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Many theorems in convex analysis and quasi-variational inequalities can be 
derived by using a class of weaker convexity (concavity) conditions which require a 
functional 4(x, y) to be quasi-convex or convex for diagonal entries of certain type. 
In this paper, we discuss such conditions and use them to generalize several impor- 
tant theorems such as Ky Fan’s inequality and saddle point theorem and some 
recent results in quasi-variational inequalities. 

I. INTRODUCTION 

Throughout this paper, we let E be a locally convex topological vector 
space with dual E’, and let K be a nonempty convex subset of E. Let 
F: K -+ 2K be a set-valued map with nonempty closed convex values. 

Several recent works (Mosco [7], see also Aubin and Ekeland [2, 
Theorem 6.4.21, p. 3483, Shih and Tan [lo], etc.) have studied existence of 
equilibrium for quasi-variational inequalities motivated by problems in 
impulsive control and game theory. In those problems of quasi-variational 
inequalities and general convex analysis, an extended real-valued functional 

4: b, y)~KxK+4(x, Y)ERU { +a} (1.1) 

is involved. Researchers have made assumptions on 4 such that either 4 is 
(quasi-)concave in one of the variables (say y in (1.1)) [2, p.3481, or that C$ 
is defined from some monotone set-valued mapping [ 10, Theorem 11. 

After our recent study on the existence of Nash equilibrium for N person 
non-zero sum differential games [ 3, 131 we have found a class of useful 
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concavity (convexity) conditions for a functional of two variables 4, which 
are weaker than the concavity assumption in [2, Theorem 6.4.211, and 
which also encompasses the case studied in [ 10, Theorem 1 ] where some 
monotone set-valued operator property was assumed. 

In Section II, we introduce the definitions of these general convexity 
conditions and some of their basic properties. These conditions enable us 
to generalize some important theorems in convex analysis such as Ky Fan’s 
inequality and a specialized saddle point theorem. They also encompass 
several useful properties of set-valued mappings. 

To illustrate the usefulness of these conditions, we prove the existence of 
solutions for two types of (generalized) quasi-variational inequalities under 
the weakened conditions: Theorem 6.4.21 in [21], Theorem 1 in [lo], and 
Theorem 2 in [12]. 

It is quite clear that these conditions are rather general and are 
applicable to various nonlinear problems. Their additional features are yet 
to be exploited. 

II. DIAGONAL CONVEXITY CONDITIONS AND PROPERTIES: 

SOME CONVEX ANALYSIS THEOREMS 

For any given set A c E, we use Conv A to denote the closed convex hull 
of A. Let 4 be a functional as given in (1 .l ). 

DEFINITION 2.1. 4(.x, y) is said to be diagonally quasi-convex in y, in 
short DQCX in y, if for any finite subset {y,, . . . . ym} c K and any 
y, E Conv{ y, , . . . . y, }, we have 

Yo) d max 
l<i<m 

{#(YO, Yi)>, (2.1) 

We say that 4(x, y) is strictly DQCX in y if “ d” above can be replaced by 
“<“formb2,fory,#y,, l<i<m. 

We say that 4(x, y) is (strictly) diagonally quasi-concave (DQCV) in y if 
-4(x, y) is (strictly) DQCX in y. 

Remark 2.2. (i) In [3], we had called diagonal quasi-convexity the 
generalized-convexity (GCX) condition. It enabled us to generalize several 
theorems of Nikaido and Isoda for noncooperative N person games [8,9]. 

(ii) The nomenclature “diagonal quasi-convexity” is due to the 
reason that in (2.1) the pair (y,, y,,) is on the diagonal of K x K. If, instead 
of (2.1), 
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holds for any x E K, then we say that 4(x, y) is quasi-convex in y for every 
given x. 

(iii) According to Remark 3.3 in [3], if 4(x, y) is quasi-convex in y 
for every given x, then 4(x, y) is diagonally quasi-convex in y. But the 
converse does not hold. See [3, Remark 3.61 for a counterexample. So 
DQCX is indeed more general than quasi-convexity. 

(iv) Since it is known that in general the sum of two quasi-convex 
functions does not remain quasi-convex, the same holds for the DQCX 
property. 

DEFINITION 2.3. 4(x, y) is said to be y-diagonally quasi-convex in y, in 
short y-DQCX, for some YE [w u ( + 001, if for any finite subset 
{Y 1, .*.> y,} c K and any y,~Conv{ y,, . . . . ym}, we have 

(2.2) 

Similarly, we say that d(x, y) is y-diagonally quasi-concave in y (y-DQCV 
in y), provided that -4(x, y) is y-DQCX in y. 

DEFINITION 2.4. 4(x, y) is said to be y-diagonally convex in y, in short 
y-DCX in y, for some y E [w u { + co } if for any finite subset 
{y, ,..., y,jcKand anyyo=Cy=,aiyi (or;>O, ~~!i~;=l), we have 

Y G f ai4(Y03 Vi). 
,=I 

(2.3) 

Similarly, 4(x, y) is said to be y-diagonally concuue in y (y-DCV in y) 
provided that --4(x, y) is y-DCX in y. 

DEFINITION 2.5. 4(x, y) is said to be diugonaZ/y conuex (DCX) in y if 
for any finite subset (y,, . . . . ym} cK and any yo=Cy=i CLiyi (Cri>O, 
Cy=, a, = 1 ), we have 

4(Yo, Yo)G f ai$(Yo, Yj). 
1=1 

(2.4) 

Similarly, 4(x, y) is said to be diagonally concave (DCV) in y if -4(x, y) is 
DCX in y. 

Remark 2.6. (i) If 4(x, y) is DCX (resp. y-DCX, DCV, y-DCV) in y, 
then 4(x, y) is DQCX (resp. y-DQCX, DQCV, y-DQCV) in y. 

(ii) We can similarly define strict DCX, y-DCX, DCV, y-DCV, 
DQCX, y-DQCX, DQCV, y-DQCV as in Definition 2.1. 
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(iii) If &x, y) is convex in y for each given .YE K, then 4(x, y!) is 
DCX in y. The converse does not hold in general. 

(iv) For N-person games (cf. [3], e.g.), in particular zero-sum 
games, there often exists 4(x, y) satisfying 

d(x, x) = 0 VXEK. (2.5) 

Under this condition, we see that if 4(x, y) is 0-DCX (resp. 0 - DCV) in y, 
then 4(x, y) is also DCX (resp. DCV) in y. 

(v) Let 4(.x, y) be y-DQCX, y-DQCV, y-DCX, or y-DCV in y. Then 
generally it is not true that 4(x, y) is, respectively, DQCX, DQCV, DCX, 
or DCV in y. 

DEFINITION 2.7. An operator A: K + E’ is said to be monotone if 

<A(x)-A(Y), x-y)>0 vx, y E K. 

EXAMPLE 2.8. Here we show that a function 4(x, y) = (A(y), x - y ) 
(constructed from some operator A) is both DQCX and DQCV in y, but 
not quasi-convex or quasi-concave in y (for some given x), and the 
operator A is not monotone. 

Let p E E’, p # 0. Define 

A:K+E 

A(x)= lbll P, VXEK. 

To show that 4(x, y) is DQCX in y, we note 

4(x, x) = 0, VXEE. 

For if 

and 

yo= i a,y, qao, f cti= 1 
i= 1 i=l > 

it follows that 

(2.6) 

(P,Yo-YY,)<O for all i = 1, . . . . m. 
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Then we have 

O> f ai(A Yo-Yi>=(P7 Yo-Y0)=07 
i= 1 

a contradiction. So 4(x, y) is DQCX in y. 
Similarly, if we change max to min in (2.6) and reverse the directions of 

the last three inequalities above, we see that 4(x, y) is also DQCV in y. 
To show that 4(x, y) is not quasi-concave in y for some x, choose f E E 

such that 

Set 

y, = i.2, y,= -g. 

Then we have 

$a y,)=f Il4l(P.-f)>O, 

w, yd=S lI4l(Pf)>0. 

But for y,=t(y,+ y,)=O, we have 

d(a,Y,)=lIY,ll(P,~-Yy,)=0. 

Thus 

So 4(x, y) is not quasi-concave in y. Similarly, choosing 2 E E with 
(p, .?) < 0, by the same argument we can see that 4(x, y) is not quasi- 
convex in y either. 

Finally we show that A(x) = IIx(J p is not monotone. Choose x E E such 
that ( p, x ) # 0. Take y = 0. We have 

(4X)-4Y), x-Y)=llxll(P,~~), 

(4-X)-4Y), -x-Y>= -llXll<P,X). 

One of the above must be negative, thus A(x) = I(xI( p is not monotone. 

The above example shows that the DQCX is indeed weaker than quasi- 
convexity or the condition defined from a monotone operator. 

The next proposition tells the relationship between a DCV function and 
a monotone operator. 
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PROPOSITION 2.9. [f 

9(-? Y) = (A(J), x - .v> 

for some operator A: E + E’. Then qS(n, y) is DCV in y if and only $‘A is 
monotone. 

ProoJ If A is monotone, i.e., 

(&-A(Y), x-y)30 ‘dx, Y E E, 

then for any 

yo= f a,y, 
i 

a;>O, ‘f ai= 1, ~,EE , 
,=I i=l > 

we have 

ig, aid(Yo, Y;)= f aLA( ~o-~yi) 
i= I 

G ,f ai(A(YoL Yo - YI > 
i= I 

= (NYoh Yo - Yo) 

= d(Yo, Yo) = 0. 

So 4(x, y) is DCV (0-DCV) in y. 
Conversely, let 4(x, y) be DCV in y. In this case, it is also 0-DCV in y. 

For any ui, v*EE, set uo=i(u, +v,). Then 

0 G - cf4cvo? 0,) + Mvo, a1 

= - Ct<A(u,), uo-0,) ++(A(v,), vo-vz>l 

= -C~(A(~,),t(v,-u,)>+t(A(~~),f(u~-v~))l 
=+(A(u,)-A(vz), vi -uz>. 

Since v, u2 E E are arbitrary, A is a monotone operator. 1 

The advantage of y-DCX or DCX functionals over y-DQCX or DQCX 
ones are due to 

PROPOSITION 2.10. Let di(x, y), 1 d i,< n, be a set of jiinctionals, each of 
them is y-DCX (resp. DCX, y-DCV, DCV) in y. Then 

&X7 Y) E i ai 4i(X, Y); 
i=l 

a,: K-, R, a,(X) 3 0, icl ai = 1 

remains as y-DCX (resp. DCX, y-DCV, DCV) in y. 
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For later use, we now generalize Ky Fan’s inequality ([5], see also [2, 
Theorem 63.5, p. 3301) by relaxing the concavity assumption to y-DQCV. 

THEOREM 2.11. Let K be compact convex in E and let 4: K x K + 
R u ( :& co } satis-y 

vy~K> x + fj(x, y) is lower semicontinuous; (2.7) 

4(x, y) is y-DQCV in y. (2.8) 

Then there exists Xe K such that 

(2.9) 

Proof: If y = co, then (2.9) is trivial. So we assume that y # co. 
Assume that (2.9) is false. Then for all x E K, there exists y, E K such that 

~(X~ Y,) > Y. (2.10) 

For each x E: K, define 

NY)= {-=KW, Y~I+ 

Every set N(y) is nonempty and open in K. By (2.10) 

Since K is compact, the above has a sub-covering 

i=l 

for some {y,, . . . . y,} c K. Choose a partition of unity pi(x), pi: K-, R, 
subordinate to { N( y,)}y= i. Define a map 

B:K+K 

B(Y)= f Pi(Y) Yi, 
i=l 

which is continuous and maps K into S= Conv{x,, . . . . x,}. In particular, 
B maps S into itself. By Brouwer’s fixed point theorem, there exists 9 E S 
such that 
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Let I= (iI 1 di<m, p,(p)>O}. Then for iEZ, Jon, so 

O(?;? Y,) > Y for all i 6 I, 

and 
jEConv{yi(iEZ}. 

But by (2.8), there exists i, E Z such that 

a contradiction. 1 

COROLLARY 2.12 (Generalized Ky Fan’s inequality). Let the hypotheses 
of Theorem 2.11 hold for 

Y = sup &Y, Y). 
y E K 

Then there exists X E K such that 

sup &X7 Y) G sup #(Y? Y). 
y t K 4’EK 

Remark 2.13. The compactness of K in Corollary 2.12 can be removed 
by assuming the following: 

There exists a nonempty compact convex set Cc K such that for 
each x E K\C, there exists JJE C with 4(x, y) > 0. 

Cf. G. Allen [l, Theorem 21. 

As a further illustration of diagonal convexity conditions, we give a 
special form of saddle point theorems as below, which has potential 
applications to N person nonzero sum games (cf. [3], e.g.). Compare 
C4, 61. 

THEOREM 2.14. Assume that K is a compact convex subset of a Banach 
space E and 4: K x K -+ [w satisfies 

(i) 4(x,x)=0, VXEK; 

(ii) 4(x, Y) 
(iii) 4(x, Y) 

Then 

is 1.s.c. in x for each y E K, and 4(x, y) is DQCX in x, 
is U.S.C. in y for each x E K, and q5(x y) is DQCV in y. 
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Proof: Apply Theorem 2.11 to #(y, x) with y = 0, we have the existence 
of some 2 E K such that 

Apply Theorem 2.11 again to $(x, y) E - 4( y, x), we have some ,? E K such 
that 

d(Y, 920, Vye K. 

Thus (2, Z), is a saddle point satisfying 

Remark 2.15. Assume that the Banach space E is reflexive. The com- 
pactness of K in Theorem 2.14 can be removed by assuming the following: 

There exist (x0, y,,) E K x K and M> 0 such that 

4(X? YCJ ’ 0 VXE K with l]xl] > M 

~hl, Y) <o Vy E K with l(y(l > A4. 

The proof can be carried out in the same way as in [ 1, Theorem 23 so it is 
omitted. 

The uniqueness of the saddle point in Theorem 2.14 can be obtained if 
some strictness assumption is added. 

COROLLARY 2.16. Assume that condition (iii) in Theorem 2.14 is replaced 

by 

(iii’) 4(x, y) is U.S.C. in y for each x E K, and 4(x, y) is strictl-v quasi- 
concave in y for each x E K. 

Let all the other hypotheses of Theorem 2.14 remain valid. Then 4(x, y) has 
a unique saddle point (ti, ti), for some ti. 

The proof is omitted. 

III. EXISTENCE OF SOLUTIONS TO GENERALIZED QUASI-VARIATIONAL 
INEQUALITIES UNDER DIAGONAL CONVEXITY CONDITIONS 

In Theorem 2.11 and Corollary 2.12, we have already illustrated how to 
use diagonal convexity (concavity) conditions to generalize the useful Ky 
Fan inequality. In this section, we similarly generalize some recent results 
in quasi-variational inequalities. 

We first generalize Theorem 6.4.21 in [2]. 
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THEOREM 3.1. Assume that 

(i ) K is compact convex 

(ii) F: K + 2K is upper hemicontinuous (cf. [2]) with nonempty closed 
convex values. Let ,f: K x K -+ R satisfy 

(iii) Vy E K, x -+ f(x, y) is 1s.~. 

(iv) f(x, y) is 0-DCV in y. 

Finally, suppose that F and f are related by the property 

{xEKI sup f(x, y)<O} is closed. 
YE F(x) 

Then there exists a solution X E K to the quasi-variational inequality 

X E F(X), sup f(X, y) < 0. 
YEF(X) 

ProoJ Since most of the arguments remain the same, let us adopt all 
the notations and procedures as given on [2, pp. 249-3501 to avoid 
repetition. 

We need only note that the functional 4: K x K -+ R defined by 

4(X, Y)=a&)f(x, Y)+ i ai(X)(pj,X-y), 
i= I 

as a sum of 0-DCV functionals in y, remains 0-DCV in y by our 
Proposition 2.10. Now, instead of quoting Ky Fan’s inequality [2, 
Theorem 63.5; p. 3301, we use our version of Ky Fan’s inequality given in 
Corollary 2.11, with y = 0. We still get inequality (64) in [2, p. 3491: 

SUP&% Y)dO, 
VEK 

by Proposition 2.10 and (iv). 
The rest of the argument remains the same and the proof is done. 1 

Following [2], a set-valued map T: K + 2z is said to be monotone if 

(u-v,x-y)ZO 

for all x, y E K and for all u E T(x), v E T(y). 

PROPOSITION 3.2. If T: K + 2E is a monotone set-valued map, then the 
function 

4(&Y)= sup <v,x-YY) 
UE T(Y) 

is 0-DCV in y and continuous in x. 
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Proofi The continuity of 4(x, y) in x is obvious; we need only prove the 
0-DCV in y. 

Assume that 

YO= f cciYi cq90, f a,=l, y,EK 
> 

, 
i= I i=l 

then y, E k and for any E > 0, there exists USE T(y,) such that 

suP (r, YO- Yi> < c”i9 YO- Yi> +&. 
“E T(h) 

Therefore 

< 5 ai(ui3 YO-yj) +E 
,=l 

G 2 ai(uO, YO- Yi) +E (00 E T(Yo)) 
,=l 

= (00, yo-yo)+&=&. 

Since E > 0 is arbitrary, we get 

So $(x, y) is 0-DCV in y. 1 

There is considerable interest (see Yan [12] and the references therein) 
in solving variational inequalities of the form 

sup (U,.+y)+f(% y)<O vy E F(i) 
UE T(2) 

As a further application of our diagonal convexity argument, we prove the 
following theorem, which generalizes Theorem 3.2 and some key results in 
[lo, 121. 

THEOREM 3.3. Let k be a compact convex subset of E. Assume that 

(i) F: K+2E is U.S.C. (cf. [2; lo], e.g.), with nonempty closed convex 
values; 

409 132’1-15 



224 ZHOU AND CHEN 

(ii) T: K --, 2b’ is a monotone set-v&e mup with nonemptll values 
such that for each one-dimensional flat [lo] L c E, TI [, n /c is 1s.~. from the 
topology of E into the weak *-topology a(E’, E) qf E’; 

(iii) the map f(x, y): K x K + R is concut’e in y und 1s.~. in x such that 
f(x, x) = 0, vx E K; 

(iv) the maps F, T, and f are related by the property that the set 

I= {x& sup sup (O,x-yy)+f(x,Y)GO1 
.VE.YY) CE r(y) 

is closed. 
Then there exists a point .I?.E K such that 

1 E F(i) 

sup (4 i-y> +f($ y)dO vy E F(2). 
ut 7-(i-) 

Proof Again we will try to be brief. We first note that the map 

‘~:KxK+[Wu{fco} 

?(xYY)= sup <u,x-y)+f(x,y) 
u t T( y ) 

is 0-DCV in y, and 1.s.c. in x. by Proposition 3.2 and 2.10. So we apply 
Theorem 3.1 and conclude that there exists i E K such that 

2 E F(P) 

rl(-f,y)= SUP C&i-Y))+f(&Y),<O, Vy E F(Z). 
(3.1) 

UE 7-r) 

The remaining procedures are similar to those in Step 2 of the proof of 
Theorem 1 in [lo]. Let YE F(;(a) be arbitrarily fixed and let 
z,=ty+(l-t)$=i--f(Z-y)fortE[O,l].By(3.1), wehave 

sup (4 a-z,> +f(.% z,)<O, VtE [O, 11. (3.2) 
u E r(Zf) 

By assumption (iv), for the second term in (3.2) we have 

f(a,Z,)=f(~,ty+(1-t)~)Btf(~,y)+(1-t)f(~,~)=tf(~,y). (3.3) 

The first term sup{ u, 2 - z, ) can be handled in the same way as in the 
proof of Theorem 3.2 or [ 10, Theorem I]. So when it is combined 
with (3.3) we get 

sup <UP i--y> +f@, y)<O 
UE T(f) 

and the proof is complete. m 
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