → U1

f1−→U0
f0−→ E → 0,

satisfying condition (C3) and assumer > idU . Let Ki+1 = Kerfi , henceKr =
Ur ∈ X⊥, whereX = ⊥∞U . SinceX⊥ is closed under cokernels of monomorphisms,
getKi ∈X⊥, for every 1� i � r; thus, in particular, ifm= idU , Km ∈X⊥. By dimension
shifting we have

ExtiR(Km,U)∼= Exti+m−1
R (K1,U) ∼= Exti+m

R (E,U),

for every i � 1; henceKm ∈ X . Since,X ∩ X⊥ = ProdU (see [1]), we conclude tha
Km ∈ ProdU and thusr =m can be chosen in the above sequence.

We show now thatr cannot be strictly smaller than idU . Assume idU =m andr < m.
By dimension shifting we obtain, as above,

0 = ExtiR(Kr,U)∼= Exti+r
R (E,U),

for everyi � 1; henceE ∈Xr+1 = ⊥�r+1U . By Lemma 3.4,Xr+1 is closed under product
henceEγ ∈ Xr+1, for every cardinalγ . Let N be an arbitraryR-module; sinceE is an
injective cogenerator, there exists an exact sequence

0→ N →Eγ0 →N1 → 0,
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0= Extr+1
R

(
Eγ0,U

) → Extr+1
R (N,U) → Extr+2

R (N1,U).

Repeating the same argument we can embedN1 in a productEγ1 with cokernelN2
obtaining the exact sequence

0 = Extr+2
R

(
Eγ1,U

) → Extr+2
R (N1,U)→ Extr+3

R (N2,U).

After 0< k =m− r steps we obtain

0 = Extr+k
R

(
Eγk−1,U

) → Extr+k
R (Nk−1,U)→ Extr+k+1

R (Nk,U).

Since idU = m, Extr+k+1
R (Nk,U) = 0, hence going backk steps we conclude tha

Extr+1
R (N,U) = 0. SinceN was arbitrary, we get the contradiction idU � r.
The dual result is proved by dual arguments.✷

Definition 5. For everyR-moduleU denote by Cogenn U the class consisting of th
R-modulesM for which there exists an exact sequence of the form

0 →M → Uα1 → Uα2 → ·· · →Uαn

for some cardinalsαi ; and by Cogen∞ U the class ofR-modulesM for which there exists
an infinite exact sequence of the form

0 →M → Uα1 → Uα2 → ·· · →Uαn → ·· ·
for some cardinalsαi .

Dually, for everyR-moduleT denote by Genn T the class consisting of theR-modules
M for which there exists an exact sequence of the form

T (αn) → ·· · → T (α2) → T (α1) →M → 0

for some cardinalsαi ; and by Gen∞ T the class ofR-modulesM for which there exists an
infinite exact sequence of the form

· · · → T (αn) → ·· · → T (α2) → T (α1) →M → 0

for some cardinalsαi .

First, we note the following.

Proposition 3.6. Let U be ann-cotilting R-module. Then⊥∞U = Cogenn U . Moreover,
Cogenn U = Cogenn+k U = Cogen∞U , for everyk � 0.

If T is ann-tilting R-module, thenT ⊥∞ = Genn T . Moreover, Genn T = Genn+k T =
Gen∞ T , for everyk � 0.
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Proof. By Lemma 3.2, every moduleM in X = ⊥∞U fits in an infinite exact sequence
the form

0 → M →Uα1 →Uα2 → ·· · → Uαi → ·· ·

for some cardinalsαi , thus there exists also a sequence of the same type and of lenn.
So X ⊆ Cogenn U . For the other implication, letM ∈ Cogenn U and consider an exac
sequence

0→ M
f1−→Uγ1

f2−→Uγ2 → ·· · fn−→ Uγn.

Let Li = Cokerfi ; by dimension shifting, ExtiR(M,U)∼= Exti+n(Ln,U), for everyi � 1.
Hence,M ∈X , since idU � n. Thus, Cogenn U = X . To prove the second statement, n
that, clearly, Cogen∞ U ⊆ Cogenn+k U ⊆ Cogenn U . Conversely, ifM ∈ Cogenn U , then
M ∈ X , hence as noted at the beginning of the proof,M ∈ Cogen∞U . The statement abou
n-tilting modules is proved dually. ✷

Our next goal is to prove the converse of Proposition 3.6. The final result
Theorem 3.11) will be proved in several steps. First, we need two lemmas.

Lemma 3.7. LetM be anR-module and let0 →A → B π−→C → 0 be an exact sequenc
If A,C ∈ CogenM andC ∈ ⊥M, thenB ∈ CogenM.

Dually, if A,C ∈ GenM andA ∈M⊥, thenB ∈ GenM.

Proof. Let 0 �= x ∈ B; if x ∈ A, then there existsf ∈ HomR(A,M) such thatf (x) �= 0.
Since Ext1R(C,M) = 0, f is extendible to a mapf ′ :B → M, hencef ′(x) �= 0. If
x /∈ A, then π(x) �= 0. SinceC ∈ CogenM, there is a mapg :C → M such that
g(π(x)) �= 0. Thus,g′ = g ◦π ∈ HomR(B,M) andg′(x) �= 0. The dual statement is prove
accordingly. ✷

A stronger version of the preceding lemma is given by the following.

Lemma 3.8. Let M be anR-module such thatMλ ∈ ⊥∞M for every cardinalλ and
⊥∞M ⊆ CogenM. Let 0 → A → B → C → 0 be an exact sequence. IfA ∈ CogenmM

andC ∈ ⊥∞M, thenB ∈ CogenmM, for everym� 1.
Dually, let M be an R-module such thatM(λ) ∈ M⊥∞ for every cardinalλ and

M⊥∞ ⊆ GenM. Let 0 → A → B → C → 0 be an exact sequence. IfC ∈ GenmM and
A ∈M⊥∞ , thenB ∈ GenmM, for everym� 1.

Proof. The proof is by induction onm. The casem= 1 follows by Lemma 3.7. Assumin
the result true for any 1� j � m, we prove it form+ 1. Consider an exact sequence

0 → A→ B π−→C → 0,
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whereA ∈ Cogenm+1M andC ∈ ⊥∞M. Choose a sequence

0 →A
µ−→ MJ →A1 → 0

with A1 ∈ CogenmM. Since, Ext1R(C,M
J ) ∼= ∏

J Ext1R(C,M) = 0, we have an epimor
phism

HomR

(
B,MJ

) → HomR

(
A,MJ

) → 0,

thus µ is extendible to a mapρ :B → MJ . Our hypotheses now allow to app
Lemma 3.1(i); hence there exists an exact sequence

0→ C ν−→ MI →C1 → 0,

whereC1 ∈ ⊥∞M. Consider the following commutative diagram:

0 0 0

0 A

µ

B
π

φ

C

ν

0

0 MJ MJ ⊕MI MI 0

0 A1 N C1 0

0 0 0

,

whereφ is defined byφ(b) = ρ(b) + (ν ◦ π)(b), for everyb ∈ B, and the third row is
obtained by lettingN = Cokerφ. In the third row we haveA1 ∈ CogenmM, C1 ∈ ⊥∞M,
hence, by inductive hypothesis,N ∈ CogenmM. Thus, the second column yieldsB ∈
Cogenm+1M.

The dual statement is proved accordingly.✷
We can now prove the following result.

Lemma 3.9. Let M be anR-module such that⊥∞M = CogennM. ThenM is a partial
n-cotiltingR-module.

Dually, letM be anR-module such thatM⊥∞ = GennM. ThenM is a partialn-tilting
R-module.
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3.6
Proof. We have to show thatM satisfies conditions (C1) and (C2) of Definition 4. Clea
M satisfies (C2), sinceMλ ∈ CogennM for every cardinalλ. We show now that idM � n.
LetN be an arbitraryR-module and consider a projective resolution ofN :

Pj

fj−→ Pj−1 → ·· · → P1
f1−→ P0

f0−→ N → 0;
letKm+1 = Kerfm for everym� j . For every projective modulePi in the above sequenc
there is a cardinalαi and an exact sequence

0 → Pi → Mαi → Ci → 0 (Ei)

with Ci ∈ ⊥∞M. In fact,Pi ∈ ⊥∞M, hence, by hypothesis,Pi ∈ CogennM ⊆ CogenM.
Applying Lemma 3.1(i), we obtainCi ∈ ⊥∞M. We now claim:

(A) Km ∈ CogenmM, for everym.

We prove the claim by induction onm. If m = 1, thenK1 ⊆ P0 ∈ CogenM. Assume
the claim true for every 1� j � m. The sequences

0 → Km+1 → Pm →Km → 0

and (Ei) yield the exact sequence

0 → Pm

Km+1
→ Mαm

Km+1
→ Cm → 0.

SincePm/Km+1 ∼= Km and Cm ∈ ⊥∞M, the inductive step and Lemma 3.8 allo
to conclude thatMαm/Km+1 ∈ CogenmM. It follows that Km+1 ∈ Cogenm+1M and
claim (A) is proved.

In particular,Kn ∈ CogennM, henceKn ∈ ⊥∞M. Applying a dimension shifting
argument to the projective resolution ofN considered at the beginning of the proof,
obtain Extn+1

R (N,M)∼= Ext1R(Kn,M)= 0; hence idM � n, sinceN was arbitrary.
The dual statement is proved similarly, starting with an injective resolution.✷

Proposition 3.10. Let M be anR-module such that⊥∞M = CogennM. ThenM is an
n-cotiltingR-module.

Dually, let M be anR-module such thatM⊥∞ = GennM. ThenM is an n-tilting
R-module.

Proof. In view of Lemma 3.9,M is a partialn-cotiltingR-module and, moreover,⊥∞M ⊆
CogenM. Thus, as remarked in the last four lines of [1], the proof of [1, Proposition
carries over giving the conclusion thatM is n-cotilting.

The dual statement is proved analogously, but applying [1, Theorem 4.4].✷
We can now state our main result which follows immediately by Propositions

and 3.10.
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Theorem 3.11. Let U be anR-module. ThenU is n-cotilting if and only ifCogenn U =
⊥∞U . Dually, anR-moduleT is n-tilting if and only if Genn T = T ⊥∞ .

In Section 2 we recalled that there are three equivalent definitions of 1-tilting
1-cotilting modules. We ask now whether Definitions 3 and *3 have a correspo
formulation forn-tilting andn-cotilting modules.

To this aim, consider the conditions:

(C3′) HomR(N,U) = 0 and ExtiR(N,U) = 0, for everyi � 1 implyN = 0.
(T3′) HomR(T ,N) = 0 and ExtiR(T ,N) = 0, for everyi � 1 implyN = 0.

It is immediate to check that ifU is ann-cotilting module, thenU satisfies (C1), (C2)
(C3′); analogously, ifT is ann-tilting module, thenT satisfies (T1), (T2), (T3′) but the
converse is not true as it is shown by the following example due to G. D’Este.

Example 1 (G. D’Este[8]). LetR denote theK-algebra given by the quiver

1 •
a

• 2

b

with relationab = 0. Let U = 2
1 be the indecomposable projective corresponding to

vertex 2. Then idU = 2 andU satisfies (C2).U satisfies (C3′), since the simple module 2
the unique indecomposable such that HomR(2,U)= 0 and Ext2R(2,U)∼= Ext1R(1,U) �= 0.
But U is not 2-cotilting, since it is not faithful, hence it does not cogenerateR. Similarly,
let, T = 1

2 be the indecomposable injective corresponding to the vertex 2. Then, pdT = 2
and T satisfies (T1), (T2).T satisfies (T3′), since the simple module 2 is the uniq
indecomposable such that HomR(T ,2) = 0 and Ext2R(T ,2)

∼= Ext1R(T ,1) �= 0. But T is
not 2-tilting, since it does not generate the injective envelope ofR.

The next result shows that conditions (C3) and (T3) can be replaced by⊥∞U ⊆ CogenU
andT ⊥∞ ⊆ GenT , respectively.

Lemma 3.12. LetU be a partialn-cotiltingR-module. Then:

(1) Cogenn U ⊆ ⊥∞U .
(2) U is n-cotilting if and only if⊥∞U ⊆ CogenU .

Dually, letT be a partialn-tilting R-module. Then:

(*1) Genn T ⊆ T ⊥∞ .
(*2) T is n-tilting if and only ifT ⊥∞ ⊆ GenU .
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Proof. 1. LetM ∈ Cogenn U and consider an exact sequence

0 →M
f0−→ Uα1

f1−→Uα2
f2−→ · · · fn−1−−−→Uαn.

Let Mi+1 = Cokerfi . By dimension shifting, ExtiR(M,U) ∼= Extn+i
R (Mn,U), for every

i � 1; henceM ∈ ⊥∞U . Statement (2) is proved in [1, p. 249].
Dually, (*1) is proved by a dimension shifting argument and (*2) is condition (ii

Theorem 4.4 in [1]. ✷
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