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We present a general covariant action for massive gravity merging together a class of “non-polynomial”
and super-renormalizable or finite theories of gravity with the non-local theory of gravity recently
proposed by Jaccard, Maggiore and Mitsou (Phys. Rev. D 88 (2013) 044033). Our diffeomorphism invariant
action gives rise to the equations of motion appearing in non-local massive gravity plus quadratic
curvature terms. Not only the massive graviton propagator reduces smoothly to the massless one without
a vDVZ discontinuity, but also our finite theory of gravity is unitary at tree level around the Minkowski
background. We also show that, as long as the graviton mass m is much smaller the today’s Hubble
parameter H0, a late-time cosmic acceleration can be realized without a dark energy component due to
the growth of a scalar degree of freedom. In the presence of the cosmological constant Λ, the dominance
of the non-local mass term leads to a kind of “degravitation” for Λ at the late cosmological epoch.
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1. Introduction

The construction of a consistent theory of massive gravity has
a long history, starting from the first attempts of Fierz and Pauli
[1] in 1939. The Fierz–Pauli theory, which is a simple extension of
General Relativity (GR) with a linear graviton mass term, is plagued
by a problem of the so-called van Dam–Veltman–Zakharov (vDVZ)
discontinuity [2]. This means that the linearized GR is not recov-
ered in the limit that the graviton mass is sent to zero.

The problem of the vDVZ discontinuity can be alleviated in the
non-linear version of the Fierz–Pauli theory [3]. The non-linear
interactions lead to a well behaved continuous expansion of so-
lutions within the so-called Vainshtein radius. However, the non-
linearities that cure the vDVZ discontinuity problem give rise to
the so-called Boulware–Deser (BD) ghost [4] with a vacuum insta-
bility.

A massive gravity theory free from the BD ghost was con-
structed by de Rham, Gabadadze and Tolley (dRGT) [5] as an exten-
sion of the Galileon gravity [6]. On the homogeneous and isotropic
background, however, the self-accelerating solutions in the dRGT
theory exhibit instabilities of scalar and vector perturbations [7].
The analysis based on non-linear cosmological perturbations shows
that there is at least one ghost mode (among the five degrees
of freedom) in the gravity sector [8]. Moreover it was shown in
Ref. [9] that the constraint eliminating the BD ghost gives rise to
an acausality problem. These problems can be alleviated by ex-
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tending the original dRGT theory to include other degrees of free-
dom [10–12] (like quasidilatons) or by breaking the homogeneity
[13] or isotropy [14,15] of the cosmological background.

Recently, Jaccard et al. [16] constructed a non-local theory of
massive gravity by using a quadratic action of perturbations ex-
panded around the Minkowski background. This action was orig-
inally introduced in Refs. [17,18] in the context of the degravi-
tation idea of the cosmological constant. The resulting covariant
non-linear theory of massive gravity not only frees from the vDVZ
discontinuity but respects causality. Moreover, unlike the dRGT
theory, it is not required to introduce an external reference metric.

Jaccard et al. [16] showed that, on the Minkowski background,
there exists a scalar ghost in addition to the five degrees of free-
dom of a massive graviton, by decomposing a saturated propagator
into spin-2, spin-1, and spin-0 components. For the graviton mass
m of the order of the today’s Hubble parameter H0, the vacuum
decay rate induced by the ghost was found to be very tiny even
over cosmological time scales. The possibility of the degravitation
of a vacuum energy was also suggested by introducing another
mass scale μ much smaller than m.

In this Letter we propose a general covariant action principle
which provides the equations of motion for the non-local massive
gravity [16] with quadratic curvature terms. The action turns out
to be a bridge between a class of super-renormalizable or finite
theories of quantum gravity [19–25] and a diffeomorphism invari-
ant theory for a massive graviton.

The theory previously studied in Refs. [19–25] has an aim to
provide a completion of the Einstein gravity through the introduc-
tion of a non-polynomial or semi-polynomial entire function (form
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factor) without any pole in the action. In contrast, the non-local
massive gravity studied in this Letter shows a pole in the classi-
cal action making it fully non-local. However, the Lagrangian for
massive gravity can be selected out from the theories previously
proposed [19–25] once the form factor has a particular infrared
behavior. The non-local theory resulting from the covariant La-
grangian is found to be unitary at tree level on the Minkowski
background. Moreover, the theory respects causality and smoothly
reduces to the massless one without the vDVZ discontinuity.

We will also study the cosmology of non-local massive gravity
on the flat Friedmann–Lemaître–Robertson–Walker (FLRW) back-
ground in the presence of radiation and non-relativistic matter.1

Neglecting the contribution of quadratic curvature terms irrelevant
to the cosmological dynamics much below the Planck scale, the dy-
namical equations of motion reduce to those derived in Ref. [16].
We show that, as long as the graviton mass m is much smaller
than H0, the today’s cosmic acceleration can be realized without
a dark energy component due to the growth of a scalar degree of
freedom.

Our Letter is organized as follows. In Section 2 we show a non-
local covariant Lagrangian which gives rise to the same equation
of motion as that in non-local massive gravity with quadratic cur-
vature terms. We also evaluate the propagator of the theory to
study the tree-level unitarity. In Section 3 we study the cosmolog-
ical implications of non-local massive gravity in detail to provide a
minimal explanation to dark energy in terms of the graviton mass.
We also discuss the degravitation of the cosmological constant in-
duced by the non-local mass term. Conclusions and discussions are
given in Section 4.

Throughout our Letter we use the metric signature ημν =
diag(+1,−1,−1,−1). The notations of the Riemann tensor, the
Ricci tensor, and Ricci scalar are Rμ

νρσ = −∂σ Γ
μ
νρ +· · · , Rμν = Rσ

μνσ
and R = gμν Rμν , respectively.

2. Super-renormalizable non-local gravity

Let us start with the following general class of non-local actions
in D dimension [19–25],

S =
∫

dD x
√|g|

[
2κ−2 R + λ̄ +

Finite number of terms︷ ︸︸ ︷
O

(
R3) + · · · + RN+2

+
N∑

n=0

(
an R(−�M)n R + bn Rμν(−�M)n Rμν

)

+ Rh0(−�M)R + Rμνh2(−�M)Rμν

]
, (1)

where κ = √
32πG (G is gravitational constant), |g| is the determi-

nant of a metric tensor gμν , � is the d’Alembertian operator with
�M = �/M2, and M is an ultraviolet mass scale. The first two lines
of the action consist of a finite number of operators multiplied
by coupling constants subject to renormalization at quantum level.
The functions h2(z) and h0(z), where z ≡ −�M , are not renormal-
ized and defined as follows

h2(z) = V (z)−1 − 1 − κ2 M2

2 z
∑N

n=0 b̃nzn

κ2 M2

2 z
,

1 Note that cosmological consequences of non-local theory given by the La-
grangian R f (�−1 R) have been studied in Refs. [26–32]. In this case the function
f (�−1 R) can be chosen only phenomenologically from the demand to realize the
late-time cosmic acceleration and so on.
h0(z) = − V (z)−1 − 1 + κ2M2z
∑N

n=0 ãnzn

κ2M2z
, (2)

for general parameters ãn and b̃n , while

V (z)−1 := �+ m2

� eH(z), (3)

eH(z) = ∣∣pγ +N+1(z)
∣∣e 1

2 [Γ (0,p2
γ +N+1(z))+γE ]

. (4)

The form factor V (z)−1 in Eq. (3) is made of two parts:
(i) a non-local operator (� + m2)/� which goes to the identity
in the ultraviolet regime, and (ii) an entire function eH(z) with-
out zeros in all complex planes. Here, m is a mass scale associated
with the graviton mass that we will discuss later when we calcu-
late the two-point correlation function. H(z) is an entire function
of the operator z = −�M , and pγ +N+1(z) is a real polynomial of
degree γ + N + 1 which vanishes in z = 0, while N = (D − 4)/2
and γ > D/2 is integer.2 The exponential factor eH(z) is crucial to
make the theory super-renormalizable or finite at quantum level
[19–25].

Let us expand on the behavior of H(z) for small values of z:

H(z) =
∞∑

n=1

pγ +N+1(z)2n

2n(−1)n−1n!

= 1

2

[
γE + Γ

(
0, p2

γ +N+1(z)
) + log

(
p2
γ +N+1(z)

)]
,

for Re
(

p2
γ +N+1(z)

)
> 0. (6)

For the most simple choice pγ +N+1(z) = zγ +N+1, H(z) simplifies
to

H(z) = 1

2

[
γE + Γ

(
0, z2γ +2N+2) + log

(
z2γ +2N+2)],

Re
(
z2γ +2N+2) > 0,

H(z) = z2γ +2N+2

2
− z4γ +4N+4

8
+ · · · , for z ≈ 0. (7)

In particular limz→0 H(z) = 0. We will expand more about the limit
of large z in Section 2.2, where we will explicitly show the power
counting renormalizability of the theory.

2.1. Propagator

In this section we calculate the two point function of the grav-
itational fluctuation around the flat space–time. For this purpose
we split the gμν into the flat Minkowski metric ημν and the fluc-
tuation hμν , as

gμν = ημν + κhμν. (8)

Writing the action (1) in the form S = ∫
dD xL, the Lagrangian L

can be expanded to second order in the graviton fluctuation [33]

Llin = −1

2

[
hμν�hμν + A2

ν + (Aν − φ,ν)2]
+ 1

4

[
κ2

2
�hμνβ(�)�hμν − κ2

2
Aμ

,μβ(�)Aν
,ν

2 γE = 0.577216 is Euler’s constant, and

Γ (b, z) =
∞∫

z

tb−1e−t dt (5)

is the incomplete gamma function [19].
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− κ2

2
F μνβ(�)Fμν + κ2

2

(
Aμ

,μ − �φ
)
β(�)

(
Aν

,ν − �φ
)

+ 2κ2(Aμ
,μ − �φ

)
α(�)

(
Aν

,ν − �φ
)]

, (9)

where Aμ = hμν
,ν , φ = h (the trace of hμν ), Fμν = Aμ,ν − Aν,μ

and the functionals of the D’Alembertian operator α(�), β(�) are
defined by

α(�) := 2
N∑

n=0

an(−�M)n + 2h0(−�M),

β(�) := 2
N∑

n=0

bn(−�M)n + 2h2(−�M). (10)

The d’Alembertian operator in Eq. (9) must be conceived on
the flat space–time. The linearized Lagrangian (9) is invariant un-
der infinitesimal coordinate transformations xμ → xμ + κξμ(x),
where ξμ(x) is an infinitesimal vector field of dimensions [ξ(x)] =
[mass](D−4)/2. Under this shift the graviton field is transformed as
hμν → hμν − ξμ,ν − ξν,μ . The presence of this local gauge invari-
ance requires for a gauge-fixing term to be added to the linearized
Lagrangian (9). Hence, if we choose the usual harmonic gauge
(∂μhμν = 0) [21,34]

LGF = ξ−1∂μhμν V −1(−�M)∂ρhρν, (11)

the linearized gauge-fixed Lagrangian reads

Llin +LGF = 1

2
hμνOμν,ρσ hρσ , (12)

where the operator O is made of two terms, one coming from
the linearized Lagrangian (9) and the other from the gauge-fixing
term (11).

Inverting the operator O [33], we find the following two-point
function in the momentum space (with the wave number k),

O−1 = ξ(2P (1) + P̄ (0))

2k2 V −1(k2/M2)
+ P (2)

k2
(
1 + k2κ2β(k2)

4

)
− P (0)

2k2
( D−2

2 − k2 Dβ(k2)κ2/4+(D−1)α(k2)κ2

2

) , (13)

where we omitted the tensorial indices for O−1. The operators
{P (2) , P (1) , P (0) , P̄ (0)}, which project out the spin-2, spin-1, and
two spin-0 parts of a massive tensor field, are defined by [33]

P (2)
μν,ρσ (k) = 1

2
(θμρθνσ + θμσ θνρ) − 1

D − 1
θμνθρσ ,

P (1)
μν,ρσ (k) = 1

2
(θμρωνσ + θμσ ωνρ + θνρωμσ + θνσ ωμρ),

P (0)
μν,ρσ (k) = 1

D − 1
θμνθρσ ,

P̄ (0)
μν,ρσ (k) = ωμνωρσ , (14)

where ωμν = kμkν/k2 and θμν = ημν −kμkν/k2. These correspond
to a complete set of projection operators for symmetric rank-two
tensors. The functions α(k2) and β(k2) are achieved by replacing� → −k2 in the definitions (10).

By looking at the last two gauge-invariant terms in Eq. (13), we
deem convenient to introduce the following definitions,
h̄2(z) = 1 + κ2M2

2
z

N∑
n=0

bnzn + κ2M2

2
zh2(z), (15)

D − 2

2
h̄0(z) = D − 2

2
− κ2M2 D

4
z

[
N∑

n=0

bnzn + h2(z)

]

− κ2M2(D − 1)z

[
N∑

n=0

anzn + h0(z)

]
. (16)

Through these definitions, the gauge-invariant part of the propaga-
tor greatly simplifies to

O−1 = 1

k2

[
P (2)

h̄2
− P (0)

(D − 2)h̄0

]
. (17)

2.2. Power counting super-renormalizability

The main properties of the entire function eH(z) useful to show
the super-renormalizability of the theory are the following,

lim
z→+∞ eH(z) = e

γE
2 |z|γ +N+1 and

lim
z→+∞

(
eH(z)

e
γE
2 |z|γ +N+1

− 1

)
zn = 0 ∀n ∈N, (18)

where we assumed pγ +N+1(z) = zγ +N+1. The first limit tells us
what is the leading behavior in the ultraviolet regime, while the
second limit confirms that the next to the leading order goes to
zero faster then any polynomial.

Let us then examine the ultraviolet behavior of the theory at
quantum level. According to the property (18), the propagator and
the leading n-graviton interaction vertex have the same scaling in
the high-energy regime [see Eqs. (2), (4), (15), (17), and (18)]:

propagator: O−1 ∼ 1

k2γ +2N+4
, (19)

vertex: L(n) ∼ hn�ηhhi(−�M)�ηh

→ hn�ηh
(�η + hm∂h∂

)γ +N�ηh ∼ k2γ +2N+4. (20)

In Eq. (20) the indices for the graviton fluctuation hμν are omit-
ted and hi(−�M) is one of the functions in Eq. (2). From Eqs. (19)
and (20), the upper bound to the superficial degree of divergence
is

ω = DL − (2γ + 2N + 4)I + (2γ + 2N + 4)V

= D − 2γ (L − 1). (21)

In Eq. (21) we used the topological relation between vertexes V ,
internal lines I and number of loops L: I = V + L − 1, as well as
D = 2N+4. Thus, if γ > D/2, then only 1-loop divergences survive
and the theory is super-renormalizable. Only a finite number of
constants is renormalized in the action (1), i.e. κ , λ̄, an , bn together
with the finite number of couplings that multiply the operators
O (R3) in the last line of Eq. (1).

We now assume that the theory is renormalized at some
scale μ0. Therefore, if we set

ãn = an(μ0), b̃n = bn(μ0), (22)

in Eq. (2), the functions (15) and (16) reduce to

h̄2 = h̄0 = V −1(z) = �+ m2

� eH(z). (23)

Thus, in the momentum space, only a pole at k2 = m2 occurs in
the bare propagator and Eq. (17) reads
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O−1 = e
−H

( k2

M2

)
k2 − m2

[
P (2) − P (0)

D − 2
+ ξ

(
P (1) + P̄ (0)

2

)]
. (24)

The tensorial structure of Eq. (24) is the same as that of the mass-
less graviton and the only difference appears in an overall factor
1/(k2 −m2). If we take the limit m → 0, the massive graviton prop-
agator reduces smoothly to the massless one and hence there is no
vDVZ discontinuity.

Assuming the renormalization group invariant condition (22),
missing the O (R3) operators in the action (1), and setting λ̄

to zero, the non-local Lagrangian in a D-dimensional space–time
greatly simplifies to

L = 2

κ2

√|g|
[

R − Gμν
(� + m2)eH(−�M ) − �

�2
Rμν

]
. (25)

On using the function α(�) = 2(V (�)−1 − 1)/(κ2�), the La-
grangian (25) can be expressed as

L = √|g|
[

2

κ2
R + 1

2
Rα(�)R − Rμνα(�)Rμν

]
. (26)

If we are interested only in the infrared modifications of gravity,
we can fix H(−�M) = 0. This condition restricts our class of theo-
ries to the non-local massive gravity.

2.3. Unitarity

We now present a systematic study of the tree-level unitarity
[33]. A general theory is well defined if “tachyons” and “ghosts” are
absent, in which case the corresponding propagator has only first
poles at k2 − m2 = 0 with real masses (no tachyons) and with pos-
itive residues (no ghosts). Therefore, to test the tree-level unitarity,
we couple the propagator to external conserved stress-energy ten-
sors, T μν , and we examine the amplitude at the poles [35]. When
we introduce the most general source, the linearized action (12) is
replaced by

Llin +LGF → 1

2
hμνOμν,ρσ hρσ − ghμν T μν, (27)

where g is a coupling constant. The transition amplitude in the
momentum space is

A = g2T μνO−1
μν,ρσ T ρσ . (28)

Since the stress-energy tensor is conserved, only the projectors
P (2) and P (0) will give non-zero contributions to the amplitude.

In order to make the analysis more explicit, we expand the
sources using the following set of independent vectors in the mo-
mentum space [33,35–37]:

kμ = (
k0, 
k)

, k̃μ = (
k0,−
k)

,

ε
μ
i = (0, 
εi), i = 1, . . . , D − 2, (29)

where 
εi are unit vectors orthogonal to each other and to 
k. The
symmetric stress–energy tensor reads

T μν = akμkν + bk̃μk̃ν + ci jε
(μ
i ε

ν)
j + dk(μk̃ν)

+ eik(με
ν)
i + f ik̃(με

ν)
i , (30)

where we introduced the notation X(μYν) ≡ (XμYν + Yμ Xν)/2.
The conditions kμT μν = 0 and kμkν T μν = 0 place the following
constraints on the coefficients a, b, d, ei , f i [33]:
ak2 + (
k2

0 + 
k2)d/2 = 0, (31)

b
(
k2

0 + 
k2) + dk2/2 = 0, (32)

eik2 + f i(k2
0 + 
k2) = 0, (33)

ak4 + b
(
k2

0 + 
k2)2 + dk2(k2
0 + 
k2) = 0, (34)

where k2 := k2
0 − 
k2. The conditions (31) and (32) imply

a
(
k2)2 = b

(
k2

0 + 
k2)2 �⇒ a � b, (35)

while the condition (33) leads to

(
ei)2 = (

f i)2
(

k2
0 + 
k2

k2

)2

�⇒ (
ei)2 �

(
f i)2

. (36)

Introducing the spin-projectors and the conservation of the
stress–energy tensor kμT μν = 0 in Eq. (28), the amplitude results

A = g2
(

Tμν T μν − T 2

D − 2

)
e−H(k2/M2)

k2 − m2
, (37)

where T := ημν Tμν . The residue at the pole k2 = m2 reads

ResA|k2=m2

= g2
{[

(a − b)k2]2 + (
ci j)2 + k2

2

[(
ei)2 − (

f i)2]
− 1

D − 2

[
(b − a)k2 − cii]2

}
e
−H

( k2

M2

)∣∣∣∣
k2=m2

(38)

= g2e
−H

( m2

M2

){ D − 3

D − 2

[
(a − b)m2]2 +

[(
ci j)2 − (cii)2

D − 2

]

+ m2

2

[(
ei)2 − (

f i)2] − 2

D − 2
(a − b)m2cii

}
. (39)

If we assume the stress tensor to satisfy the usual energy condi-
tion, then the following inequality follows

T = (b − a)k2 − cii � 0 �⇒ cii � 0. (40)

Using the conditions (35), (36), and (40) in Eq. (39), we find that

ResA|k2=m2 � 0, (41)

for D � 3. This shows that the theory is unitary at tree level
around the Minkowski background. As we see in Eq. (38) the con-
tribution to the residue from the spin-0 operator P (0) is negative,
but the spin-2 operator P (2) provides a dominant contribution
with a positive sign of ResA|k2=m2 . Hence the presence of the
spin-2 mode is crucial to make the theory unitary.

2.4. Equations of motion

Let us derive the equations of motion up to curvature squared
operators O (R2) and total derivative terms [17,38–41]. The action
of our theory is S = ∫

dD xL, where the Lagrangian is given by
Eq. (25). The variation of this action reads

δS = 2

κ2

∫
dD x

[
δ(

√|g|R) − δ

(√|g|Gμν V −1 − 1

� Rμν

)]

= 2

κ2

∫
dD x

√|g|
[

Gμνδgμν − 2Gμν V −1 − 1

� δRμν + · · ·
]

= 2
2

∫
dD x

√|g|[V −1Gμνδgμν + O
(

R2)], (42)

κ
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where we omitted the argument −�M of the form factor V −1. We
also used the relations ∇μgρσ = 0, ∇μGμν = 0, and

δRμν = −1

2
gμα gνβ�δgαβ

− 1

2

[∇β∇μδgβν + ∇β∇νδgβμ − ∇μ∇νδgα
α

]
. (43)

The action is manifestly covariant in general. Hence its variational
derivative (the left-hand side of the modified Einstein equations)
exactly satisfies the Bianchi identity

∇μ δS

δgμν
= √|g|∇μ

[
V −1(�)Gμν + O

(
R2

μν

)] = 0. (44)

Taking into account the energy–momentum tensor Tμν , the equa-
tion of motion at the quadratic order of curvatures reads

V −1(�)Gμν + O
(

R2
μν

) = 8πGTμν. (45)

Except for the very high-energy regime the quadratic curvature
terms should not be important in Eq. (45). Neglecting the O (R2

μν)

terms and setting eH(−�M ) = 1 in Eq. (45), it follows that

Gμν + m2

� Gμν � 8πGTμν, (46)

which is the same equation as that studied in Ref. [16] in the con-
text of non-local massive gravity with the graviton mass m.

If we apply Eq. (46) to cosmology, the d’Alembertian is of the
order of � ∼ d2/dt2 ∼ ω2, where ω is the characteristic frequency
of a corresponding physical quantity. Provided ω � m the term
m2�−1Gμν in Eq. (46) is suppressed relative to Gμν , so that the
Einstein equation Gμν � 8πGTμν is recovered. In order to real-
ize the standard radiation and matter eras, it is expected that m
should not be larger than H0. At the late cosmological epoch, the
effect of the non-local term m2�−1Gμν can be important to mod-
ify the dynamics of the system.

If we take the derivative of Eq. (46) by exerting the operator �,
it follows that(� + m2)Gμν = 8πG�Tμν. (47)

This equation is invariant under the symmetry

Tμν → Tμν + (constant)gμν, (48)

which realizes the Afshordi–Smolin idea [42] for the degravita-
tion of the cosmological constant. Eq. (47) does not admit exact
de Sitter solutions. There exist de-Sitter solutions characterized by
GdS

μν = 8πGρeff
Λ gμν for the modified model in which the opera-

tor � in Eq. (47) is replaced by � + μ2, where μ is a small mass
scale [16]. If the energy–momentum tensor on the right-hand side
of Eq. (47) is given by T (Λ)

μν = ρΛgμν , we obtain the effective cos-
mological constant ρeff

Λ = ρΛμ2/(m2 + μ2). For μ much smaller
than m, it follows that ρeff

Λ � ρΛ . In the limit μ → 0, the effective
cosmological constant disappears completely.

The crucial point for the above degravitation of ρΛ is that both
�GdS

μν and �T (Λ)
μν vanish at de Sitter solutions. For the background

in which the matter density ρ varies (such as the radiation and
matter eras), the two d’Alembertians in Eq. (47) give rise to the
contributions of the order of ω2. In other words, the above de-
gravitation of ρΛ should occur at the late cosmological epoch in
which ω drops below μ [16].

A detailed analysis given in Section 3 shows that, even for
ρΛ = 0 and μ = 0, a late-time cosmic acceleration occurs on the
flat FLRW background. This comes from the peculiar evolution of
the term m2�−1Gμν in Eq. (46), by which the equation of state
smaller than −1 can be realized. Even in the presence of the cos-
mological constant, the non-local term eventually dominates over
ρΛ at the late cosmological epoch. In the following we focus on
the theory based on the field equation (46), i.e., μ = 0.

3. Cosmological dynamics

We study the cosmological dynamics on the four-dimensional
flat FLRW background characterized by the line element ds2 =
−dt2 + a2(t)(dx2 + dy2 + dz2), where a(t) is the scale factor with
the cosmic time t . Since we ignore the O (R2

μν) terms and set
H(−�M) = 0 in Eq. (45), our analysis can be valid in the low-
energy regime much below the Planck scale.

We introduce a tensor Sμν satisfying the relation

�Sμν = Gμν, (49)

by which the second term on the left-hand side of Eq. (46) can be
written as m2�−1Gμν = m2 Sμν . In order to respect the continuity
equation ∇μTμν = 0 of matter, we take the transverse part ST

μν of

the symmetric tensor Sμν , that is, ∇μST
μν = 0. Then, Eq. (46) can

be written as

Gμν + m2 ST
μν = 8πGTμν. (50)

We use the fact that Sμν can decomposed as [16,43]

Sμν = ST
μν + (∇μSν + ∇ν Sμ)/2, (51)

where the vector Sμ has the time-component S0 alone in the
FLRW background, i.e., Si = 0 (i = 1,2,3).

From Eq. (51) we have(
S0

0

)T = u − Ṡ0,
(

Si
i

)T = v − 3H S0, (52)

where u ≡ S0
0 and v ≡ Si

i , and a dot represents a derivative with
respect to t . In the presence of the matter energy–momentum ten-
sor Tμν = (ρ,a2 Pδi j), the (00) and (ii) components of Eq. (50) are

3H2 + m2(u − Ṡ0) = 8πGρ, (53)

2Ḣ + 3H2 + m2

3
(v − 3H S0) = −8πG P , (54)

where H = ȧ/a.
Taking the divergence of Eq. (51), it follows that 2∇μ Sμν =

∇μ(∇μSν + ∇ν Sμ). From the ν = 0 component of this equation
we obtain

S0 = 1

∂2
0 + 3H∂0 − 3H2

(u̇ + 3Hu − H v). (55)

The (00) and (ii) components of Eq. (49) give

ü + 3Hu̇ − 6H2u + 2H2 v = 3H2, (56)

v̈ + 3H v̇ + 6H2u − 2H2 v = 6Ḣ + 9H2, (57)

which can be decoupled each other by defining

U ≡ u + v and V ≡ u − v

3
. (58)

In summary we get the following set of equations from
Eqs. (53)–(57):

3H2 + m2

4
(U + 3V − 4 Ṡ0) = 8πGρ, (59)

2Ḣ + 3H2 + m2

(U − V − 4H S0) = −8πG P , (60)

4
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S̈0 + 3H Ṡ0 − 3H2 S0 = 1

4
(U̇ + 3V̇ + 12H V ), (61)

Ü + 3HU̇ = 6
(

Ḣ + 2H2), (62)

V̈ + 3H V̇ − 8H2 V = −2Ḣ . (63)

From Eqs. (59)–(61) one can show that the continuity equation
ρ̇ + 3H(ρ + P ) = 0 holds. For the matter component we take into
account radiation (density ρr , pressure Pr = ρr/3), non-relativistic
matter (density ρm , pressure Pm = 0), and the cosmological con-
stant (density ρΛ , pressure PΛ = −ρΛ), i.e., ρ = ρr +ρm +ρΛ and
P = ρr/3−ρΛ . Each matter component obeys the continuity equa-
tion ρ̇i + 3H(ρi + Pi) = 0 (i = r,m,Λ).

In order to study the cosmological dynamics of the above sys-
tem, it is convenient to introduce the following dimensionless vari-
ables

S = H S0, Ωr = 8πGρr

3H2
, ΩΛ = 8πGρΛ

3H2
,

ΩNL = m2

12H2

(
4S ′ − 4SrH − U − 3V

)
, (64)

where rH ≡ H ′/H , and a prime represents a derivative with re-
spect to N = ln(a/ai) (ai is the initial scale factor). From Eq. (59) it
follows that

Ωm ≡ 8πGρm

3H2
= 1 − Ωr − ΩΛ − ΩNL. (65)

We define the density parameter of the dark energy component,
as ΩDE ≡ ΩΛ + ΩNL. From Eqs. (59) and (60) the density and the
pressure of dark energy are given respectively by

ρDE = ρΛ − m2

32πG
(U + 3V − 4 Ṡ0),

PDE = −ρΛ + m2

32πG
(U − V − 4H S0). (66)

Then, the dark energy equation of state wDE = PDE/ρDE can be
expressed as

wDE = − ΩΛ − (U − V − 4S)m2/(12H2)

ΩΛ − (U + 3V − 4S ′ + 4SrH )m2/(12H2)
. (67)

From Eq. (60) the quantity rH = H ′/H obeys

rH = −3

2
− 1

2
Ωr + 3

2
ΩΛ − m2

8H2
(U − V − 4S), (68)

by which the effective equation of state of the Universe is known
as weff = −1 − 2rH/3. On using Eqs. (60)–(63) and the continu-
ity equation of each matter component, we obtain the following
differential equations

U ′′ + (3 + rH )U ′ = 6(2 + rH ), (69)

V ′′ + (3 + rH )V ′ − 8V = −2rH , (70)

S ′′ + (3 − rH )S ′ − (
3 + 3rH + r′

H

)
S

= 1

4

(
U ′ + 3V ′ + 12V

)
, (71)

Ω ′
r + (4 + 2rH )Ωr = 0, (72)

Ω ′
Λ + 2rHΩΛ = 0. (73)

In Eq. (71) the derivative of rH is given by

r′
H = 2Ωr − 3rH − 2r2

H − m2

8H2

(
U ′ − V ′ − 4S ′). (74)
3.1. ΩΛ = 0

Let us first study the case in which the cosmological constant
is absent (ΩΛ = 0). We assume that m is smaller than the to-
day’s Hubble parameter H0, i.e., m � H0. During the radiation
and matter dominated epochs the last term in Eq. (68) should be
suppressed, so that rH � −3/2 − Ωr/2 is nearly constant in each
epoch. Integrating Eqs. (69) and (70) for constant rH (> −3) and
neglecting the decaying modes, we obtain

U = c1 + 6(2 + rH )N

3 + rH
, (75)

V = c2e
1
2 (−3−rH +

√
41+6rH +r2

H )N + 1

4
rH , (76)

where c1 and c2 are constants. During the radiation era (rH = −2)
these solutions reduce to U = c1 and V = c2e(

√
33−1)N/2 − 1/2,

while in the matter era (rH = −3/2) we have U = 2N + c1 and
V = c2e(

√
137−3)N/4 − 3/8. Since V grows faster than U due to the

presence of the term −8V in Eq. (70), it is a good approximation
to neglect U relative to V in the regime |V | � 1.

The field S is amplified by the force term on the right-hand
side of Eq. (71). Meanwhile the homogeneous solution of Eq. (71)
decays for rH = −2 and −3/2. Then, for |V | � 1, the field S grows
as

S �
3(25 + 11rH + 5

√
41 + 6rH + r2

H )

8(25 − 25rH − 6r2
H )

V , (77)

which behaves as S � (5
√

33 + 3)c2e(
√

33−1)N/2/136 during the ra-
diation era and S � 3(5

√
137 + 17)c2e(

√
137−3)N/4/784 during the

matter era. From Eq. (67) the dark energy equation of state reduces
to wDE � (V + 4S)/(3V − 4S ′ + 4SrH ). Using the above solutions,
we obtain

wDE � −1

3

125 − 17rH − 12r2
H + 15

√
41 + 6rH + r2

H

15 + 11rH − 2r2
H + (5 − 2rH )

√
41 + 6rH + r2

H

,

(78)

from which wDE � −1.791 in the radiation era and wDE � −1.725
in the matter era. This means that the dark component from the
non-local mass term comes into play at the late stage of cosmic
expansion history.

Indeed, there exists an asymptotic future solution characterized
by ΩNL = 1 with constant rH . In this regime we have rH � −3/2 −
m2/(8H2)(U − V − 4S) in Eq. (68). Meanwhile, if rH is constant,
the mass term m does not appear in Eqs. (69)–(71), so that the
solutions (75)–(78) are valid, too. Since wDE is equivalent to weff =
−1 − 2rH/3 in the limit ΩNL → 1, it follows that

rH = √
57/6 − 1/2, wDE � −1.506. (79)

Since rH is constant, the growth rates of the Hubble parameter
squared H2 are the same as those of V and S . Hence we have
the super-inflationary solution H ∝ a

√
57/6−1/2 approaching a big-

rip singularity. However the above study neglects the contribution
of the O (R2) terms, so inclusion of those terms can modify the
cosmological dynamics in the high-curvature regime.

In order to confirm the above analytic estimation, we nu-
merically integrate Eqs. (69)–(73) with the initial conditions U =
U ′ = 0, V = V ′ = 0, and S = S ′ = 0 in the deep radiation era. In
Fig. 1 we plot the evolution of wDE and weff as well as the den-
sity parameters ΩNL, Ωm , Ωr versus the redshift zr = 1/a − 1.
Clearly there is the sequence of radiation (Ωr � 1, weff � 1/3),
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Fig. 1. Evolution of ΩNL, Ωm , Ωr , wDE, and weff versus the redshift zr for the initial
conditions U = U ′ = 0, V = V ′ = 0, S = S ′ = 0, Ωr = 0.9992, and H/m = 1.0 ×
1018 at zr = 3.9 × 106. There is no cosmological constant in this simulation. The
present epoch (z = 0, H = H0) is identified as ΩNL = 0.7. In this case the mass m
corresponds to m/H0 = 1.5 × 10−7.

matter (Ωm � 1, weff = 0), and dark energy (ΩNL � 1, weff � −1.5)
dominated epochs. We identify the present epoch (zr = 0) to be
ΩNL = 0.7. As we estimated analytically, the dark energy equation
of state evolves as wDE � −1.791 (radiation era), wDE � −1.725
(matter era), and wDE � −1.506 (accelerated era).

Notice that, even with the initial conditions V = V ′ = 0, the
growing-mode solution to Eq. (70) cannot be eliminated due to
the presence of the term −2rH . Taking into account the decaying-
mode solution to V in the radiation era, the coefficient c2 of
Eq. (76) corresponding to V = V ′ = 0 at N = 0 (i.e., a = ai ) is
c2 = √

33/132 + 1/4 � 0.29. Up to the radiation–matter equality
(a = aeq), the field evolves as V � 0.29(a/ai)

(
√

33−1)/2. Since V is

proportional to a(
√

137−3)/4 in the matter era, it follows that

V � 0.29

(
aeq

ai

)√
33−1

2
(

a

aeq

)√
137−3

4

, (80)

for aeq < a < 1.
In the numerical simulation of Fig. 1 the initial condition is cho-

sen to be ai = 2.6 × 10−7 with aeq = 3.1 × 10−4. Since the cosmic
acceleration starts when the last term in Eq. (68) grows to the or-
der of 1, we have m2 V 0/(8H2

0) ≈ 1, where V 0 is the today’s value
of V . Using the analytic estimation (80), the mass m is constrained
to be m ≈ 10−7 H0. In fact, this is close to the numerically derived
value m = 1.5 × 10−7 H0.

Thus, the mass m is required to be much smaller than H0 to
avoid the early beginning of cosmic acceleration. If the onset of
the radiation era occurs at the redshift zr larger than 1015, i.e.,
ai � 10−15, the analytic estimation (80) shows that the mass m
needs to satisfy the condition m � 10−17 H0 to realize the success-
ful cosmic expansion history.

If we consider the evolution of the Universe earlier than the ra-
diation era (e.g., inflation), the upper bound of m should be even
tighter. On the de Sitter background (Ḣ = 0) we have rH = 0, in
Fig. 2. Evolution of wDE versus the redshift zr for the initial conditions (a) Ωr =
0.9965, ΩΛ = 1.0 × 10−20, H/m = 1.0 × 1018 at zr = 9.3 × 105, (b) Ωr = 0.999,
ΩΛ = 2.3 × 10−23, H/m = 1.0 × 1018 at zr = 3.7 × 106, and (c) Ωr = 0.999,
ΩΛ = 1.0 × 10−25, H/m = 1.0 × 1018 at zr = 4.1 × 106. In all these cases the initial
conditions of the fields are chosen to be U = U ′ = 0, V = V ′ = 0, and S = S ′ = 0.
We identify the present epoch at ΩNL + ΩΛ = 0.7.

which case the growth of V can be avoided for the initial condi-
tions V = V ′ = 0. However, inflation in the early Universe has a
small deviation from the exact de Sitter solution [44] and hence
the field V can grow at some extent due to the non-vanishing val-
ues of rH . For the theoretical consistency we need to include the
O (R2) terms in such a high-energy regime, which is beyond the
scope of our Letter.

3.2. ΩΛ �= 0

In the presence of the cosmological constant with the energy
density ρΛ , the cosmological dynamics is subject to change rela-
tive to that studied in Section 3.1. During the radiation and matter
eras we have 3H2 � |(m2/4)(U + 3V − 4 Ṡ0)| in Eq. (59) and hence
3H2 � 8πGρ . In order to avoid the appearance of ρΛ in these
epochs, we require the condition ρΛ � 3H2

0/(8πG).
The non-local mass term finally dominates over the cosmologi-

cal constant because the equation of state of the former is smaller
than that of the latter. If the condition 8πGρΛ � |(m2/4)(U +
3V − 4 Ṡ0)| is satisfied today, the non-local term comes out in the
future. The case (a) in Fig. 2 corresponds to such an example. In
this case, the dark energy equation of state is close to −1 up to
zr ∼ −0.9. It then approaches the asymptotic value wDE = −1.506.

For smaller values of ρΛ , the dominance of the non-local term
occurs earlier. In the case (b) of Fig. 2 the energy densities of the
non-local term and the cosmological constant are the same orders
today (ΩNL = 0.36 and ΩΛ = 0.34 at zr = 0). In this case the dark
energy equation of state starts to decrease only recently with the
today’s value wDE = −1.39.

In the case (c) the transition to the asymptotic regime wDE =
−1.506 occurs even earlier (around zr ∼ 100). Observationally it is
possible to distinguish between the three different cases of Fig. 2.
In the limit that ρΛ → 0, the evolution of wDE approaches the one
shown in Fig. 1. For smaller ρΛ the graviton mass m tends to be
larger because of the earlier dominance of the non-local term. For
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Fig. 3. Evolution of ΩNL and ΩΛ versus the redshift zr for the initial conditions
corresponding to the case (b) in Fig. 2.

the cases (a), (b), and (c), the numerical values of the mass are
m = 8.37 × 10−9 H0, m = 1.22 × 10−7 H0, and m = 1.46 × 10−7 H0,
respectively.

In Fig. 3 we plot the evolution of ΩNL and ΩΛ for the initial
conditions corresponding to the case (b) in Fig. 2. After ΩNL gets
larger than ΩΛ today, ΩNL approaches 1, while ΩΛ starts to de-
crease toward 0. This behavior comes from the fact that, after the
dominance of ΩNL, the terms on the left-hand side of Eq. (59)
balance with each other, i.e., 3H2 + (m2/4)(U + 3V − 4 Ṡ0) � 0.
Then the cosmological constant appearing on the right-hand side
of Eq. (59) effectively decouples from the dynamics of the system.
This is a kind of degravitation, by which the contribution of the
matter component present in the energy density ρ becomes neg-
ligible relative to that of the non-local term.

4. Conclusions and discussions

In this Letter we showed that the field equation of motion in
the non-local massive gravity theory proposed by Jaccard et al.
[16] follows from the covariant non-local Lagrangian (25) with
quadratic curvature terms. This is the generalization of the super-
renormalizable massless theory with the ultraviolet modification
factor eH(−�M ) .

Expanding the Lagrangian (25) up to second order of the per-
turbations hμν on the Minkowski background, the propagator of
the theory can be expressed in terms of four operators which
project out the spin-2, spin-1, and two spin-0 parts of a mas-
sive tensor field. The propagator (24) smoothly connects to that
of the massless theory in the limit m → 0 and hence there is no
vDVZ discontinuity. We also found that the theory described by
(25) is unitary at tree level, by coupling the propagator to external
conserved stress–energy tensors and evaluating the residue of the
amplitude at the pole (k2 = m2).

In the presence of a conserved energy–momentum tensor Tμν ,
the non-local equation of motion following from the Lagrangian
(25) is given by Eq. (45). In the low-energy regime much below the
Planck scale the quadratic curvature terms can be negligible rela-
tive to other terms, so that the equation of motion reduces to (46)
for H(−�M) = 0. We studied the cosmological dynamics based on
the non-local equation (46) in detail on the flat FLRW background.

The tensor field Sμν , which satisfies the relation (49), can be
decomposed into the form (51). In order to respect the continu-
ity equation ∇μTμν = 0 for matter, the transverse part of Sμν

needs to be extracted in the second term on the left-hand side
of Eq. (46). Among the components of the vector Sμ in Eq. (51),
the three vector Si (i = 1,2,3) vanishes because of the symmetry
of the FLRW space–time. In addition to the vector component S0,
we also have two scalar degrees of freedom U = S0

0 + Si
i and

V = S0
0 − Si

i/3.
Among these dynamical degrees of freedom, the scalar field V

exhibits instabilities for the cosmological background with Ḣ �= 0.
Even in the absence of a dark energy component, a late-time ac-
celerated expansion of the Universe can be realized by the growth
of V . In order to avoid an early entry to the phase of cosmic accel-
eration, the graviton mass m is required to be very much smaller
than the today’s Hubble parameter H0. We showed that the equa-
tion of state of this “dark” component evolves as wDE = −1.791
(radiation era), wDE = −1.725 (matter era), and wDE = −1.506 (ac-
celerated era), see Fig. 1.

While the above property of the non-local massive gravity is at-
tractive, the evolution of wDE smaller than −1.5 during the matter
and accelerated epochs is in tension with the joint data analysis of
SNIa, CMB, and BAO [45]. In the presence of the cosmological con-
stant Λ (or other dark energy components such as quintessence),
the dark energy equation of state can evolve with the value close
to wDE = −1 in the deep matter era (see Fig. 2). In such cases
the model can be consistent with the observational data. In the
asymptotic future the non-local term dominates over the cosmo-
logical constant, which can be regarded as a kind of degravitation
of Λ.

Recently, Maggiore [46] studied the modified version of the
non-local massive gravity in which the second term on the
left-hand side of Eq. (46) is replaced by m2(gμν�−1 R)T, where
T denotes the extraction of the transverse part. In this theory the
−2Ḣ term on the right-hand side of Eq. (63) disappears, in which
case the growth of V can be avoided for the initial conditions
V = V̇ = 0 (i.e., decoupled from the dynamics). Since the growth
of the fields U and S0 is milder than that of the field V studied in
Section 3.1, wDE evolves from the value slightly smaller than −1
during the matter era to the value larger than −1 [46]. It will be
of interest to study whether such a theory can be consistently for-
mulated in the framework of the covariant action related to the
super-renormalizable massless theory.

While we showed that the theory described by the covariant
Lagrangian (25) is tree-level unitary on the Minkowski background,
it remains to see what happens on the cosmological background.
This requires detailed study for the expansion of the Lagrangian
(25) up to second order in cosmological perturbations about the
FLRW background. We leave such analysis for future work.
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