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In this paper we consider the l-phase, l-dimensional Stefan problem 
corresponding to the hyperbolic heat equation obtained by relaxing the Fourier 
law, taking rq, + q = - k0, where q is the flux, 0 the temperature, k the conduc- 
tivity, and T > 0 the relaxation coefficient. We prove existence and uniqueness of a 
smooth solution with smooth free boundary. We also study the limiting solution as 
T --t 0, showing (under some conditions) that it converges to the solution of the 
classical Stefan problem. 0 1989 Academic Press. Inc. 

1. THE PHYSICAL PROBLEM 

Denote by 0(x, t) the absolute temperature in a material with conduc- 
tivity k and by q(x, t) the flux, - cc < x < cc. In deriving the heat equation 
one usually assumes the Fourier law 

q= -k9 I . (1.1) 

Combining it with the conservation of energy law it follows that 
0, = (@x)x, and this implies infinite speed of propagation for the heat. In a 
number of physical situations the Fourier law is not suitable (see 
[l-4,6, 11, 15)) and has been replaced by 

dx, t + T)= - (@x)(x, t) (T>O) 

* This work is partially supported by National Science Foundatton Grant DMS-8612880. 
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or by its approximation 

zq,+q= -kd,. (1.2) 

The resulting heat equation is then hyperbolic and yields a finite speed of 
propagation for 8. In order to derive the heat equation we have to combine 
(1.2) with the conservation of energy law 

;+q,=o in the weak sense; (1.3) 

here e denotes the energy, given by 

e = e,(8) + A(8) q*, (1.4) 

where e,(B) is the classical internal energy based on the assumption (1.1 ), 
whereas the term A(B) q*, where 

82 d z(e) A(@)= -y--g 82 , ( ) 
w z(e) =-, 
k(O) (1.5) 

is a consequence of the second law of thermodynamics combined with 
(1.2); the coefficients r, k are generally dependent on 8 and on the material. 
The derivation of (1.4), (1.5) is due to Coleman, Fabrizio, and Owen [7] 
(see also [S, lo] for related derivations for deformable media). 

We are interested here in a melting problem with latent heat 1; then 

in the fluid 
in the solid. (1.6) 

The coefficients k(O), r(0) have jump discontinuity, in general, across the 
interface, and thus the assertion (1.4), (1.5) does not seem to make sense 
across the interface unless Z(0) is differentiable in a neighborhood of 
0 = e,, where 0, is the temperature of the interface. Let us therefore assume 
that 

z(e) - is differentiable in 8, 
k(e) 

VB, 

and then (1.4), (1.5) hold globally. From (1.3) and (1.4), (1.5) we get 

(1.7) 

in the weak sense. (1.8) 
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We shall henceforth assume that the interface is given by a curve x = s(t) 
with the fluid on the side (X <s(t)}, and that the solid is held at tem- 
perature 8 = 0,; this corresponds to a l-phase Stefan problem. Then (1.8) 
yields the jump relation 

s’(t)(l +e+=q on x=s(t), (1.9) 

where 6 and q are the left limits, i.e., 8 = e(s(t) - 0, t), q = q(s( t) - 0, t). 
The derivation of the second condition on the free boundary {x = s(t)} is 

more problematic, since it is not clear whether (1.2) should be understood 
as a physical law, valid weakly throughout space, or, perhaps, as a con- 
stitutive law which holds separately in the fluid and separately in the solid. 
Under the first setting, we obtain the jump relation 

*$+34, on x=s(t). (1.10) 

If, on the other hand, we view (1.2) as a local constitutive law, then it does 
not yield any conditions on the free boundary. It is then natural to assume 
that the temperature is continuous across the free boundary, i.e., 

t+(t)-0, t,=e,. (1.11) 

In the sequel we shall assume that k(8) and r(0) are constants in the 
fluid as well as in the solid, i.e., by (1.7), 

t(s) ko = const., V8. 

For simplicity we may also take 

k(8) = 1 in the fluid, 

and set ~(0) = r in the fluid. Then ( 1.8) becomes 

B,+q,=T$$ in the fluid. 

(1.12) 

(1.13) 

Since the parameter r is very small and 0, is also a large number (so that 
l/0 is small), we approximate the right-hand side of (1.14) by 0; this 
amounts to replacing (1.8) by 

2 + q; = 0. 
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Combining (1.15) with (1.2), we get the hyperbolic equation 

ze,, + et - e,, = 0. (1.16) 

Showalter and Walkington [12] have considered the 2-phase Stefan 
problem, also making the assumption (1.12). However, they use a different 
expression for e and their resulting free boundary conditions are quite 
different from ours. Although they proved existence and uniqueness of a 
weak solution for the 2-phase problem, they give an example whereby their 
l-phase model has no solutions. 

The formulations of the l-phase Stefan problem based on (l.lB), (1.9), 
(1.10) were studied by Solomon, Alexiades, Wilson, and Drake [13] (see 
also [14]). Greenberg [9] assumed the data 

qx, 0) = e,, e(0, t) E const. > e, (1.17) 

and established the existence of a weak solution (with 8 Lipschitz con- 
tinuous). 

In this paper we shall be working with the same model (1.16), (1.9), 
(l.lO), taking the initial and boundary data to be either 

ek 0) = e,(x), do, t) = g(r), (1.18) 

or 

e(x, 0) = e,(x), e(0, t) = h(t) (1.19) 

with f?,,>tJf, g>O in case (1.18), and t&,28,-, OO,x<O, h’a0 in case (1.19). 
We shall prove the existence of a smooth solution provided some com- 
patibility conditions hold at (s(O), 0). We shall also prove uniqueness of the 
solution. Finally, in case (1.19), we let r + 0 and prove that the solutions 
converge to the solution of the classical Stefan problem. 

2. MATHEMATICAL FORMULATION 

Setting T= 8 - e,, the relations (1.15), (1.2) and (1.9), (1.10) become 

T,+q,=O 

Tq,+ T,+q=O 

if O<x<s(t), t>O, (2.1) 

if O<x<s(t), t>O, (2.2) 
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and 

.y’tt)tl + m(t), t)) = q(s(t), t) if t>O, (2.3) 

TJ’(t)qts(f), 2) = T(s(f), f) if t >O, (2.4) 

where x = s(t) is the free boundary. 
The first initial-boundary conditions are 

T(x, 0) = $0) > 0, 4(X> 0) =$4x) if Odx<s(O), 

T(0, f)=f(!)>O if t 20, 
(2.5 ) 

where s(O) is given, and the second initial-boundary conditions are 

T(x, 0) = d(x) > 0, 4(X> 0) = to) if O<x<s(O), 

q(Q t) =f(t) >o if t > 0. 
(2.6) 

As in [9] it will be convenient to work with 

A= T+Jq, B=T-Jq. (2.7) 

Then 

if O<x<s(t), r>O, (2.8) 

if O<x<s(t), t>O, (2.9 

Btstth t) = -A (4th f) if t > 0, (2.10 

ds 1 A 
- (s(t), f) dt=Tl+A 

if t > 0. (2.11) 

For the Neumann problem (2.6) 

A(x, 0) = A,(x), Btx, 0) = B,(x) (0 d x < s(O)), (2.12) 

A(0, t) = B(0, t) + 2 &f(r) (t>o). (2.13) 

In Sections 3-5 we study the problem (2.8 t(2.13). In Section 3 we 
establish a priori estimates. Existence and regularity of the solution are 
proved in Section 4, and uniqueness in Section 5. In Section 6 we study the 
corresponding Dirichlet problem (2.5). In Section 7 we let T + 0 and show 
that the solutions for the Dirichlet problem converge to the solution of the 
classical Stefan problem. 
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3. A PRIORI ESTIMATES FOR THE NEUMANN PROBLEM 

Throughout Sections 3-5 we assume that 

fE CTO, 001, 4 E c2i31 #)I, ICI E c2co, s(O)l; 

4(x) > - Jz’ rl/(x), mh/&w-a if O<xcs(O). 
(3.1) 

If there exists a C’ solution of (2.8)-(2.13), then the following relations 
hold, 

and 

A,(O) = B,(O) + 2 J;f(Q 

Ao,x(O) + Bo,x(O) = -2(?fv) +f(O)h 
(3.2) 

40) = so, s’(0) = s,, s”(0) = s2, (3.3) 

where so > 0 is given, 

1 Aobo) 
S1=~l+Ao(so)’ 

, (,h- l)Ao,x(~o)-l(Ao(~o)-~o(~o)~ 
(3.4) 

s2 = - 2,/; 
t (1 + Aobo))’ 

and 

Bob,)= - A&O) 
1 + 2A,(s,)’ (3.5) 

4 A%,)(1 + Ao(~o))~ Ao,ho) - - 
Bo,x(so) = fi 1 + 2Aobo) 

(I+ 2Ao(soN3 ’ (3.6) 

The relations (3.2) and (3.5), (3.6) are compatibility conditions which will 
be assumed in the sequel. 

In this section we assume that A, B, s form a smooth solution of 
(2.8 )-(2.13) and we proceed to derive a priori estimates. We shall be 
integrating (2.8) (2.9) along characteristics, and obtain different formulas 
in the four different regions described in Fig. I. 
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FIGURE I 

By integration we have, in (I) u (II), 

B(x, t)=e- 

1 ’ 
+2t oe- s 

t/2r + r/z?,4 (F+x,r)dr 

and, in (III) u (IV), 

B(x, t) = e-‘1-scx,‘“i27B(s(~(x, t), q(x, t)) 

where 

-+s(v(x, +t+x. rib, t) 
J J 

Similarly, in (I) u (III), 

A(xJ)=~-“~‘A x- t ,O 
(J) 5 

+; (‘,-l/27+42~B 
0 

(T+x,r)dr 

and, in (II) u (IV), 

A-(x, t)=epX’*J;A(O, t-fix) 

e - 1127 + r/27 B(z-+-x,r)dr. 

1)) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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LEMMA 3.1. Let (A, B) be a C’ solution of (2.8)-(2.10), (2.12), (2.3) 
with s’(t) < l/J. Then 

/4(x, l)> -4, B(x, t)> -+ for 0 <x<s(t), t>O. (3.12) 

Proof By (3.1) 

&l(x)> -1, B,(x)> -f (O<x<s,). 

If the assertion is not true then there is a smallest value to such that 

A(x, t) > - ;, B(x, t)> -4 if O<X<S(l), O<t<to 

and 

A(x,, to) = - 4 or B(X& to) = - 4 for some 0 < x0 < s( to). 
(3.13) 

If the first equality holds then, since 

A(0, to)= B(0, to)+2 Jf(t*)> -t+2 Jf(fo)> -4, 

we must have x0 > 0. But, for any small E > 0, 

Ah, 64 = e -u-w~~ xo-c, to-c 
( J 

1 
s 

10 

+z topee 
- (10 - X)/27B 

( 

r-t0 
-+x,,r dr 
J; > 

a contradiction. Next, if the second equality holds in (3.13) then, since 

fW&,), to) > -t (by (2.10) and A(x, to) > -i), 

we must have x0 < s(to). But then for any small E > 0 

B(xo, to) = e 

+&s”- e-(ro-r)‘2rA 
10 E 

r) dr> -i, 

a contradiction. 
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LEMMA 3.2. Let the assumptions of Lemma 3.1 hold and assume that, for 
some t, > 0, s(t) GM, if 0 Q t < t,. Then there exists an E, > 0 depending 
only on t, t, , M,, such that 

A(S(t), t) 2 - ; + E, if O<t<t*. (3.14) 

Proof. Clearly 

f(t) 3 c > 0, A(0, tj=B(O, t)+2J;.f(t)> -;+2,l;c 

for some c > 0 and 0 6 t 6 t, . Further, 

‘4(x,0)> -$+2&c 

if c is chosen small enough. If (s(t), t) E (III) then, by (3.10) 

A(s(t), t)>e-“2’(-~+2&c)+(-+)(l-e~~“2’)= -f+2jr;ce -ri2r 

whereas if (s(t), t) E (IV) then, by (3.11) 

A(s(t), t)2e- w4 - 4 + 2 J c) + ( - $)( 1 - e --3w4 

3 -ff2&ce-“‘:‘J;, 

and the lemma follows. 

If we assume that (2.11) also holds then we can clearly estimate M, by 
t,/&. But we can even derive a bound which is independent of t: 

LEMMA 3.3. Zf in Lemma 3.1 we also assume that (2.11) is satisfied then, 
for any tl >O, 

S(t) < A4 if O<t<t, (3.15) 

where M is a constant independent of T. 

Proof. Integrating (2.1) in x we obtain an identity which can be written 
in the form 

T(x, t)dx+s(t) =f(t). 
I 

It follows that 

1”” T(x, t) dx + s(t) = I’ f(r) dr + /“‘“’ T(x, 0) dx + s(0). (3.16) 
0 0 0 

Since T= (A + B)/2 > - f by Lemma 3.1, the assertion follows. 

Lemma 3.3 will not be needed for the existence proof in Section 4. 
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LEMMA 3.4. Let the assumptions of Lemma 3.1 hold and assume, in 
addition, that 

A@(t), t)> -;+q lj- O<t<t, (3.17) 

for some t,>O, q>O. Then, for O<x<s(t), O<t<t,, 

A(x,t)<C 1,; , 
( > 

B(x,t)<C 1+; , 
( 1 

(3.18) 

where C is a constant independent of z, q; C may depend on t,. 

Prooj Extend f(t) smoothly to ( - co, 0) so that f > 0, and f(t) = 0 if 
t < - 4. Let T, be the solution of 

aT, a’r, 
at= ax2 

for O<x<co, t> -1, 

-y+-(t) for x=0, t> -1, 

T,(x, -l)=O for O<x<co 

which is bounded in every strip { - 1~ t < tl}, t, < co. Let q,, = - aT,,/ax 
and define 

A,= To+J;qo, Bo= To-&o, 

‘7=/l-A,, B=B-B,. 

Then A(O, t) = &O, t) and 

J 
2-B 

T ‘&+A,+-= - 
2J; 

vo, I3 

Obviously 

Iax, 0)l < c Im ON< c 

ho1 + lqo,tl s Q if O<x<s(O), O< t< t,, 

where c, Q are constants independent of z, r]. Let 

Z(t)= max B(x, t), J(t)= max 2(x, t), K(t) =max(Z(t), J(t)). 
O<x<s(r) 0 d x <s(t) 



HYPERBOLIC HEAT EQUATION 259 

We first estimate I(t). Take a point x* = x*(t) such that Z(t) = P(x*, t). If 
(x*, t) belongs to (I) u (II) then 

Z(f)<CeC’/2r +&j’e- *‘2r+ri2r(K(r) + 2t J Q) dr 
0 

< ee ~ ‘P + 27 ,/; Q + & .r,’ e -rJ2r + rj2rK(r) dr. (3.19) 

On the other hand if (x*, t) E (III) u (IV) then 

Z(t) < B(s(q(x*, t)), q(x*, t)) e--c’pq(21*.‘))‘2r 

+kj’ e -“2r+r/2r(K(r) + 2r ,/; Q) dr. 
ql.r*, 1) 

Since, by (2.10), (3.17), 

B(s(v(x*, I)), 4$x*, f)) < 2 - 

if q is sufficiently small, we get 

Combining this with (3.19) we find that 

+’ fe-&+d2rl((r)&. I 27 0 I (3.20) 

We next estimate J(t) in a similar way, choosing a point (x0, t) such that 
J(t) = A(x,, t). If (x0, t) E (I) u (III) then 

J(r) G Z;eC”2r +2~ ,/rQ+~j~e-~“‘r+ri2’K(r)dr (3.21) 

whereas if (x0, t) E (II) u (IV) then 

J(r)<e-‘0’2~a(0, t-&xo)+27JQ 

(3.22) 
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BY (3.20)~ 

-(I- J;xdP +@K(,.) d,. I. 
Using this estimate in (3.22), we get 

- 1127 + ‘/2’K( ,.) dr 1 . 

Combining this with (3.21) and recalling also the estimate (3.20), we 
conclude that 

r/2r + r/27&) & 1 . 

This implies that 

hence A(x, t) < K(t) + A,(x, t) < C( 1 + l/q), and similarly B(x, t) < 
Cl1 + l/r]). 

Remark 3.1. Lemmas 3.1, 3.2, 3.4 give a bound (assuming s,(t) GM,) 

lA(x, t)l + IB(x, t)l GN,. (3.23) 

If we assume that (2.11) holds then the assumption s,(t)<M, is satisfied; 
further (3.16) is valid and we deduce (since IT/ <2N,) that 

s(t) > c, > 0 if O<t<t,; (3.24) 

further, by (3.23) (3.14), 

Is’ft)l 2 (1 -%E,), 
J 

(3.25) 
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where 

. i 

1 
ET=m’n 

45 
1 l+N*‘l+2&, . 

Later on we shall have to consider a hyperbolic system 

(3.26) 

(3.27) 

with more general boundary conditions 

B(s(t), t) = b(t, Mt), t)), (3.28) 

40, t) = 46 B(O, t)) (3.29) 

and initial conditions 

A@, 0) = A,(x), B(x, 0) = B,(x). (3.30) 

LEMMA 3.5. Assume that (A, B) is a C ’ solution of (3.27)-(3.30) with 
SEC’, and 

s(t) 2 c, > 0, 

Assume further that 

Then 

lAo( d M I&(x)l GM, 

IN4 n)l G L + KlAl, 146 n)l <L + KI4. 
(3.32) 

IA(x, t)l, IW, t)l G C, for Odtbt,, (3.33) 

where C, is a constant depending only on t I, T, M, L, K, c,. 

Proof. It suffices to prove (3.33) for t d t: (see Fig. 1); for since 
s(t) 2 c, > 0, we can continue step-by-step on t-intervals (of fixed length 
2 c,* > 0). Let 

z(t) =o<t::cs(,j MT t)l, . . J(t) = O<;~x,j IA@, t)l. 
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Proceeding by integration, as in (3.7t( 3.11), and using (3.28), (3.29), we 
obtain, very crudely, 

Z(t) + J(t) < 2(L + KM) + 7 Jb’ (Z(r) + J(r)) dr 

for O<t<t,*, and (3.31) then follows. 

The next lemma establishes Lipschitz bounds on the solution of 
(3.26~(3.30). 

LEMMA 3.6. Assume that (A, B) is a C’ solution of (3.27)--(3.30) with 
SEC’, and 

s(t) 2 c, > 0, Is’(t)lGi(l--E,) for O<tbt,, 
J; 

(3.34) 

where E, > 0. Assume further that 

and that b(t, I), b(t, 1) are Lipschitz continuous and 

l4, IaA, lb,l, lbnl <K. 

Then 

MA PA IA,l> 141 G C, for t<t,, 

(3.36) 

(3.37) 

where C, is a constant depending only on z, c,, MO, M,, K, and t,. 

Proof Take for simplicity r = 1. Let h be any small positive number, 
and introduce the functions 

Z(t) = max max IB(x+& t+a)-B(x, t)l, 
x ltlch,lol~h 

J(t) = max max lA(x+& t+a)-A(x, t)l, 
x 15lCh,lolGh 

where (x, t) and (x + 5, t + 0) are required to belong to the region 
{(x’, t’); 0 Gx’ d s(t’), 0 < t’ < tl}. For any t E (0, t,*), choose x*, t*, (T* 
such that 

Z(t) = jlqx* + t*, t + a*) - B(x’, t)l. 
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Case 1. (x*, t) and (x* + t;*, t + a*) belong to (I) u (II). Then 

z(f) < Ie-ct+u*)‘2B(x* + <* + t + CT*, 0) -e -‘/2@x* + 1, o)l 

+fl,““*e -u+rr*v2+rl*A(t+ u*+x*+r*-r,r)dr 
0 

- e-‘/2+‘i2A(t+x*-r,r)dr 

dM,h+M,(2h)+~lj~o*e p’/2+r’2A(t+~*+[*-r,r+a*)dr 

I 

-je 
p”2+“2A(t+x*-r,r)dr 

0 

Q 2(M, + M,)h +i Ji J(r) dr. 

Case 2. One of the points (x*, t), (x* + t*, t + CT*) lies in (I) u (II) and 
the other lies in (III). For definiteness we take 

(x*. r) E (I) u (II), (x* + t*, t + a*) E (III). (3.38) 

Let v = v(x* + t*, t + a*). From (3.38) and the second inequality in (3.34) 
we deduce that q < 2h/.c,. Therefore, from 

B(x* + (*, t + a*) = e-c’+o*-a)i2B(s(~), ‘1) 

and from the corresponding expression for B(x*, t) we get 

I(t)<Ch+~~~J(r)dr+jB(s(q),q)-B(x*+t,O)i. (3.39) 

Next 

MS(?), ?) - w* + 6 011 

< IB(s(rl), ?) - B(.$O), ON + IBcJ(O), 0) -ax* + 6 011 

G Ch + Mrl, Atstv), v)) - HO, Ao( (since Ix* + t - s(O)1 d Ch) 

G Ch + OMrl), rl) - AoW))l. (3.40) 
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Since (s(v), v) E (III), 

44~)~ v) = e pv’2+ri2B(r-yI+x, t)dr 

and thus 

Using this in (3.40) and substituting the resulting estimate into (3.39), we 
get 

Z(r)iCh+fl;J(r)dr. 

Case 3. (x*, t) and (x* + <*, t + u*) belong to (III). Let q0 = q(x*, t), 
11~ = q(x* + t*, t + a*). Then 

B(x* +4*, t+6*)=e-“+“*-“‘“‘B(s(q,), q,) 

+i jr+“* e -(t+~*)/2+~/2A(t+~-~,~)d~, 
VI 

B(x*, t) = e(‘-““2B(s(q,), q,,) 

+:I’ e- *‘2+“2A(f + x- r, I) dr. 
m 

From (3.19) and the second inequality in (3.34) we deduce that 
I ‘lo - q 1 1 < 2hl.q. Therefore 

Next 

Since (s(q,), ql) and (s(r],), q,,) belong to (III), we can estimate 
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Combining these estimates we find that 

This estimate is valid in all three cases. 

We can derive similar estimates for J(t), and thus 

Z(f) + J(t) < Ch + yi, (Z(r) + J(r)) dr. 

This implies that 

I(t)+J(t)&h if Odt<r,*. 

We can now proceed step-by-step to establish this inequality for all t < t, , 
with a different c (which will eventually depend on r and t,). 

4. EXISTENCE AND REGULARITY 

THEOREM 4.1. Zf (3.1), (3.2) and (3.5), (3.6) hold, then there exists a 
solution (A, B, s) of (2.8)-(2.13) with SEC*-’ and A, B in C’-’ up to the 
boundary. 

ProoJ: Given any t, E (0, co) we shall construct a solution for t < t, . Let 
c, be defined as in (3.24) when 

s(t)<M,=s,+I’q 
J; 

(4.1 1 

is assumed; defining E, by (3.26) with N, determined as in (3.23) (N, 
depends on the choice M, in (4.1)) we set 

c,=‘(l-E,), 

J 

(4.2) 

CT 
O=2c,. (4.3 1 

Let 

K= {SE C*[O, a]; s(O)=s,, s’(O)=s,, s”(0)=s2, 

IS’I LI(O, a) G Cl 7 IfI LI(O, a) G c2 13 
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where sI, s2 are defined by (3.4) c, is as in (4.2), and c2 is still to be deter- 
mined. If s E K then 

(4.4) 

Given SE K we can solve the system (2.8~(2.10) with the initial-boun- 
dary conditions (2.12), (2.13). In fact, this can be done by successive 
integrations, with A”, B” defined by 

Letting 

Z,,(t)=max IB”+‘(x, t)-B”(x, t)l, 
x 

J,,(t)=m;x IA”+‘(x, t)-A”(x, t)l 

one can estimate successively Z, + .Z, and thus show that the sequences A”, 
B” are uniformly convergent to a solution A, B which is Lipschitz 
continuous. By Lemmas 3.1, 3.2, 3.4 we have 

IA(x(~)l, IW, 01 G N, (4.5 1 

with N, determined as in (3.23); it is the same N, as used above in deter- 
mining the E, in (4.2) by means of (3.26). By formal differentiation 

J Ax-B, T A,..+ A,,+- 
M 

= 0, 

vf t B,,- B,+-- &-Axe0 

2J; 

(4.6) 

and 

AJO, t) = -B,(O, t) -f(t) - 7f’(t), (4.7) 

B&(f), t) = 
1 -&s(r) Ax(s(t), t) 
1 +J;s’(r)‘(l +2A(s(t), t))* 

1 

+2J;(1+J;s’(t))’ 
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and 

In order to justify it, we consider (4.6k(4.9) as a system for A,, B, and 
denote its solution by 2, B. Next we finite difference the equations for A, B 
and subtract the resulting equations, for 

A” 
h 

J(x+h, f)-4x, t) B /(x+h, t)-B(x, t) 
h ‘h h ’ 

from the corresponding equations for 2, B. We then proceed to estimate 
2 - A”,,, fi - Bh similarly to the proof of Lemma 3.6, and thus conclude that 

A,+a=A x3 Bh-d=B,. 

Since we need only the integrated forms of the hyperbolic system in the 
proofs of the previous lemmas, we can now work with the integrated form 
of the differential system for A,,, B,,, i.e., with integral equations for A, 
and B,. 

From (4.6)-(4.9) and Lemma 3.5 (with appropriate choice of a(t, A), 
h(t, A)) we get 

1A.A IArL PA, lB,l 6 fi,, (4.10) 

where &, depends only on c,/2, 8,; applying Lemma 3.6 to the same 
system one gets, a.e., 

ID*Al, ID*Bl GM, (4.11) 

for any second derivative D*. We now define a mapping G: K -+ C*[O, a] 

by 

Gs(r)=(G~)(r)=s,+~'~~ o JI; 1 + A (s(r), r) dr. 

Then, since A, B are in C ‘, ‘, 

Gs(0) = so, $Gs(O)=s,, $ Gs(0) = s2 

and 

I I 1 I&(t), ?)I ;Gs(r) =- 
J; 1 + A(s(t), r) ’ ” 
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by (3.23) (or (4.5)) and (3.26), (4.2). From the relation 

1 p Gs(t)=-- AAdO, tb’(t) + A As(t), f) 

J; 1+ 44th I))* 

we obtain 

by (4.l!), 

by (4.11). 

Choosing 

c* = Q&,(1 +c,) 
Js 

we conclude that G maps K into itself, it is continuous, and the set G(K) is 
equicontinuous. Thus G has a lixed point, say s(t). 

This proves the existence of a solution in 10, o]. Since 2 is a fixed point, 
(2.11) is satisfied and hence (3.24) holds for this solution. But then we can 
extend the solution to [a, 2a] by the same argument, using the same 
constant c 1 ; it is easily seen that at I = (r the two solutions fit in a C’s’ 
fashion. 

Proceeding step-by-step we can now extend the solution to all of 
{O< t < t,>, Next we can extend the solution to {I, <t <2r,) with cl, 8, 
depending on a new constant N, (for which (4.1) is valid in 0 <t< 2t,), 
then to 2t,<t<3t,, etc. 

Remark 4.1. If we assume that f, &, B, are in C3 and satisfy a com- 
patibility condition involving &,,, A,,,, then we can derive by the above 
method a solution A, 3 in C*.’ with s E C’r’. Similarly we can establish 
higher regularity for the solution. 

5. UNIQUENESS 

THEOREM 5.1. For any t, > 0 there exists at most one C ’ solution 
(A, B, s) of (2.8)-(2.13) for 0 < t < t,. 

Proof: Take for simplicity f = 1. Suppose there exist two solutions 
(A, B, s) and (2, fi, Z). Let M be any constant such that 
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By Lemma 3.2 

A(s(t), t), A@(t), t) 2 - ; + Eo 

for some Ed > 0, and then, by Remark 3. I, 

for all O,<l<t,. Let 

s,(t) = min(s(t), s’(l)], I(t) = (s’(f)-qt)f, 

(5.2) 

(5.3 1 

- - 
and set ([II), = (III) n (III), where (III) is defined as (III) with respect Lo .i; 
(see Fig. 1). 

Let 0 < I < t ,* (T = 1) and choose x* such that 

J(t) = IA(P, t) - $x*, t)l, Odx*<ss,(r) 

If (.x*, I)E(I)u (III), then, by (3.10) 

J(t)<;j-; IB(r-t+x*,r)-&r-t+x*,r)( dr,+-(r)dr. (5.4) 
0 

If (x*, f)~ (II) then, by (3.11 f, 

J(r)<;@r)dr+ IA(0, t-x*)-&O, l--x*)1. 

By (2.13) we have 

IA(O,r-x*)-2(O,r-x*)l=IB(O,~-x*)-8(0,t-.~”)I 

1 
<- l ‘-‘*J(r)dr+(r)dr 

20 0 

and therefore 

J(r)~~~~(J(r)+K(r))dr. (5.5) 

Recalling (5.4) we conclude that (5.4) holds in (I) u (II) u (III),. 
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Next 

max 
0<tr’<t 

js(t’) -?(I’)[ < ji Z(r) dr. (5.6) 

Let (x0, t) be such that 

K(t) = IB(xo, t) - &o, t)l, 0 Q XIJ < so(t). 

If (x0, t) E (I) u (II) then, by (3.7), 

K(t)<&(r)dr. (5.7) 

If (x0, t)~ (III), then assume for definiteness that q(xo, t)>ij(x,, t), and 
set r] = q(x,, t), q = 9(x,, t). By (3.9) 

and therefore, by (5.6), 

Using (3.8) ive get 

(5.8) 

K(t) < le-(‘-q)‘2B(s(q), q) - ep(‘-9)‘28(Z(tj), @I 

+;I; I&+x,-r,r)l dr.;,‘,,,, 
v rl 

<Fj’Z(r)dr+;j-;J(r)dr 
0 0 

+ C,I44?), rt) -4w, iiN, (5.9) 

where (2.10) was used both for A, B and for A”, B. 
We can clearly find a point (5, a) E (III)o with q < a < q such that 
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Hence 

It-4rl)lCjnZ(r)dr+(q-fi)S~j~Z(r)dr, 
? ‘0 

(5.10) 

where (5.8) was used and, similarly, 

(5.11 ) 

Using (5.10) (5.11) we can estimate the last term in (5.9) by 

IAb(q), 4-j - J(W)9 ri)l G INd?), 4) - 459 a)l 

+ 145, a) -a, E)I + l&L @) - mrl), iill 

G 2WMrl) - 51 + Ii - tll + Iv - 4 

+ 14-al)+~j~K(r)dr 

<Cj’Z(r)dr+~j~K(r)dr 
0 

(5.12) 

with an appropriate constant c. We then get, from (5.9), 

K(f)<$j’.Z(r)dr+C[ j’K(r)dr+ jiZ(r)dr] 
0 0 

(5.13) 

with another constant c. Next, from (2.11) and (5.2) 

Z(t)= (s’(t)-Y(t)1 <C,IA(s(t), t)-A”(i(t), t)l 

GC[ jiZ(r)dr+ jiK(r)dr] 

by the same estimate as in (5.12). 
Combining this with the previous estimates on J(t) and K(t) we get 

Z(r)+J(t)+K(t)<~j’ [Z(r)+J(r)+K(r)] dr. 
0 

This implies Z(t) = J(t) = K(t) = 0 for 0 < t < t ,* . Proceeding step-by-step 
we establish uniqueness for all 0 Q t Q t r. 
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6. THE FIRST INITIAL-BOUNDARY PROBLEM 

In this section we extend the results of Sections 3-5 to the first initial- 
boundary conditions (2.5). Introducing A and B as in (2.7), these con- 
ditions consist of (2.12) and of 

A(0, t)=2f(t)-B(0, t) (t>O). (6.1) 

Condition (2.10) was used in the proof of Lemma 3.1 (where we deduced 
that A(0, t)> -$). Under (6.1) we cannot extend Lemma 3.1. If however 
we make the a priori assumption that, for any smooth solution, 

A(s(t), 1) 2 - + + E, for some E, > 0 (6.2) 

then we can extend Lemma 3.4 and Remark 3.1; thus we obtain bounds 
IAl 6N,, IBI <N, with N, depending on r. 

The proofs of Lemmas 3.5, 3.6 remain valid for (6.1), provided condition 
(6.2) is assumed, so does the proof of Theorem 4.1. Hence: 

LEMMA 6.1. Zf(3.1), (3.2) and (3.5), (3.6) hold, and if one can establish 
the a priori estimate (6.2) for 0 d t < t, with any t, E (0, 00) (E, depends on 
z, tI), then there exists a solution (A, B, s) of(2.8k(2.12), (6.1) with SEC*,’ 
and A, B in Cl,’ up to the boundary. 

We next prove: 

LEMMA 6.2. Assume that the data in (2.5) satisfy 

f’(t)>0 for O<t<co, 

-$‘(x)>J IvQ’(x)l for O<x<s,, ~(so)+J4Wo~>0. 
(6.3) 

Then for any C’,’ solution of (2.8)-(2.12), (6.1) there holds 

A,<@ B,<O, (6.4) 

A(s(t), t) > 0, (6.5) 

T(x, t) > 0. (6.6) 

Notice that the last condition in (3.1) follows from (6.3). 

Proof We first prove that (6.4) and (6.5) hold for all t. Indeed, by (6.3) 
and continuity, (6.4) and (6.5) hold for all t sufficiently small. If either (6.4) 
or (6.5) is not true for all t > 0, then there exists a smallest to such that 
(6.4) and (6.5) hold for 0 Q x d s(t), 0 d t < t,, and 

either A,(x,,, to) = 0 or B,(xo, to) = 0, (6.7) 
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for some x0 E [0, s( to)]. The functions A” = A I, B = B, satisfy 

J t‘2,+a,x+ 
2-B 
7=o’ ;:B.-B.iy-n. 

z T 

A(0, t)=B(O, t)-2Jf’(f)68(0,2) 

and, on x = s(t), 

B=A-(4/yi;)A2(1+A)3/(1+2A) 
(1 +2A)3 

by (2.10). 

We can now proceed as in the proof of Lemma 3.1 to establish that 
2(x,, to) <O and &x0, to) < 0. Recalling (6.7) we conclude that 
A(s( to), to) = 0. Next 

-$(s(r), t))=A,s’+A, 

--I(Ax+%) 

::;;-$+a; 

(by (2.8), (2.11)) 

(by (2.10)) 

>-;A(I+&) (by (6.4), (6.5)). 

Hence, on (x=s(t)}, 

-$A+cA~~, c>o 

from which we conclude that A(s(t,), 1,) > 0, a contradiction. 
To prove (6.6) it suftices to notice that T, <O by (6.4), whereas, on 

x = s(t), 

A 
2A2 >o 2T=A+B=A--=-, . 

1+2A 1+2A 

Combining Lemma 6.1 with 6.2 we obtain: 

THEOREM 6.3. If (3.11, (3.2), (3.5), (3.6), and (6.3) hold then there exists 
a solution (A, B, s) of(2.8t(2.12), (6.1) with SE C2,’ and A, B in C’,’ up fo 
the boundary. 
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The proof of Theorem 5.1 extends to the present case with minor 
changes. Thus: 

THEOREM 6.4. For any tI > 0 there exists at most one C’ solution 
(A, B, s) of (2.8)(2.12), (6.1) for 0 <t < t,. 

7. ASYMPTOTIC BEHAVIOR OF THE SOLUTION AS x+0 

In this section we take 

f(t) =fz(t), d(x) =4,(x), be) = $r(x) 

satisfying all the assumptions as in Theorem 6.3, and 

A(x) + 4(x) uniformly in t, x as z + 0. 

We shall denote the corresponding solution established in Section 6 by 
(A,, B,, s,) and prove that, as t -+ 0, it converges to the solution of the 
Stefan problem corresponding tof; 4. 

Recall that by the results of Section 6, T,,, < 0, T, > 0. Since for any 
t, >o 

TAO, t) =L(t) d C, if OGt<t, 

(C, depends on tl), it follows that T < C, if 0 < x < s(t), 0 < t < t, . Next, 
since A T,X < 0, A,(s(t), t)) > 0 we have A, >O; similarly, B,,<O and 
B&(t), t) > - 4 (by (2.10)) so that B, > - f. Using A, + B, = 2T, < C,, we 
get 

O<A,<C,+$, -+<B,<C,. (7.1) 

Hence also 

We also note that by (2.11), (6.5), 

$0. 

(7.2) 

(7.3) 

Analogously to Lemma 3.3 we have: 
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LEMMA 7.1. For any t, > 0 there exists a constant A4 independent of T 
such that 

s,(t) < M if O<t<t,. (7.4) 

Proof Integrating (2.2) in x, 0 d x < s(t), we obtain an identity which 
can be written in the form 

Yi 0 
d i”‘)q(x, t)dx+j”“q(x, t)dx=f(t); (7.5) 

0 

hence, for some constant C independent of r, 

j”” q(x, t) dx = j”“’ q(x, 0) dx (7.6) 
0 0 

Next, multiplying (2.1) by x and integrating in x, 0 <xc s(t), we get an 
identity which can be written in the form 

s*(t) 11 s(t) 
xT(x, t) dx+- = 

2 0 
4x3 t) dx. 

Integrating in t and using (7.6) and the fact that T(x, t)>O, the assertion 
(7.4) follows. 

Let 

Qr= ((x, t); O<xxsAt), o<t<tl}, 

Q=((x,t);O~xxQ,O~t~t,} 

and extend each T, into Q\Q, by zero. 
In view of (7.4), there is ,a subsequence of TV (denoted again by T,) for 

which 

T,” + To weakly in (L”(Q))*, ToELYQ). (7.7) 

Since sJt) is bounded (independently of T,) and monotone in t, by Helly’s 
theorem we may assume that, for some monotone function s,(t), 

s,,(t) + so(t) pointwise; 

hence, by the Lebesque dominated convergence theorem, 

s,” + so in Lp(O, t,), Vl dp<co. (7.8) 
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Finally, defining 

gAx* f) = 1 
1 + TAX, t) if O<x<s,(t) 
o if s,(t)gx<M 

we may assume that, in addition to (7.7), (7.8), 

g,” -+ g, weakly in (L”(Q))*. (7.9) 

LEMMA 7.2. There hold 

T,,(x, t)=O if x > %l(t), (7.10) 

g,(x, t) = 
1+ T&c t) if x<s,(t) 
0 if x>s,(t). 

(7.11) 

Proof: Set Q,= {(x, t); OGXGS,(~), OG~GC,)}, &,=Q\& 
& = Q\Q,. Then, by (7.81, 

IQo dQ,l = I& @,I = 1;’ b,(t) -s,(t)1 + 0 if t=r,+O. (7.12) 

For any #EL’(Q) 

and I, + 0 by (7.7) whereas 

by (7.7), (7.12). It follows that T,,=O on &. 
To prove (7.11) we denote the right-hand side by go and proceed to 

show that g, = go. For any II/ E L’(Q), 

+s k,“-&3)$=Jl+J*+J3. 
QoAQt, 

By (7.7), J,-+O and, by (7.7), (7.12), J2-r0 and J3+0. Hence iO=g,. 



HYPERBOLIC HEAT EQUATION 277 

Consider now the solution (A, B, s) of (2.8)-(2.12) (6.1) constructed in 
Section 6, and the corresponding functions T,, q,. 

Multiplying(2.2) by It/X and (2.1) by $ where +(x, t) is any smooth 
function and integrating over 0 d x < s(t), 0 < t < t, , we easily obtain, after 
using (2.3) (2.4) 

+ “I”’ (1 + T,(x, O))+(x, 0) dz - i:l”’ (1 + T,(x, t,))$(x, tl) dx 
0 

=5 ‘(“) q,(x, t, ) Ic/ Ax, 2,) dx - j”“I q,(x, 0) $x(x, 0) dx 
0 

- 
I q,(x, f) $x,(x, t) dx dt 

QZ 
(7.13) 

Choose II/ such that 

vqx, fl)‘O, l//(0, t) = 0. (7.14) 

Then, taking t = r, + 0 and using (7.2) and Lemma 7.2, we obtain 

j 
Q 

j [ Toti,, + a(To) $,I + j;?-(f) ICIAO, t) dt + j;(O) 44x)) $(x3 0) dx = 0, 

(7.15) 

where 

if x<s,(t) 
if x>s,(t), 

if x<s(O) 
if x>s(O). 

Since To > 0 and To satisfies the heat equation (in the distribution sense) in 
Q* z (0 <x < s,(f - 0), 0 <: t < t,}, the maximum principle shows that 
To>0 in Q* and thus, a.e., 

4Tobd)) = 
1 + To(x, t) if T,(x, t) > 0 
o if T,(x, t) = 0. 

Let u be the solution of the l-phase Stefan problem corresponding to 
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the data f(t), d(x), s(O). Writing the weak formulation for u and 
subtracting from (7.15), we get 

with $ as in (7.14), or 

Is (4Td - 4u))(lCl, + 4x, t) II/,,) = 0, 
Q 

where 

44 t) = 
{ 
(Tel- uY(4To) - 4u)) if T,#u 
o if r,= U. 

We can now proceed as in [8] to construct suitable $‘s and show that 
a( To) = a(u). Consequently, 

To is uniquely determined as the solution of the l-phase 
Stefan problem. (7.16) 

This implies, of course, that the free boundary x = s,(t) is C”. We have 
thus proved the following result: 

THEOREM 7.3. Let (3.1), (3.2), (3.5), (3.6), and (6.3) hold. Then the 
solution T, of (2.8k(2.12), (6.1) (extended by zero to {x>s,(t)}) satisfies: 
T,~uweuklyin(L”{O~x~M,O~t~t,))*forunyM>O,t,>O,where 
u is the solution of the Stefun problem (with free boundary x = s(t)): 

u, - u,, = 0 if O<x<s(t), t>O, 

4% O)=f(t) if t>o, u(x,O)=qqx) ifO<x<s(t), 

u = 0, 
ds 

ux= -z 
on x=s(t). 

Remark 7.1. Lemma 3.3 shows that for the Neumann problem the 
solution (T,, s,) satisfies s,(t) < Cr if t < t, , where C, is a constant indepen- 
dent of r. However, we were not able to extend Theorem 7.3 to this case. 

Remark 7.2. The free boundary problem with (1.10) replaced by (1.11) 
leads to the free boundary conditions 

W(t), t) = h(t), t), ds 44th t) 
z= J; 

instead of (2.9), (2.10). Since in general A is not bounded above by 1, the 
system (2.8), (2.9) cannot be solved by integration along characteristics. 
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