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Abstract--A mathematical procedure for analyzing the cell proliferation kinetics from DNA content 
histograms, measured by flow cytometry, is presented. This procedure is based on a cell cycle model which 
uses a continuity equation for the S-phase transit. Four tumor cell lines in culture were studied. A human 
melanoma line (JR01) was examined in exponential growth. For another human melanoma (MI4) and 
a human astrocytoma (DF) lines, a sequence of flow cytometric histograms with the corresponding growth 
curve was processed, determining the rate of DNA synthesis and the S-phase cell influx. The same kinetic 
parameters were evaluated also in a murine tumor line (3LL C!08) treated with an antineoplastic drug 
(ICRF 159). 

1. I N T R O D U C T I O N  

Since the introduction of  automatic  flow cytometry [1] in the study of cell population kinetics, 
several methods have been developed in order to extract relevant proliferative parameters from the 
measured D N A  fluorescence distributions [2]. Due to the relevance of  the D N A  synthesis in the 
replicative mechanism of  the cell, some methods allow to reconstruct the pattern of  the D N A  
synthesis rate of  cells exponentially growing [3-8]. Other methods interpret time-sequences of  D N A  
flow cytometric (FCM) histograms in terms of mult icompartment  models of  the cell cycle [9-11]. 

In the present paper  we describe a method for analyzing cell population kinetics also in perturbed 
growth condition. This method uses a time-sequence of  FCM histograms and the measured 
population sizes, in order to obtain estimates of  the cell distribution in the cycle phases, of  the D N A  
synthesis rate, and of  the S-phase influx. The procedure is based on a cell population model 
proposed in Ref. [12]. In the present work we report the results obtained by analyzing the 
proliferative characteristics of  four i n  v i t r o  tumor cell lines in different growth conditions: 
exponential growth (lines JR01 and DF),  saturating growth (lines D F  and M14), and perturbed 
growth (line 3LL C108). 

2. T H E O R Y  

The population model proposed in Ref. [12] is structured in terms of  the cell D N A  content, and 
assumes no intrapopulation variability of  the D N A  synthesis rate and no cell loss. The model 
equations are 

d 
d t  N l  = - - f ( t )  + 2g(/)  (1) 

7 - n ( x , t ) + = - - [ v ( x , t ) n ( x , t ) ] = O ,  l < x < 2 ,  
6 t  - - O x  - - - - --  (2) 

v( l ,  t)n(1, t) = f ( t )  

d 
dtN2 = v(2, t)n (2, t) - g( t ) ,  (3) 

where: N ~ ( t )  and N 2 ( t )  denote the number  of  cells with D N A  content at t equal to 1 and 2, 
respectively; n (x, t) is the cell density in S with respect to the D N A  content x; v (x, t) is the D N A  
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synthesis rate at t of a cell with DNA context x; f ( t )  is the S-phase influx; g(t)  is the mitotic rate. 
In the absence of cell loss g (t) is equal to dN/dt,  where N (t) is the number of cells in the population 
at time t. We note that the use of  the continuity equation (2) for representing the progression of 
cells along the S phase and for estimating the rate of DNA synthesis, was firstly proposed in Ref. 
[3] and more recently in Refs [6, 13]. 

From the model equations the following expressions for v(x, t) and f ( t )  can be obtained: [ ( ;x )] 
1 d N(t) 2 -  01(0- r~(z, t) dz (4) v(x, t) = N( t )a(x ,  t) dt 

d 
f ( t )  = ~ [N(/)(2 - 0~(/))], (5) 

where O~(t) is the G1/G0 fraction and r~(x, t) = n(x, t ) /N(t)  is the DNA distribution in S. It has 
been found convenient [7] to express a (x, t) in terms of 01 and of a parametrizing function w (x, t), 
I < x < 2, according to 

~ ( x , t ) =  w(x,t-----~exp - w(z , t  " 

With this parametrization for ~(x, t), equation (4) can be rewritten as 

v(x, t) = w(x, t )-~ ln[N(t)(2 - 0,(t))] - j~ w(z, t)J" (7) 

The rate of DNA synthesis for a population in balanced exponential growth (the rate and the 
DNA distribution are time-independent in this growth condition) becomes simply 

v(x )  = ~w(x),  (8) 

where ct = d In N(t) /dt  is the population growth rate. In Refs [7, 8] a computational algorithm was 
proposed which extracts from a FCM histogram a piecewise constant approximation of w, and 
reconstructs the DNA distribution (see next section). 

In an arbitrary growth condition, given a sequence of FCM histograms, equation (7) allows to 
compute the time integral of  v(x, t)/w(x, t) over the interval [ti, tj+~] between two successive 
histograms. By approximating v (x, t) as a time-invariant vi(x) in this interval, and evaluating the 
integral 

ff +' dt /w(x,  t) 
i 

by the trapezoidal rule, the following expression can be obtained: 

; i x (  1 ! t  ) in N(ti+ 0 2-Ol(t i+,)  W(•t,) w(z /+1) dz 
v,(x)= ~ + I n  2--0,(t i)  ~- 

(9) ti+l--t,( l__~ 1 ) 
2 \w(x ,  ti) q w(x,t ,+,)  

The average S-phase influx in Its, t~+~] turns to be 

f = [N(ti+ 0(2 - Ol(ti+ t)) - N(ti)(  2 - Ol(ti))]/(ti+ i - ti). (10) 

These quantities allow to compute in the same interval the S-phase transit time 

Ts = dx/vt(x), 

and a rough estimate of  the mean residence time in G1/GO according to 

g(t,)O, (t,) + g(t,+ ,)Ol(t,+ ,) 
TG,/Go = 2f  

Note that in balanced exponential growth it is TGI/~ = 0~/~(2-  G) [8]. 
It appears that, by means of equations (9) and (10), it could be possible to determine v~(x) and 

f from two successive histograms of  the sequence and from the corresponding cell counts. 
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Unfortunately, the errors affecting usually the measurement of the population size cause large 
deviations on the estimates of both the DNA synthesis rate and the S-phase influx. This is not 
surprising since equations (9) and (10) contain a finite-difference approximation of the derivative 
of N(t).  On the contrary, it has been found that the errors on 01 and w do not affect severely the 
above estimates in the majority of cases [14]. 

Two different approaches, based on the consideration of the whole FCM sequence and the 
related growth curve, seem to be feasible in order to obtain filtered values of N(ti): (a) a convenient 
law for fitting the growth curve (e.g. logistic, polynomial); (b) a nonparametric estimate of N(t~) 
obtained by a regularization procedure. Our approach, that moves along the line (b), will be 
outlined in the next section. 

3. COMPUTER ANALYSIS 

3.1. Single FCM histogram 

The DNA distribution over the cell population is related to the distribution v (~) of the DNA-dye 
complex fluorescence ~, measured with the flow cytometer, by the equation [2] 

v(~)=O,K(~, 1)+ K ( ~ , x ) ~ ( x ) d x  + 02K(~, 2 ), ( l l)  

where 02 is the G2M fraction, and K(~, x) is the kernel that expresses the fluorescence dispersion. 
On the basis of equations (6) and (11) an algorithm has been implemented which, from a FCM 

histogram, yields least-square estimates of: (i) the G1/G0 fraction 01; (ii) the values w~ . . . . .  WM of 
a piecewise constant approximation of the function w(x)  that parametrizes t~(x); (iii) the 
parameters of a suitable analytical form of K(~, x). K(~, x) was chosen as 

- exp - - - K(~,x) = , , / ~ ( x )  ~(x) ] J 

The mean fluorescence of a cell with DNA content x, m (x), and the standard deviation a (x) were 
assumed to be 

m ( x )  = ~GI + (~G2-  ~GI)( x --  1) 

~ ( x  ) = c x  ~ 

where ~ and ~G2 are the mean fluorescences of G1/G0 and G2M cells respectively. 
The main steps of the algorithm can be outlined as follows. 

1. Least square estimates of ~c~ and c are obtained on the G1/G0 peak truncated 
at 3a(1) on the r.h.s. 

2. Least square estimates of ~c2 and b are similarly obtained on the G2M peak 
truncated at 3a (2) on the l.h.s. 

3. Keeping ~c~, ~c~, c and b fixed, the least square estimates of 01, Wl . . . . .  WM are 
obtained. The program increases M up to a predetermined value Mm,x (usually 
6-8 for histograms with 104- 3 × 104 cells distributed in 60-70 channels, and 
with CV of G1/G0 peak in the range 2--4%) at which the procedure stops. 

At the end of the procedure, the DNA distribution in S is reconstructed by means of equation (6), 
and the G2M fraction is computed. In this way the S-phase DNA distribution r~(x) is 
approximated by a piecewise exponential function over Mm~ equal compartments. If the FCM 
histogram is measured in balanced exponential growth and the population growth rate ~ is known, 
the rate of DNA synthesis can be computed from equation (8). The algorithm was tested on 
simulated and experimental histograms in Refs [7, 8]. 

3.2. Time-sequence of  FCM histograms 

In non-exponential growth conditions of the cell population, the recovery of kinetic parameters 
by means of equations (9) and (10) requires a preliminary filtering of the growth curve as stated 
in the previous section. 
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Let us consider a sequence of  FCM histograms and the related population size measurements 
at the times t~ . . . . .  t,. Let y~ = In N(t~) and let z~ be the logarithm of the measured population size 
at t~. We assume z~ = y~ + e~, where e~ is an uncorrelated zero-mean noise with variance a~. Let 
A i = y ~ - - y ~ _ l ,  i = 2 . . . . .  n, and AI =Yl. The estimate of N(t i ) ,  i = 1 . . . . .  n, is obtained by 
minimizing with respect to A 1 . . . . .  A n the following index: 

J z~ Aj + 2" = - (Vi+l(X) Vi(X)) 2dx,  (12) 
i = l  j = l  i = l  

where 2 is a regularization parameter. This estimate depends critically on the choice of  2. For very 
small 2 the estimated N(t~) tend to reproduce the measured values, with possible large deviations 
on the reconstructed DNA synthesis rate patterns. For very large 2 fictitious values of N(t~) are 
obtained, causing a compression of the actual changes of the rate along the sequence. 

In order to determine an optimal value of  the regularization parameter 2, we adopted the 
criterion of  minimizing the expected value of the squared estimation error ,fa - Y*, where y* and 
)3;, are the vectors of the true and estimated values, respectively. It can be seen from the structure 
of index (12) and from expression (9) that the estimate 33~ has the form f~a = Q;z  +p~,  where z is 
the vector of the z~ [14]. Qa and p~ are a matrix and a vector respectively, that depend both on 2 
and on the DNA distributions reconstructed from the histograms of the sequence. Thus the mean 
square error turns out to be 

tp = [(Q~y* + p~) - y , ] r [ ( Q ~ y ,  + p~) _ y , ]  + trace(Qa ~PQ~), (13) 

where ~ is the covariance matrix of the noise vector e. Since the vector y* of the true values is 
unknown, we minimized with respect to 2 an unbiased estimate of tp given by 

tk = [(Qaz + pa) - z]T[(Qaz + p~) -- z] + trace((2Qa - I ) ~ ) .  (14) 

This expression was obtained by replacing y* with z in equation (13) and subtracting the bias. 
In summary, the main steps of the procedure for the analysis of a FCM sequence are the 

following. 

1. All the histograms of the sequence are analyzed, as previously described, 
estimating 01 and w ( x )  for each histogram. 

2. Matrix Qa and vector p~ are constructed, and the index (14) is minimized finding 
the optimal value )7. 

3. The estimates of the DNA synthesis rate and of the S-phase influx are computed 
by equations (9) and (10), using 3~. 

A complete description of this procedure, accompanied by tests on simulated data, appeared in 
Ref. [14]. 

4. APPLICATIONS 

The rate of DNA synthesis was obtained for four cell lines in culture. The DF and JR01 lines 
were originally established at Regina Elena Institute in Rome. The DF line derives from a biopsy 
of a patient bearing an astrocytoma. The JR01 line originates from a metastatic nodule of a patient 
affected by a malignant melanoma. Both lines grow continuously in RPMI medium supplemented 
with 10% FCS. The passages 60th and 16th for the two lines respectively were used. The M14 line, 
derived from a human metastatic melanoma nodule and established at the University of California 
at Los Angeles, is maintained in RPMI 1640 medium supplemented with 10% FCS. The passage 
125th was used. The fourth line was a variant of the murine 3LL line, denoted as C108, growing 
in Waymouth's  medium supplemented with 15% FCS at the passage 218th. 

The growth of the three human lines was monitored by measuring the number of cells and the 
DNA content histograms at different times up to the 8th day of growth. The DNA content was 
measured by a FACS 420 flow cytometer on cells treated with RNA-ase (50 U/ml) and stained with 
propidium iodide (50/~g/ml). The 3LL C108 line in the exponential growth was treated with ICRF 
159 (150 #g/ml) for 1, 3 and 6 h. The number and the DNA content of the cells, stained with the 
same protocol, were measured at time 0 (control) and at the above times. 
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Fig. I. FCM histogram of the DNA content of  JR01 cells at the 6th day of growth. + : experimental 
points. : fitting fluorescence distribution. 

The FCM histograms of the JR01 and DF cells in exponential growth were analyzed by the 
computational algorithm described in Section 3.1. As an example, Fig. 1 shows the experimental 
histogram of JR01 cells at the 6th day together with the fitting fluorescence distribution. The 
growth rate 0t was estimated from the measured growth curves, obtaining 0.031 h-1 for JR01 and 
0.023 h-l for DF cells. For both lines, we derived the cycle phase fractions, the DNA synthetic 
rate using equation (8), and the duration of the S and G1/G0 phases. Figures 2 and 3 show the 
patterns of the rate of DNA synthesis for the two lines; the durations of the S and G1/G0 phases 
are reported in the figure legends. As it can be seen, for each line the pattern does not change 
appreciably in the exponential growth. Moreover, the pattern does not differ substantially between 
the two lines, and the same is true for the duration of the synthetic period. On the contrary, the 
duration of the cycle (as indicated by the value of the growth rate 0t) and of the G1/G0 phase are 
longer in the DF line. 

For the DF and M14 lines a complete sequence of histograms was also considered. In order to 
evaluate the DNA synthesis rate according to equation (9), the histograms were analyzed, and the 
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Fig. 2. Pattern of DNA synthesis rate vs DNA content, 
estimated in 4 S-phase compartments, for JR01 cells in 
exponentiaJ growth at 4th ( ) and 6th day ( . . . . . .  ) after 
seeding. Estimated S-phase transit time: ]4.3 h (4th day), 

]2.8 h (6tb day). (3 ] /00 residence time: 6.7 h. 
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Fig. 3. Pattern of DNA synthesis rate vs DNA content, 
estimated in 4 S-phase compartments, for DF cells in 
exponential growth at 3rd ( ) and 4th ( ...... ) day after 
seeding. Estimated S-phase transit time: 14.4 h (3rd day), 

14.1 h (4th day). GI/G0 residence time; 14.6h. 
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Table I. Population size, fraction of cells in cycle phases, G1/G0 and S transit times, estimated at 
different growth stages of DF line 

Population size Population size 
(measured) (estimated) GI/G0 S G2M Tol/c0 Ts 

Days 105 cells/ml 10s cells/ml (%) (%) (%) (h) (h) 

3 0.47 0.45 50.4 42.2 7.4 
15.1 14.5 

4 0.69 0.79 50.4 41.5 8.1 
16.7 14.8 

6 2.70 2.25 50.3 40.4 9.3 
38.6 15.5 

7 3.20 3.48 71.0 21.3 7.7 

Table 2. Population size, fraction of cells in cycle phases, GI/G0 and S transit times, estimated at 
different growth stages of MI4 line 

Population size Population size 
(measured) (estimated) GI/G0 S G2M T~tlc, o T s 

Days 105 cells/ml 105 cells/ml (%) (%) (%) (h) (h) 

4 0.70 0.75 43.5 46.3 10.2 
7.5 ll.5 

4.6 1.19 1.17 37.8 52.6 9.6 
8.3 12.0 

5 1.59 1.58 39.4 47.8 12.8 
10.0 12.2 

5.6 2.63 2.40 44.7 42.9 12.4 
12.8 12.7 

6 3.42 3.15 49.2 40.3 10.5 
21.1 12.8 

6.6 3.96 4,47 61.7 29.7 8.6 
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Fig. 4. FCM histograms of  3LL C108 cells at time 0 (control), and at 1, 3 and 6 h of treatment with 
ICRF 159. 
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Fig. 5. D N A  distributions in S-phase, estimated in six compartments, for 3LL CI08 cells at the times 
indicated. 

Table 3. Population size, fraction of cells in cycle phases and S-phase transit time estimated 
at different times of treatment of 3LL CI08 cells with ICRF 159 

Population size Population size 
(measured) (estimated) GI/G0 S G2M T s 

h 104 cells/ml 104 cells/ml (%) (%) (%) (b) 

0 4.9 5.1 15.6 70.2 14.2 
12.5 

1 5.2 5.2 14.2 72.9 19.9 
12.2 

3 5.1 5.3 1.1 79.3 19.6 
12.9 

6 6.1 5.6 0 75.0 25.0 

filtering procedure described in Section 3.2 was applied to the measured growth curve. Tables 1 
and 2 give the relevant kinetic parameters for the DF and M14 line, respectively. It can be seen 
that the approach to the plateau proceeds via an increased G1/G0 fraction with a corresponding 
increase of the G1/G0 transit time, whereas the S phase duration does not change appreciably. 

0.12 
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o 

o~ 

0.001 2 
DNA 

Fig. 6. Pattern of  D N A  synthesis rate vs D N A  content, estimated in 6 S-phase compartments, for the 
3LL C108 line treated with ICRF 159. Rates estimated in the following time intervals: 0-1 h ( ), 

1 -3h  ( - - - ) ,  3 ~ h  ( . . . . .  ). 
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In Fig. 4 the sequence o f  four  histograms o f  the treated 3LL C108 cells are displayed, showing 
an accumula t ion  o f  cells in the G 2 M  phase o f  the cycle. The corresponding estimated D N A  
distributions in S-phase  are shown in Fig. 5. The first three distributions are substantially 
unchanged,  suggesting that  the S-phase  influx is exponentially decreasing [7]. The four th  
distr ibution shows the starting o f  S-phase  depletion. Table 3 summarizes the results o f  the analysis 
o f  the whole sequence. As expected f rom the mechanism o f  action o f  the drug [15], the G 1/GO phase 
is progressively depleted, with a cor responding  increment o f  the G2 phase. The dura t ion o f  D N A  
synthesis is substantially unchanged,  as well as the pat tern o f  the D N A  synthesis rate (Fig. 6). 

5. C O N C L U D I N G  R E M A R K S  

The proposed  mathemat ical  procedure  appears to be able to give realistic estimates o f  some 
relevant characteristics o f  cell popula t ions  growing in v i t ro  in different biological situations. Cell 
cycle related mechanisms,  as well as the response to drug treatment,  are to some extent clarified 
by the analysis me thod  outlined in this paper. 

The results reported indicate that  for the two tumor  cell lines studied up to the saturation, the 
e longat ion o f  the G 1 / G 0  residence time is the main  event in the transit ion to the plateau phase, 
The time dura t ion o f  the synthetic period appears  on the cont ra ry  a constant  characteristic o f  the 
cells. 

The D N A  measurement  and the related mathemat ical  analysis allowed us to recognize a constant  
dura t ion  o f  the S phase even in the case o f  a cell popula t ion  treated with the I C R F  159 drug. This 
drug seems to affect only the G 2 M  phase o f  3LL C108 cells. 

This kind o f  analysis could help in devising pharmacological  experiments using cell cultures, and 
in proper ly  timing the adminis t rat ion o f  cell cycle specific drugs. However ,  the applicability o f  the 
method  o f  analysis in its present form is restricted to those experiments in which the condi t ion o f  
negligible cell loss, assumed in the underlying popula t ion  model,  is verified. 

Acknowledgement--This work was supported by Progetto Finalizzato "Oncologia", CNR, Grants No. 102312-104348 and 
84.008.04. 

R E F E R E N C E S  

1. M. A. van Dilla, T. T. Trujillo, P. F. Mullaney and J. R. Coulter, Cell microfluorometry: a method for rapid 
fluorescence measurement. Science 163, 1213-1217 (1969). 

2. S. Zietz and C. Nicolini, Flow mierofluorometry and cell kinetics: a review. In Biomathematics and Cell Kinetics 
(Eds A. J. Valleron and P. D. M. Macdonald) pp. 357-394. Elsevier/North-Holland, New York (1978). 

3. P. N. Dean and E. C. Anderson, The rate of DNA synthesis during S-phase by mammalian ceils/n vitro. In Pulse 
Cytophotometry, Part I (Eds C. A. M. Haaven, H. F. P. Hiller and J. M. C. Wessels) pp. 77-86. European Press 
Medikon, Ghent (1975). 

4. R. A. White, A theory for the estimation of DNA synthesis rates by flow cytometry. J. Theor. Biol. 85, 53-73 (1980). 
5. J. M. Collins, D. E. Berry and C. B. Bagwell, Different rates of DNA synthesis during the S-phase of Log phase HeLa 

$3, WI-38, and 2RA cells. J, BioL Chem. 255, 3585-3590 (1980). 
6. E. Sahar, M. L. Wage and S. Latt, Maturation rates and transition probabilities of cycling ceils. Cytometry 4, 202-210 

(1983). 
7. A. Bertuzzi, A. Gandolfi, A. Germani and R. Vitelli, Estimation of cell DNA synthesis rate from flow-cytometric 

histograms. Cell Biophys. 5, 223-236 (1983). 
8. A. Bertuzzi, A. Gandolfi, A. Germani, M. Spano', G. Starace and R. Vitelli, Analysis of DNA synthesis rate of cultured 

cells from flow cytometric data. Cytometry 5, 619~i28 (1984). 
9. M. Kim, K. Bahrami and K. B. Woo, A discrete-time model for cell-age, size, and DNA distributions of proliferating 

cells, and its application to the movement of the labeled cohort. IEEE Trans. Biomed. Engng. 21, 387-399 (1974). 
10. M. Kim and S. Perry, Mathematical methods for determining cell DNA synthesis rate and age distributions utilizing 

flow mierofluorometry. J. Theor. Biol. 68, 27-42 (1977). 
11. J. W. Gray, Cell-cycle analysis of perturbed cell populations: computer simulation of sequential DNA distributions. 

Cell Tissue Kinet. 9, 499-516 (1976). 
12. A. Bertuzzi, A. Gandolfi, A. Germani and R. Vitelli, A general expression for sequential DNA-fluorescence histograms. 

J. Theor. Biol. 102, 55-67 (1983). 
13. N. R. Hartmann and I. J. Christensen, In Various applications of the continuity equation in the analysis of data 

measured by flow cytometry. In Biomathematics and Cell Kinetics (Ed. M. Rotenberg), pp. 389-401. 
Elsevier/North-Holland, New York (1981). 

14. A. Bertuzzi, A. Gandolfi and R. Vit¢lli, A regularization procedure for estimating cell kinetic parameters from flow 
eytometry data. Math. Biosci. 82, 63-85 (1986). 

15. A. M. Creighton, Mechanism of action of ICRF 159. In Advances in Medical Oncology (Ed. B. W. Fox), Vol. 5, 
pp. 83-91. Pergamon Press, Oxford (1979). 


