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SUMMARY

The polymerization/depolymerization dynamics of
microtubules (MTs) have been reported to contribute
to control of the size and shape of spindles, but quan-
titative analysis of how the size and shape correlate
with the amount and density of MTs in the spindle
remains incomplete. Here, we measured these pa-
rameters using 3D microscopy of meiotic spindles
that self-organized in Xenopus egg extracts and pre-
sented a simple equation describing the relationship
among these parameters. To examine the validity of
the equation, we cut the spindle into two fragments
along the pole-to-pole axis by micromanipulation
techniques that rapidly decrease the amount of
MTs. The spheroidal shape spontaneously recovered
within 5 min, but the size of each fragment remained
small. The equation we obtained quantitatively de-
scribes how the spindle size correlates with the
amount of MTs while maintaining the shape and the
MT density.
INTRODUCTION

The meiotic/mitotic spindle is a microtubule (MT)-based struc-

ture that is designed to segregate chromosomes. The size of

the metaphase spindle scales with the cell size except in rela-

tively larger cell types (Hara and Kimura, 2009; Wühr et al.,

2008). The regulation of MT assembly dynamics by depolymeriz-

ing motor proteins and MT-severing and -destabilizing proteins,

along with a localized signal from chromosomes to nucleate

MTs, has been suggested to contribute to this cell-size-indepen-

dent control of the spindle size (Budde et al., 2001; Gaetz and

Kapoor, 2004; Heald et al., 1996; Houghtaling et al., 2009; Kaláb

et al., 2006; Loughlin et al., 2011;Mitchison et al., 2005; Ohi et al.,

2007; Reber et al., 2013). For example, addition or depletion of

depolymerizing kinesins decreases or increases the spindle

size, respectively (Ohi et al., 2007); inhibition of katanin, an MT-

severing protein, lengthens the spindle (Loughlin et al., 2011);
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and a gradient of RanGTP, which promotes MT nucleation and

stabilization, produces spatial cues to scale spindle size (Kaláb

et al., 2006). Thus, the size of the metaphase spindle can be

controlled by cytoplasmic factors regulating the MT dynamics.

However, previous studies suggested that the balance of

forces generated by molecular motors that induce the sliding

and depolymerizing of MTs, and the distortion of the stiff MT

bundle, is also related to the regulation of spindle size (Brust-

Mascher et al., 2009; Burbank et al., 2007; Goshima et al.,

2005; Oguchi et al., 2011; Wollman et al., 2008). Mechanically

applied forces have been reported to affect MT dynamics and

spindle size without changing the cytoplasmic conditions

(Dumont and Mitchison, 2009; Itabashi et al., 2009; Shimamoto

et al., 2011). Although these biochemical and biophysical studies

indicated that MT dynamics contributes to regulation of spindle

size, correlation between the amount of MTs and spindle size,

particularly in response to perturbations that leave the overall

biochemical composition unchanged, remains incomplete.

MT density in the spindle has been reported to be regulated by

MT-severing or -destabilizing proteins such as katanin (Ander-

sen 2000; Budde et al., 2001; McNally et al., 2006; Vernos

et al., 1995). In addition to the balance of forces generated by

motors and MT bundles, molecular motors such as Eg5 and

dynein have been suggested to regulate spindle shape (Gaetz

et al., 2006; Hara and Kimura, 2013; Merdes et al., 1996; Rubin-

stein et al., 2009; Sawin et al., 1992). To determine the correlation

between the amount of MTs and spindle size, it is also necessary

to consider the contribution of MT density and spindle shape.

Here, we performed a 3D quantitative analysis of these param-

eters. We used a micromanipulation technique to control the

amount of MTs within a metaphase spindle without changing

the molecular composition in the cytosol and quantitatively

examined the correlation between the amount of MTs and the

spindle size.

RESULTS AND DISCUSSION

Spindle Size Correlates with the Amount of MTs
In Xenopus egg extracts (Desai et al., 1999), a cell-free system,

the spindle size varies from 25 to 50 mm (Figure S1A). First, we

examined the relationship between the spindle size and the
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Figure 1. Correlation between Spindle Size and Amount of MTs

(A) 3D image of a metaphase spindle that self-organized in Xenopus egg extracts, labeled with fluorescent tubulin. 3D rendering was performed using a

maximum-intensity projection technique. Scale bar, 10 mm.

(B) Relationship between spindle size (length [L], width [W], and volume [V]) and the amount of MTs (M) (n = 78 spindles). Black solid curves indicate the best fits

(M = 2.0 3 10�3 L4.0 [R2 = 0.53], M = 4.1 3 10�5 W3.1 [R2 = 0.75], M = 0.61 3 V [R2 = 0.93]).

(C) Histograms on the left show the distribution of each parameter for an ensemble of 78 spindles that self-organized in six different Xenopus egg extracts. The

thick purple bars on the left show the SD of each parameter for an ensemble of 78 spindles. The thin black bars on the left show the SD of each parameter for an

ensemble of spindles in six different extracts. The histograms on the right show the distribution of each parameter within 30min (n = 4 spindles, interval of the time

lapse was 10 s [black and red] or 5 s [green and blue]). Colored bars on the right show the SD of the corresponding histograms. The values of the parameters are

summarized in Table S1.

See also Figure S1A and Table S2.
amount of MTs in the spindle (M) using 3D observation (Figures

1A and 1B). We characterized the spindle size according to the

length (L) as the pole-to-pole distance, the width (W) as the width

perpendicular to the pole-to-pole axis, and the volume (V). The

value of M was estimated from the fluorescence intensity (FI) of

fluorescent-dye-labeled tubulin, which was incorporated into

the spindle MTs (see Experimental Procedures for details). The

average spindle L, W, and V values obtained for the self-orga-

nized spindles were 34.1 ± 5.3 mm, 18.0 ± 4.0 mm, and (5.56 ±

3.81) 3 103 mm3 (mean ± SD, n = 78 spindles), respectively. L

and W had a linear relationship (Figure S1A; W = �0.57 L – 1.3,

Pearson correlation coefficient; r = 0.74, p < 0.05), and V was

almost proportional to the cube of L (Figure S1A; V = 0.035

L3.4). We found that the spindle size correlated with the amount

of MTs (M) (Figure 1B; n = 78 spindles, M = [2.0 ± 3.2] 3 10�3

L4.0 ± 0.4 [R2 = 0.53], M = [4.1 ± 2.7] 3 10�5 W3.1 ± 0.2 [R2 = 0.75],

M = [0.61 ± 0.02] 3 V [R2 = 0.93]; ± SEM, black solid curves).

To examine whether the difference in the size of the spindles

was derived from the intrinsic size or the time variation of each

spindle, we performed time-lapse observation for 30 min using

2D observation (Figure 1C; n = 4 spindles). The spindle size fluc-

tuated and had a single-peaked distribution (Figure 1C, histo-

grams on the right). The standard time variation of the spindle

size for each spindle (Figure 1C, bars on the right histograms)

was much smaller than the SD not only for an ensemble of 78
spindles that self-organized in six different egg extracts (Fig-

ure 1C, thick purple bars on the left histogram) but also for an

ensemble of spindles that self-organized in the sameextract (Fig-

ure 1C, thin black bars on the left histograms; Table S1). The rela-

tionship between the spindle size and the amount of MTs sug-

gests that each spindle has an intrinsic size and amount of MTs.

Spindle Shape and MT Density Are Determined
Independently of the Spindle Length
Next, we examined the relationship between the spindle size and

shape using 3D observation (Figures 2A, S1B, and S1C; correla-

tions among the parameters are summarized in Table S2). We

characterized the spindle shape according to the aspect ratio

a ( = W/L) and g ( = V/LW2) and found that a and g were main-

tained almost constant, independently of the spindle length (L)

(Figure 2A; n = 78 spindles, Pearson correlation coefficient; r =

0.057 [p > 0.05], 0.337 [p < 0.01], respectively, a = 0.53 ± 0.08,

g = 0.44 ± 0.06 [mean ± SD]), and that the 3D spindle shape

was closer to a spheroid shape than a bicone shape (spheroid

g = 0.52 and bicone g = 0.26).

From the definition of the parameters, the spindle length (L)

can be expressed as

L3 =
M

Da2g
; (Equation 1)
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Figure 2. Spindle Length Dependency of

Spindle Shape and MT Density

(A) Relationship between spindle shape (a [aspect

ratio] and g) and spindle length (L) (n = 78

spindles).

(B) Relationship between MT density (D) and

spindle length (L) (n = 78 spindles).

(C) Schematic illustration for the parameters in

Equation 1. The spindle size L is defined by four

parameters: a (aspect ratio), g,D (MT density), and

M (amount of MTs). Although the values of these

parameters vary among spindles, a, g, and D are

independent of L.

See also Figures S1B, S1C, and Table S2.
where D is the MT density in the spindle defined by M/V (D =

0.53 ± 0.16 arbitrary units (a.u.)/mm3 [mean ± SD]). We found

that D and the spindle length were independent of each other

(Figure 2B; Pearson correlation coefficient; r = 0.227 [p <

0.05]). Together, these results indicate that the spindle shape

(a and g) and the MT density (D) are independent of the size of

intact metaphase spindles that self-organize in Xenopus egg ex-

tracts. Thus, Equation 1 allows us to evaluate the relationship be-

tween the spindle length and the amount of MTs (Figure 2C).

A Decrease or Increase in the Amount of MTs
Dynamically Alters the Spindle Size
Because D, a, and g are nearly independent of L, Equation 1 im-

plies that the change in the amount of MTs (M) largely affects the

spindle size. For example, if the value ofM is reduced by any per-

turbations without changes in D, a, and g, the spindle L, i.e., the

spindle size, will become smaller. Therefore, to ascertain the

regulation of spindle size by the amount of MTs, we physically

reduced the amount ofMTs under amicroscope.We carefully in-

serted a pair of glass microneedles near the spindle equator and

then separated the spindle into two fragments by rapidly moving

themicroneedles apart in the direction perpendicular to the pole-

to-pole axis (Figure S2A; Movie S1). The manipulation to cut the

spindle was completed within �10 s. Although the chromo-

someswere divided into two groups, they occasionally detached

from the spindle fragment, which resulted in disorganization

(Figure S2B).

Each fragment was largely deformed by the manipulation but

recovered to the original shape within �5 min (Figure 3A). After

the amount of MTs (M) of each fragment immediately decreased

to approximately one-third of the original value, the value of M

was maintained nearly constant for �20 min (Figures 3B and

3C; M = [0.24 ± 0.12] 3 104 a.u. and [0.074 ± 0.058] 3 104 a.u.

before and after cutting [mean ± SD, n = 10 original spindles

and n = 20 fragments]). Accompanied by the reduction of M,

each fragment became smaller than the original spindle and
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did not recover over�20min after cutting

(Figure 3B; L = 34.1 ± 3.9 mm and 27.1 ±

4.3 mm, W = 16.4 ± 2.2 mm and 12.1 ±

2.7 mm, V = [4.6 ± 1.6] 3 103 mm3 and

[1.9 ± 1.0]3 103 mm3 before and after cut-

ting, respectively [mean ±SD, n = 10 orig-
inal spindles and n = 20 fragments]). A relationship between L

andM similar to that observed for the original spindles was real-

ized even in the divided spindles with a smaller amount of MTs

(Figure 3C). The spindle shape (a and g) did not change because

of cutting (Figures 3B and S3A–S3C; a = 0.48 ± 0.05 and 0.45 ±

0.11, g = 0.48 ± 0.03 and 0.46 ± 0.09 before and after cutting,

respectively [mean ± SD, n = 10 original spindles and n = 20 frag-

ments]). Although theMT density (D) decreased slightly after cut-

ting (Figures 3B, 3D, and S3C; D = 0.50 ± 0.16 and 0.37 ± 0.13

before and after cutting, respectively [mean ± SD, n = 10 original

spindles and n = 20 fragments], p < 0.01), the extent of change in

D (�25%) was lower than that in M (�70%). On the basis of

Equation 1, these results indicate that the decrease in spindle

length largely corresponds to that in M.

Next, we mechanically manipulated two spindle fragments to

contact each other to double the value of M (Figure 4A). Within

�15 min after contact, the fragments gradually fused and

became one normal bipolar spindle, whichwas similar to the pro-

cess previously observed for the fusion of two normal spindles

(Movie S2; Gatlin et al., 2009). The responses of spindle size

and shape in the fusion experiment, which represented a more

moderate perturbation than the cutting, also followed Equation

1. The value of M for the fused spindle was larger than that of

each fragment (Figures 4B and 4C; M = [0.069 ± 0.056] 3 104

a.u. and [0.18 ± 0.094]3 104 a.u. before and after fusion, respec-

tively [mean ± SD, n = 18 fragments and n = 9 fused spindles]).

During the process of fusion, the value ofM once became larger

than the sum of the values of the two fragments. Then, the spin-

dle became larger than each fragment after the fusion was

completed (L = 26.2 ± 3.4 mm and 29.9 ± 3.8 mm, W = 12.0 ±

2.8 mm and 16.9 ± 3.9 mm, V = [1.8 ± 1.0] 3 103 mm3 and [4.3 ±

2.4] 3 103 mm3 before and after fusion [mean ± SD, n = 18 frag-

ments and n = 9 fused spindles]). g did not change throughout

the fusion, whereas the aspect ratio and MT density slightly

increased (Figures 4B, 4D, and S3D–S3F; g = 0.46 ± 0.09

and 0.47 ± 0.04, a = 0.46 ± 0.11 and 0.57 ± 0.15 [p < 0.01],



Figure 3. A Decrease in the Amount of MTs Decreases the Spindle Length
(A) Fluorescence images of a spindle and its fragments before, during, and after it was cut into two halves, in which tubulins were labeled with a fluorescent dye.

Needle positions are shown by arrowheads. Numbers on the top show the time (min:s) from the moment the spindle was cut. Images before and after cutting

show the sum projection of the image stack. The scale bar represents 10 mm.

(B) Time courses of parameters before, during, and after the cutting. Blue open squares for M and V indicate the sum of the values of two fragments.

(C) Relationship between spindle length (L) and the amount of MTs (M) before and after cutting (black solid squares [n = 10 spindles] and red open diamonds [n =

20 fragments], respectively; a black solid curve indicates the best fit). Gray solid squares show the relationship for the observed spindles as a control (n = 78

spindles; a gray solid curve indicates the best fit).

(D) Relationship between spindle length (L) and MT density (D) before and after cutting (black solid squares [n = 10 spindles] and red open diamonds [n = 20

fragments], respectively). Gray solid squares show the relationship for the observed spindles as a control (n = 78 spindles).

See also Figures S2 and S3A–S3C, and Movie S1.
D = 0.36 ± 0.13 and 0.43 ± 0.14 [p < 0.01] before and after fusion

[mean ± SD, n = 18 fragments and n = 9 fused spindles]). In spite

of these changes, the correlation between L andM of the original

spindles was conserved after fusion and after cutting (Figure 4C),

indicating that the change in the spindle size corresponds to the

change in the amount of MTs.

In this study, we showed that each spindle kept an intrinsic

size stably in spite of the variations in the ensemble ofmany spin-

dles (Figure 1C). Although we still do not fully understand what

determines the intrinsic size, our results show that the intrinsic

size is not determined solely by the molecular composition

around the spindle, because the size was changed after cutting

or fusion under the same cytosol. Because the number of chro-

mosomes changed after cutting and fusion, and several reports

have shown a correlation between the amount of chromatin and

the spindle size (Brown et al., 2007; Dinarina et al., 2009; Gatlin

et al., 2009; Loughlin et al., 2011), it is possible that the changes
in the number of chromosomes affect the amount of MTs and

the spindle size. Another expectation is that in Xenopus egg

extracts, MT-dependent MT nucleation occurs (Petry et al.,

2013), so the amount of MTs at a certain moment might deter-

mine the subsequent amount of MTs in the spindle. This expec-

tation is supported by the result that the amount of MTs within

the fragment did not change significantly with time after cutting.

It should also be noted that the MT density was largely distrib-

uted among individual spindles (Figure 2B) even though it was

independent of the spindle size. A difference in the number of

chromosomes and/or inhomogeneity of cytosol might affect

the variations in MT density.

The spindle size changed according to the changes in the

amount of MTs induced by cutting or fusion, whereas the spindle

shape and MT density remained constant or changed slightly

(Figure 4E). Although the spindle shape and the MT density

were greatly changed by deformation during the experiment,
Cell Reports 5, 44–50, October 17, 2013 ª2013 The Authors 47



Figure 4. An Increase in the Amount of MTs Increases the Spindle Length

(A) Fluorescence images obtained by 3D observation show how the two spindle fragments were fused. Needle positions are shown by arrowheads. Numbers on

the top show the time (min:s) from the moment the fragments began to move. Images after contact represent the sum projection of the image stack. Scale

bar: 10 mm.

(B) Time courses of parameters during fusion of two fragments. Blue dashed lines indicate the sum of values of two fragments at time 0.

(C) Relationship between the spindle length (L) and the amount of MTs (M) before and after fusion (black solid squares [n = 18 fragments] and red open diamonds

[n = 9 fused spindles], respectively; a black solid curve indicates the best fit). Gray solid squares show the relationship for the observed spindles as a control (n =

78 spindles, the gray solid curve indicates the best fit).

(D) Relationship between spindle length (L) and MT density (D) before (black solid squares, n = 18 fragments) and after fusion (red open diamonds, n = 9 fused

spindles). Gray solid squares show the relationship for the observed spindles as a control (n = 78 spindles).

(E) Schematic representation showing the changes in the parameters in the cutting and fusion experiments.

See also Figures S3D–S3F and Movie S2.
especially after cutting, they immediately recovered to near the

original parameter values (Figures 3A and 3B). According to

Equation 1, this result indicates that the dynamic and fast recov-

ery of the spindle shape and MT density contributes to the

adjustment of spindle size to the amount of MTs. Because the

spindle shape (a and g) and MT density (D) are regulated by mo-

lecular motors and MT-associated proteins, probing how these

molecules determine and dynamically regulate the spindle shape

and MT density could be the key to determine the control mech-

anism for spindle size.

In contrast to previous models that examined the kinetics of

molecular motors and MTs obtained by changing the molecular

composition in the cytosol (Burbank et al., 2007; Goshima et al.,
48 Cell Reports 5, 44–50, October 17, 2013 ª2013 The Authors
2005; Loughlin et al., 2011; Reber et al., 2013), our model reveals

the conserved quantities that characterize the spindle structure

by using mechanical perturbations without changing the molec-

ular composition in the cytosol. Therefore, the previous models

and our model complement each other. The equation we ob-

tained will provide a guideline for examining the mechanisms

controlling spindle size and shape.
EXPERIMENTAL PROCEDURES

Spindle Assembly in Xenopus Egg Extracts

Xenopus egg extracts were prepared as described previously (Desai et al.,

1999). Meiotic spindles self-organized in the extract with the addition of



demembranated Xenopus sperm nuclei. All experiments were conducted at

20�C ± 2�C. All experimental procedures conformed to the ‘‘Guidelines for

Proper Conduct of Animal Experiments’’ approved by the Science Council of

Japan, and were performed according to the regulations for animal experi-

mentation at Waseda University.

Micromanipulation of Spindles

Glass microneedles were fabricated by pulling glass rods (G1000; Narishige)

using a capillary puller (PC-10; Narishige). The movement of the needles

was manually controlled by two micromanipulators (MHW-3; Narishige).

The egg extract containing meiotic spindles was transferred to a siliconized

coverslip (custom-ordered; Matsunami Glass) coated with Pluronic F-127 as

described previously (Gatlin et al., 2010). The extract was covered with mineral

oil (M-5310; Sigma-Aldrich) to prevent evaporation (Tirnauer et al., 2004).

Microscopy and Imaging Analyses

A fluorescence image of fluorescent-dye-labeled tubulin and a bright-field

image of the needle were acquired using a Hamamatsu ORCA AG cooled

charge-coupled device (CCD) camera (Hamamatsu Photonics K. K.) or an

electron multiplying charge-coupled device (EM-CCD) camera (iXon EM+;

Andor Technology) mounted on an inverted microscope (IX 71 or IX 70;

Olympus) with an 403 UplanFLN lens (0.75 NA; Olympus) or 603UPlanSApo

lens (1.35 NA; Olympus [for 3D scanning]). A confocal scanner unit (CSU10;

Yokogawa) was used for 3D image scanning. Image acquisition was per-

formed usingMetamorph (Molecular Devices) or Andor iQ (Andor Technology).

To visualize the spindles, tubulin labeled with tetramethylrhodamine (Sigma-

Aldrich) or Alexa-488 (Sigma-Aldrich) (Hyman et al., 1991) was added

(�20 mg ml�1) to the extracts. Images were processed using a median filter

to remove background noise. The spindle width (W) and length (L) were deter-

mined using ImageJ (National Institutes of Health). The volume of the spindle

estimated by the 2D observation was given by

V = 2p
R1S1 +R2S2

2

where Ri (i = 1, 2) represents the distance of the center of mass for each half of

the 2D spindle image from the pole-to-pole axis, and Si (i = 1, 2) represents the

area of each half of the spindle. Pearson correlation coefficients were calcu-

lated using Origin 8.1 (OriginLab). The statistical significance of the data was

confirmed by a paired two-tailed Student’s t test in Origin 8.1.

3D Scanning

We doubly labeled the spindle MTs with two types of fluorescent dyes. Alexa-

488-labeled tubulin was used to detect the spindles, and tetramethylrhod-

amine-labeled tubulin was used for 3D scanning (0.5 mm per frame) and to

quantitatively obtain 3D images of the spindle. 3D scanning was completed

within �25 s. Then, the obtained 3D data were deconvolved using deconvolu-

tion software (Huygens Essential, version 4.1.0p8; Scientific Volume Imaging)

that utilized the classic maximum-likelihood estimation algorithm to precisely

measure the volume of the spindle. Maximum-intensity projection rendering

was performed using Huygens Essential.

We defined a voxel (74 3 74 3 500 nm3) as the part of the spindle in which

the fluorescence intensity was at least 1.5-fold higher than that of the cyto-

plasm (FICyto). Thus, the threshold for the fluorescence intensity of the spindle

MTs (FITh) is given by

FITh = 1:5 FICyto

The volume of the spindle (V) is given by

V = v�
XFIi>FITh
i

1;

where i is the index of voxels in the 3D data, FIi is the fluorescence intensity of

the i-th voxel, and v is the volume of each voxel. The total amount of MTs in the

spindle (M) was defined as the total FI of the spindle given by
M=
XFIi>FITh�

FIi � FIcyto
�

i

MT density (D) was defined as the average FI density in the spindle given by

D=
M

V

Photobleaching was calibrated using a previously reported equation that

describes fluorescence recovery (Salmon et al., 1984); that is, the recovery

of fluorescence intensity of each voxel at time t caused by remodeling of the

spindle after the first 3D scanning (FIt) is given by

FIt =FI0 + ðFIN � FI0Þ
�
1� e�t

t

�

where FI0 is the fluorescence intensity immediately after the first scan; i.e., just

after photobleaching occurs in the first scan. FIN is the fully recovered fluores-

cence intensity after photobleaching. The recovery time, t, was experimentally

determined from the recovery curve, which was obtained by measuring the FIt
at various time moments, t, during the second scan. To minimize the contribu-

tion of photobleaching, only one data point of FIt was used to obtain the relax-

ation time, t, characteristic of the recovery curve. The obtained value of t was

�63 s (n = 11 spindles).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, three

figures, two tables, and two movies and can be found with this article online at
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