
Journal of High Energy Astrophysics 7 (2015) 23–34

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of High Energy Astrophysics

www.elsevier.com/locate/jheap

Review

Simulation and physical model based gamma-ray burst afterglow 

analysis

H.J. van Eerten 1

Max-Plank-institut für Extraterrestrische Physik, Giessenbachstraße 1, D-85748 Garching, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 March 2015
Accepted 17 April 2015

Advances in our numerical and theoretical understanding of gamma-ray burst afterglow processes allow 
us to construct models capable of dealing with complex relativistic jet dynamics and non-thermal 
emission, that can be compared directly to data from instruments such as Swift. Because afterglow blast 
waves and power law spectra are intrinsically scale-invariant under changes of explosion energy and 
medium density, templates can be generated from large-scale hydrodynamics simulations. This allows for 
iterative template-based model fitting using the physical model parameters (quantifying the properties 
of the burster, emission and observer) directly as fit variables. Here I review how such an approach 
to afterglow analysis works in practice, paying special attention to the underlying model assumptions, 
possibilities, caveats and limitations of this type of analysis. Because some model parameters can be 
degenerate in certain regions of parameter space, or unconstrained if data in a limited number of a bands 
is available, a Bayesian approach is a natural fit. The main features of the standard afterglow model are 
reviewed in detail.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Gamma-ray bursts (GRBs) are the most luminous explosions 
occurring in the universe and a key target for many active and 
upcoming rapid cadence survey programs from radio to gamma-
rays. We know they most likely involve the merging of neutron 
stars (making them prime gravitational wave counterpart candi-
dates) and massive star collapse, and that some form of relativistic 
outflow is launched. The merger scenario (Eichler et al., 1989;
Paczynski, 1991) has been tied to short GRBs, while long GRBs 
are securely connected to massive star collapse (Woosley, 1993;
Paczynski, 1998; MacFadyen and Woosley, 1999) through obser-
vations of coincident supernovae (Galama, 1998). The separa-
tion between ‘short’ and ‘long’ burst durations lies around 2 s
(Kouveliotou et al., 1993).

We also know this blast wave eventually generates an after-
glow from X-rays to radio, as was predicted originally by way 
of the fireball model which explained GRB prompt emission in 
terms of optically thin synchrotron emission from colliding shells 
within a hydrodynamically launched relativistic outflow (Rees and 
Meszaros, 1992; Mészáros and Rees, 1997). During the afterglow 
stage the emission is dominated by the forward shock interact-
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ing with the external medium, with electrons being accelerated to 
relativistic velocities at the shock front and interacting with the 
locally generated magnetic field in order to produce synchrotron 
emission. Afterglow emission is not unique to the synchrotron in-
ternal shock model, and a decelerating afterglow-stage blast wave 
can be associated with a number of mechanisms for jet launch-
ing (such as magnetically dominated jets, e.g. Drenkhahn, 2002) 
and/or prompt emission (such as photospheric emission models, 
e.g. Mészáros and Rees, 2000).

Afterglow observations have proven extremely useful for a 
number of reasons and have been instrumental in establishing 
the extra-galactic nature of GRB (Costa et al., 1997; van Paradijs 
et al., 1997). They provide insight in the environment of the 
burster (constraining circumburst medium density, amount of 
dust-extinction), the physical properties of the progenitor (via ex-
plosion energy), the physics of jet launching (via jet collimation 
angle), and the fundamental plasma kinetic theory of relativis-
tic shocks (via micro-physical parameters describing magnetic 
field generation and electron acceleration). Most of this is done 
through interpreting the evolution of the characteristics of the syn-
chrotron spectrum in terms of flux equations derived from dynam-
ical blast wave models in the self-similar ultra-relativistic stage 
(Blandford and McKee, 1976), the late self-similar non-relativistic 
stage (Taylor, 1950; Sedov, 1959), or, in a more recent develop-
ment, from complex multi-dimensional, trans-relativistic evolution 
in-between.
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In this review, I describe the basic aspects of afterglow mod-
els, and the challenges involved in performing data analysis based 
directly on physical models (as opposed to post-hoc interpreta-
tion of purely heuristic functions such as power laws, that cap-
ture the shape of the data of light curves and spectra in a sim-
plified manner). In Section 2, the dynamics of blast waves from 
ultra-relativistic to non-relativistic are discussed and self-contained 
models are provided. Afterglow emission is discussed in Section 3
and it is reviewed how flux equations for afterglow spectra are 
derived. Hydrodynamical simulations and model-based afterglow 
fitting are discussed in Section 4.

2. The dynamics of afterglow blast waves

2.1. Simple approximations for spherical flow

Under the assumption of spherical flow, the radius R of the 
afterglow blast wave is fixed from conservation of explosion energy 
E in the blast wave (assuming adiabatic expansion). The conditions 
at the front of the shock are set by the shock-jump conditions. 
There exists a reasonable approximation to the ideal gas equation 
of state (EOS) that covers the transition between relativistic and 
non-relativistic temperatures (Mignone et al., 2005):

p/(ρc2) = e/(ρc2)

3

2 + e/(ρc2)

1 + e/(ρc2)
, (1)

where p is pressure, c speed of light, ρ co-moving density, e
internal energy density excluding rest mass. Using this EOS, the 
shock-jump conditions can be simplified to

ρ = 4γρext,

e = 4γ (γ − 1)ρextc
2,

p = 4

3
(γ 2 − 1)ρextc

2,

�2 = (4γ 2 − 1)2

8γ 2 + 1
, (2)

valid throughout the evolution of the blast wave (and where γ is 
the fluid Lorentz factor at the shock front, ρext the mass density 
in front of the shock and � the Lorentz factor of the shock). The 
upstream density can be allowed to depend on radius, i.e. ρext ≡
ρref (R/Rref )

−k , with k = (0, 2) covering respectively a homoge-
neous interstellar-medium (ISM) type and a stellar-wind type en-
vironment. The concise description offered by Eq. (2) was pointed 
out previously by Uhm (2011), van Eerten (2013), and this particu-
lar EOS has been used in numerical (Zhang and MacFadyen, 2009;
van Eerten et al., 2010b, 2011) and theoretical (Nava et al., 2013)
analysis. Although in the non-relativistic limit the jump in den-
sity is fixed (depending on the polytropic index; the jump of 4 
from the equations above applies to an ideal gas), the shock-jump 
conditions indicate a special feature of relativistic flows, where 
the density jump can become arbitrarily high. This effect is even 
stronger when expressed in the lab frame, where an additional fac-
tor of γ applies.

Further assuming a homogeneous shell model, the radius of the 
blast wave can be expressed exactly as (van Eerten, 2013):

E/(Mc2) = β2(4γ 2 − 1)/3, (3)

where M is the swept-up mass (i.e. a proxy for radius) and β the 
fluid velocity v in units of c. The width of the shell will always 
be �R = R/(12γ 2). This can be established by taking the down-
stream density according to the shock-jump conditions and, under 
the assumption of a homogeneous shell, moving down in radius 
until all swept-up matter is accounted for. Due to its inclusion of a 
simplified EOS, the blast wave model described by Eq. (3) is about 
the most concise analytically tractable approximation possible.

Other simplified trans-relativistic spherical shell models exist 
in the literature (e.g. Piran, 1999; Huang et al., 1999, who omit 
pressure, or Pe’er, 2012, who includes pressure); in practice, the 
differences between adiabatic expansion models are very minor, as 
long as the same asymptotes are reproduced (Piran, 1999 leads to 
a non-relativistic asymptote different from the self-similar asymp-
tote). A more pronounced difference between possible shell evo-
lutions is that between radiative and adiabatic expansion, and be-
tween large and small initial mass content (the latter discussed 
separately in Section 2.5). In the radiative case, blast wave Lorentz 
factor and radius are still dictated by the energy within the blast 
wave, only now this energy is diminishing noticeably due to radia-
tive losses, leading to faster deceleration. Calculating the cumula-
tive energy loss from standard synchrotron afterglow emission (as 
covered below in Section 3) for a shell model will typically only 
add up to only a few percent well into the non-relativistic stage, 
justifying the adiabatic assumption from the beginning of this sec-
tion. However, under certain circumstances, for example when the 
unshocked medium contains many electron–positron pairs trig-
gered by prompt emission photons (Thompson and Madau, 2000;
Beloborodov, 2002), conditions leading to radiative blast waves 
may arise at early times. Observational support for initially ra-
diative blast waves is offered by Fermi LAT gamma-ray detections, 
when interpreted in the afterglow blast wave framework (see e.g. 
Ghisellini et al., 2010; Nava et al., 2013). Most of the cited shell 
models incorporate the possibility of a significant radiative energy 
loss term.

2.2. The non-relativistic Sedov–Taylor–von Neumann self-similar 
solution

A full solution for the blast wave in the radial flow case re-
quires equations for the fluid profile everywhere in the flow, not 
just behind the shock front. For the limiting cases, when β ↑ 1 or 
β ↓ 0, this solution is provided by the aforementioned self-similar 
solutions, since dimensional analysis indicates only one possible 
dimensionless combination for the remaining variables (i.e. E , ρext , 
radius r, lab frame time t). These analytical solutions tend to be 
unwieldy, but sometimes reduce to very simple form. An example 
of the latter is the non-relativistic stellar wind (ρext ∝ r−2) case, 
where

ρ = 4(r/R)ρext, v = r/(2t), p = ρextr
3/(3Rt2). (4)

Here r/R plays the role of the self-similarity variable, and we have 
used an ideal gas with polytropic index γ̂ = 5/3. Clearly, these re-
duce to the non-relativistic shock-jump conditions when r → R
and γ 2 ↓ 1 + β2, as can be seen from Eq. (2). The radius R is 
in this case given by R = (12π/50)1/3(Et2/[ρref Rk

ref ])1/3. The mass 
dM within a shell at radius r is 16π(r3/R)ρext dr, confirming once 
more that the swept-up mass in the blast wave is concentrated at 
the front.

The full solution for arbitrary k can be obtained e.g. by gener-
alizing the k = 0 case as described in Landau and Lifshitz (1959):

v ≡ 2

5 − k

r

t
V (ξ),

ρ ≡ ρextG(ξ),

c2
s ≡ 4r2

(5 − k)2t2
Z(ξ). (5)

Here cs is the speed of sound. In our case, p = 3ρc2
s /5. The self-

similarity variable ξ ≡ r/R is equal to 1 at the shock front, and 
the shock-jump conditions therefore yield V (1) = 3/4, G(1) = 4, 
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Z(1) = 5/16 as boundary conditions for the self-similar functions. 
Plugging the self-similar Ansatz provided by Eq. (5) into the fluid 
hydrodynamical equations and solving the resulting differential 
equations, eventually yields (excluding k = 2, which is a special 
case where terms drop out of the equations early on):

ξ5−k =
(

V

V (1)

)−2 ( −5 + k + 4V

−5 + k + 4V (1)

)ν1
(

5V − 3

5V (1) − 3

)ν2

,

Z = 5(1 − V )V 2

3(5V − 3)
,

G = 4

(
5V − 3

5V (1) − 3

)ν3
(

4V − 5 + k

4V (1) − 5 + k

)ν4
(

V − 1

V (1) − 1

)ν5

×
(

V

V (1)

)ν6

,

ν1 = 2(41 − 26k + 5k2)

3(5k − 13)
,

ν2 = 2(k − 5)

5k − 13
, ν3 = 5k − 9

5k − 13
,

ν4 = 2(7k − 15)(5k2 − 26k + 41)

3(k − 1)(k − 5)(5k − 13)
,

ν5 = −2(9 − 4k)

3(k − 1)
, ν6 = − 2k

k − 5
. (6)

From dimensional analysis, we obtain for the radius

R = β̂

(
Et2

ρref Rk
ref

)1/(5−k)

, (7)

where β̂ can be found using energy conservation, leading to

β̂k−5 = 16π

(5 − k)2

1∫
0

G[1

2
V 2 + 9

10
Z ]ξ4 dξ. (8)

In the ISM case, β̂ ≈ 1.15, in the stellar-wind case, β̂ ≈ 0.92.
The late-time non-relativistic solution primary applies to ra-

dio observations (e.g. Waxman et al., 1998), since emission in 
higher frequency bands such as optical and X-rays will have al-
ready dropped below the detection threshold of most instruments. 
The distance scale at which a typical blast wave becomes non-
relativistic, is vast (as can be confirmed by plugging βγ = 1 into 
Eq. (3)). The Sedov–Taylor solution for non-zero k provided above, 
is therefore not likely to occur in nature in such a clean fashion. 
The blast wave has expanded well beyond the sphere of influence 
of its progenitor, making it more likely that its current environ-
ment is approximately ISM-like, or shaped by some complex inter-
action between wind bubbles from surrounding stars (Mimica and 
Giannios, 2011). Nevertheless, the non-zero k case is relevant as 
an asymptotic solution to long-term evolution of non-ISM hydro-
dynamical blast wave simulations (e.g. those done by De Colle et 
al., 2012b).

2.3. The ultra-relativistic Blandford–McKee self-similar solution

On the other end of the velocity spectrum sits the Blandford–
McKee self-similar solution for ultra-relativistic flow (Blandford 
and McKee, 1976). As already suggested by the facts that in this 
stage β = 1 − 1/(2γ 2) + O (γ −4), and the width of the shell 
�R ∝ R/γ 2, a Taylor-series expansion around γ −1 ↓ 0 for the fluid 
profile will typically have γ −2, rather than γ −1 as its first non-
constant contributing order. From energy conservation within the 
blast wave that moves at nearly the speed of light, one obtains:
E = 8πρref Rk
ref c5−k�2t3−k

17 − 4k
, (9)

where � is the shock Lorentz factor. The numerical factor in this 
equation follows again from integrating the (rest frame) energy 
density over the self-similar fluid profile (provided below), as in 
Eq. (8). Note that the shocked fluid is relativistically hot (as can 
be seen from the shock-jump conditions in Eq. (2)), and γ̂ = 4/3. 
Since according to Eq. (9), �2 ∝ tk−3, it also follows that

R = ct

(
1 − 1

2(4 − k)�2

)
. (10)

This equation explains the extreme variability of GRBs and early 
afterglow. A photon emitted from that part of the shock front that 
is moving directly towards us, is observed at

t⊕
(1 + z)

= ct − R = t

2(4 − k)�2
, (11)

where z gravitational redshift, and if the observer time is set to 
zero at the point when the GRB is first observed. The Lorentz fac-
tors can reach incredibly high values, 100–1000 and beyond (see 
e.g. Racusin et al., 2011).

Continuing the Blandford–McKee solution, we again combine 
the shock-jump conditions and hydrodynamical equations with the 
self-similarity Ansatz, this time for self-similarity variable χ , and 
obtain

p = 2

3
ρextc

2�2χ−(17−4k)/(12−3k),

γ 2 = 1

2
�2χ−1,

ρ ′ = 2ρext�
2χ−(7−2k)/(4−k),

χ = [1 + 2(4 − k)�2](1 − r/[ct]), (12)

where ρ ′ expressed in the lab frame. The ultra-relativistic limits of 
Eq. (2) are reproduced taking χ ↓ 1, corresponding to the position 
of the shock front. In contrast to the non-relativistic self-similar 
solution, the relativistic version does not work all the way to the 
origin, but applies only to the relativistic part of the outflow, which 
is where almost all matter and energy reside anyway. In numerical 
simulations, non-physical values can be avoided by simply adding 
1 to the profile for γ 2, when setting up the Blandford–McKee so-
lution as initial conditions.

2.4. Jetted outflow

A major complication to the simplified picture sketched above, 
is that GRB blast waves are extremely likely to be collimated 
into two diametrically opposite jets with narrow opening an-
gles θ0 (Rhoads, 1997, 1999). Due to strong relativistic beaming, 
this is not immediately apparent in the light curve, as only a 
small patch dθ ∼ 1/γ is visible at first. Unless the geometry of 
the outflow is radically different from radial flow (e.g. cylindri-
cal, see Cheng et al., 2001) or the fluid properties are strongly 
dependent on angle (e.g. as in ‘structured jet’ models, Rossi et 
al., 2002), it is not possible to tell apart collimated and spherical 
flow at this point. Additionally, if the outflow was launched radi-
ally, it will take time for causal contact to be established across 
angles and for sideways motion to become apparent in the ob-
server frame, postponing a deviation from radial flow even for a 
conic wedge of limited opening angle. Sky images are of no help 
either, since GRBs are typically too distant for spatially resolved 
observations (the exception being GRB 030329, Taylor et al., 2004;
Oren et al., 2004).

Jet collimation therefore has to be inferred indirectly, and this 
can be done in various (model-dependent) ways. First, one can 
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compare the number of detected bursts to predicted rate of oc-
currence from a given model or to actual detections of expected 
counterparts (i.e. supernovae, in the case of long bursts, see e.g. 
Soderberg et al., 2006). Second, one can compare between early 
and late inferences of the energetics of the blast waves. At early 
times, assuming radial flow, the relevant energy is the energy per 
solid angle, or Eiso/(4π), where iso stands for ‘isotropic equivalent’. 
If the jet subsequently spreads out sideways and becomes spher-
ical (allowing eventually for the non-relativistic radial-flow self-
similar limit), the energy per solid angle becomes Ejet/(4π), where 
Ejet ≈ Eisoθ

2
0 /2, for small opening angles. Comparing between early 

and late time calorimetry should therefore yield opening angles 
(see e.g. Berger et al., 2004; Shivvers and Berger, 2011). Even if 
no late time calorimetry is possible, the often extremely high val-
ues for Eiso resulting from early-time calorimetry (e.g. Cenko et al., 
2010), already hint that the actual energies in the jets are likely 
lower. When collimation is accounted for (and jets with typical jet 
half opening angles of 6◦ are inferred, see e.g. Racusin et al., 2009;
Ryan et al., 2015), the results tend to cluster around Ejet ∼ 1051 erg
(Bloom et al., 2003).

The third way of inferring collimation, is by looking for sig-
natures directly in the light curve. Two effects will lead to a 
steepening of the temporal evolution. On the one hand, the visi-
ble patch will grow as relativistic beaming weakens and reveal a 
lack of emission from beyond the edges once γ ≈ 1/θ0. This effect 
strongly depends on viewing angle, which puts the visible patch 
initially closer to the jet edge if moved off-axis (van Eerten et al., 
2010a; van Eerten and MacFadyen, 2012b). On the other hand, the 
jet will start to spread out sideways. The over-pressured edges (rel-
ative to the circumburst environment) will do so immediately, and 
as the fact of the emergence of the jet into its environment is 
communicated towards the jet axis, more of the jet will follow. 
The broader jet will sweep up more material per unit time, lead-
ing to a faster deceleration. Because the spreading velocity of the 
jet is suppressed by a factor 1/γ in the observer frame, this sets 
off a feedback loop where a slower jet is seen to sweep up even 
more material. Due to this 1/γ suppression factor from the Lorentz 
transform between the frame comoving with the blast wave and 
our frame, the sideways spreading of the jet becomes noticeable 
again once γ ∼ 1/θ0. If the jet were in full causal contact, the 
spreading behavior would be exponential (Rhoads, 1999).

No exact analytical solutions exist for spreading jets, even when 
starting from a ‘top-hat’ conic wedge out of the spherical self-
similar solution (once sphericity is dropped, initially structured 
and multi-component jets can be assumed too, see e.g. Berger et 
al., 2003; Rossi et al., 2002), although many toy models can be 
found in the literature (e.g. Rhoads, 1999; Sari et al., 1999; Kumar 
and Panaitescu, 2000; Huang et al., 2000; van Eerten et al., 2010a;
Wygoda et al., 2011; Granot and Piran, 2012). Unfortunately, ap-
proximate models tend to be notoriously sensitive to the choices 
made for the underlying simplifications (see Granot, 2007 for a 
discussion). The picture that has emerged from relativistic hydro-
dynamics (RHD) simulations (Zhang and MacFadyen, 2009; van 
Eerten et al., 2010a; Wygoda et al., 2011; De Colle et al., 2012b;
van Eerten and MacFadyen, 2013), is one where, for realistic open-
ing angles (where θ0 � 0.05 rad does not apply), jet spreading 
does not achieve the runaway behavior and exponential increase 
in opening angle expected in the ultra-relativistic limit, but stays 
closer to logarithmic (van Eerten and MacFadyen, 2012b). A key 
reason for this is that full causal contact along all angles of the 
fluid takes time to establish, leaving little time in practice for an 
ultra-relativistic spreading regime because the blast wave quickly 
becomes trans-relativistic following the onset of spreading (van 
Eerten, 2013). As a result, the effect on the light curve following 
the ‘jet break’, is due to the joint impact of both the edges becom-
ing visible and the onset of spreading, with neither overwhelming 
the other. Post-break slopes remain dependent on observer angle 
and can be used as means to constrain jet orientation (Ryan et al., 
2015).

2.5. Reverse shocks and injection of energy into the flow

The preceding sections describe the subsequent evolution of an 
instantaneous explosion without initial mass content, i.e. a sin-
gle forward shock moving into the circumburst medium. But un-
less the jet is driven nearly completely by pointing flux (see e.g. 
Lyutikov, 2006), a certain amount of initial mass is expelled with 
the explosion. A simple way of incorporating this would be to 
add a mass M0 to the shell model (but prior to deriving Eq. (3), 
because the ejected mass is presumed to reside in a cold shell 
where all energy is converted into kinetic energy, while Eq. (3)
only connects mass to shock-jump conditions). The presence of 
initial ejecta mass will postpone deceleration of the blast wave, 
which will initially coast along at fixed velocity in ballistic motion. 
A forward-reverse shock system is established, with the forward 
shock moving into the circumburst medium and the reverse shock 
heating up the ejecta. The width of the ejected shell influences the 
dynamics as well. Even an initially infinitesimally thin shell will 
stretch out to width �R ∼ R/�2, similar to a decelerating blast 
wave. Only for shells wider than this, the initial shell width has to 
be taken into account explicitly when computing the deceleration 
radius, marking the turning point between coasting and decelerat-
ing of the blast wave. The two types of shell, wider or narrower 
than the intrinsic blast wave width, have been labeled ‘thick’ and 
‘thin’ shells respectively in the literature (Sari and Piran, 1995). 
For thick shells, the reverse shock achieves relativistic velocity (in 
the ejecta frame) before crossing the ejecta. The pre-deceleration 
stage and reverse shock crossing were expected to be visible briefly 
(mainly in the optical), during the early evolution of the afterglow, 
for about 102 s.

However, the Swift satellite (Gehrels et al., 2004) has revealed 
instead the existence of an extended (104 s) early, flat phase of X-
ray decay to be a common occurrence in afterglow light curves 
(Nousek et al., 2006; Zhang et al., 2006). A similar stage has 
been found to exist in the optical as well (see e.g. Panaitescu 
and Vestrand, 2011; Li et al., 2012), although a joint explana-
tion for both X-rays and optical is complicated by the existence 
of very early steep decay in the X-rays (likely connected to the 
end of the prompt emission, rather than the afterglow), com-
plex temporal optical emission profiles (maybe multi-component 
emission, from both reverse and forward shock) and the close 
proximity of the end of the shallow decay phase and of what is 
typically interpreted as a jet break (Li et al., submitted for publica-
tion). If not explained from viewing angle effects (e.g. Eichler and 
Granot, 2006) or evolving microphysics (e.g. Granot et al., 2006;
Filgas et al., 2011), plateau stages point to some form of pro-
longed energy injection into the ejecta, where a continuous ‘push’ 
from the back delays deceleration. This can take various forms, 
such as late catching up of slower material into the forward-
shock/reverse shock system (e.g. Panaitescu et al., 1998; Rees and 
Meszaros, 1998; Sari and Mészáros, 2000), long-term source lumi-
nosity (e.g. Zhang and Mészáros, 2001) or conversion of Poynting 
flux from the ejecta (e.g. Usov, 1992; Thompson, 1994). In af-
terglow analysis, this injection can be modeled in the form of 
a power law increase in ejecta energy (e.g. Zhang et al., 2006;
Racusin et al., 2009). In the case of a relativistic reverse shock 
(in the frame of the inflowing material) and gradual, power-law 
type injection, one can even maintain self-similarity (Blandford 
and McKee, 1976; van Eerten, 2014a). Another promising mod-
eling approach which has been applied to data directly, is drop-
ping self-similarity, but maintaining a simplified description for 
the late shells (Uhm et al., 2012; De Pasquale et al., 2015). It 
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should be emphasized that, although long-term engine activity 
is certainly a possible explanation for these early stages (poten-
tially requiring a magnetar engine model, see e.g. Usov, 1992;
Thompson, 1994; Dai and Lu, 1998; Zhang and Mészáros, 2001), jet 
breakout is a messy event (see e.g. Waxman and Mészáros, 2003;
Morsony et al., 2007) which might well naturally introduce an 
extended observable early stage even for briefly active engines, 
before moving towards the asymptotic regime of a decelerating rel-
ativistic blast wave (Duffell and MacFadyen, 2014).

A potential means of distinguishing between engine models 
are the correlations found between plateau end times and lu-
minosity in the X-rays (Dainotti et al., 2008), and in the optical 
(Panaitescu and Vestrand, 2011; Li et al., 2012). The two correla-
tions have different slope, which is consistent with the optical and 
X-ray emission typically being observed to be in different spec-
tral regimes (Greiner et al., 2011). They emerge naturally from a 
synchrotron forward-reverse shock system (Leventis et al., 2014;
van Eerten, 2014a), but require the presence of a relativistic re-
verse shock (van Eerten, 2014b), or, ‘thick’ shells rather than ‘thin’ 
shells. It is not clear how strong the emission from the reverse 
shock will be in reality, since the relative strength of reverse shock 
emission is sensitive to model assumptions, such as the degree of 
magnetization of the ejecta (see e.g. Mimica et al., 2009b), and can 
vary wildly even for a standard synchrotron model (e.g. Leventis et 
al., 2014).

2.6. Further complications

As already alluded to above, the initial geometry of the ejecta 
and the environment of the burster provide two obvious complica-
tions to the standard picture. Even the direct environment of the 
burster can reasonably be expected to have a complex shape. The 
stellar wind profile will only extend to a finite range and be in-
fluenced by photo-ionization, stellar rotation and fluid instabilities 
(Eldridge et al., 2006; van Marle et al., 2006, 2008; Eldridge, 2007;
van Marle and Keppens, 2012). Late time mass loss of the pro-
genitor system is likely erratic (Mesler et al., 2012). Although 
circumburst mass transitions are not expected to introduce sud-
den changes in the observed light curves from the forward shock 
(Nakar and Granot, 2007; van Eerten et al., 2009; Gat et al., 2013;
Geng et al., 2014), an overall slope transition can reasonably be ex-
pected, which could explain k measurements other than k = 0 or 
k = 2 (Curran et al., 2009). Additional emission might be generated 
by a complex shock structure following multiple interactions (Uhm 
and Zhang, 2014; Mesler et al., 2014).

3. Emission

The synchrotron spectrum consists of a series of connected 
power laws, separated by break frequencies, and evolves in a char-
acteristic manner during the lifetime of the blast wave (Mészáros 
and Rees, 1997; Wijers et al., 1997; Sari et al., 1998). An example 
is provided by Fig. 1. We will discuss this slow cooling case first. 
A shock-accelerated electron population ne(γe) with power-law 
p ∼ 2.3 is typically assumed, with ne(γe) ∝ γ

−p
e and γe expressed 

in the comoving fluid frame. The lower cut-off value for this dis-
tribution is γm . If we further parametrize the shock-accelerated 
electron spectrum using ξN (typically taken ∼ 1), the fraction of 
electrons that get shock-accelerated, and εe (typically ∼ 0.1), the 
fraction of available internal energy in the fluid that goes into 
the non-thermal electron population, one can derive (by equating 
integrals over electron number density distribution and electron 
energy density distribution γene(γe)mec2 to available total number 
density and energy density respectively):

γm = 2 − p
(

εe e mp
2

)
, (13)
1 − p ξN ρ mec
Fig. 1. Typical synchrotron spectrum in the slow cooling case.

where mp is proton mass and me electron mass. If the power 
law distribution slope p is too shallow (p < 2), one can choose 
to either maintain a physically plausible proportionality between 
γm and e/n, or have the upper cut-off to the particle popula-
tion (which can be ignored for p > 2) dictate γm instead, in 
order to maintain the interpretation of εe (Bhattacharya, 2001;
Dai and Cheng, 2001).

According to synchrotron theory, the local spectrum from an 
electron at energy γe peaks around

ν ′
e ≈ 3

4π
γ 2

e
qe B

mec
, (14)

in the frame comoving with the fluid2 and where qe electron 
charge. Magnetic field B is typically parametrized again via a frac-
tion of available energy, according to B2/(8π) ≡ εB e (and with 
εB typically ∼ 0.01). The critical frequency νm shown in Fig. 1, 
represents the average critical frequency for the combined emis-
sion of all local synchrotron spectra and their local γm values, and 
expressed in the observer frame. The spectral slopes of 1/3 and 
(1 − p)/2 at both sides of νm also follow from standard synchrotron 
theory (see e.g. Rybicki and Lightman, 1979).

The dependency of the flux on the model parameters Eiso , ρext , 
εB , εe , ξN , z, dL (luminosity distance) in a given spectral regime 
can now be determined as follows. The emission coefficient peaks 
according to synchrotron theory at

ε′
base ∼ p − 1

2

√
3q3

e

mec2
ξNnB, (15)

in the frame comoving with the fluid and where n the local co-
moving fluid number density (such that ξN n the number density 
of non-thermal electrons). On both sides of ν ′

m , we have

ε′
ν = ε′

base

(
ν ′

ν ′
m

)1/3

, ν ′ < ν ′
m < ν ′

c,

ε′
ν = ε′

base

(
ν ′

ν ′
m

)(1−p)/2

, ν ′
m < ν ′ < ν ′

c, (16)

where ν ′ the observer frequency and ν ′
c the cooling break in the 

frame comoving with the fluid, which we will discuss below. In 
our frame εν ′ ≈ γ 2ε′

ν ′ , as the dependency evolution of flux on 

2 This choice of notation was made for consistency with the literature. Note that 
we now have ν ′ and ρ in the frame comoving with the fluid, while ν and ρ ′ are 
expressed in the lab frame.
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model parameters will be dictated by emission from material mov-
ing (nearly) straight towards the observer. The observed flux is 
then

Fν ′,⊕ ∝ 1 + z

d2
L

V εν ′ . (17)

Here V is the emitting volume, the product of area (R/γ )2

and depth �R ∝ R/γ 2. The Lorentz factor in the area reflects 
the size of the visible patch due to beaming. Without sideways 
spreading, it would be sufficient to omit this factor in order to 
obtain post jet-break flux values. Spreading models quickly be-
come more complicated (simulation-based post-break light curve 
slopes for the ISM case are provided by van Eerten and Mac-
Fadyen, 2013. These simulations reveal steep temporal slopes of 
∼ −2.7 above νm , once the transition to the post-break regime 
has completed, which is strikingly steeper than indicated by the 
Swift sample). Observed frequencies are related to comoving fre-
quencies via the usual ν⊕ ≈ γ ν ′/(1 + z), and observed time and 
emission time via Eq. (11). Using the jump-condition values from 
Eq. (2) and the dynamics from Eq. (3), is then sufficient to de-
termine the exact dependence of flux on the model parameters. 
Synchrotron flux equations for afterglow blast waves can be found 
at various places in the literature, including extensions such as 
trans-relativistic flow, energy injection and general values of k
(see e.g. Mészáros and Rees, 1997; Sari et al., 1998; Waxman et 
al., 1998; Gruzinov and Waxman, 1999; Granot and Sari, 2002;
van Eerten and Wijers, 2009; Leventis et al., 2012; Yi et al., 2013;
Gao et al., 2013; van Eerten, 2014a).

If not all available electrons are shock-accelerated into a non-
thermal population, i.e. ξN < 1, some will remain in a Maxwellian 
distribution. This can potentially impact the synchrotron light 
curve. Unfortunately, ξN cannot be derived from observations of 
the power-law electrons directly, even if all spectral regimes could 
be observed. A full degeneracy between ξN and other model pa-
rameters exists, where a decrease in ξN can be compensated for by 
a simultaneous linearly proportional decrease in εe , εB and linearly 
proportional increase in Eiso and ρext (Eichler and Waxman, 2005).

3.1. Electron cooling

Another characteristic of the synchrotron spectrum is provided 
by electron cooling, since energetic particles use their energy very 
quickly through synchrotron emission:

dγe

dt′ = −4σT γ 2
e

3mec
εB e + γe

3n

dn

dt′ , (18)

where σT the Thomson cross-section and t′ in the comoving fluid 
frame. Beyond the cooling break νc , the effect of cooling becomes 
important and the first term on the right above (the synchrotron 
loss term) dominates. Below the cooling break, the other term 
(cooling through adiabatic expansion, note the ‘stretching’ ṅ/n) 
dominates. The cooling break νc can lie either above or below νm , 
yielding spectra designated as slow- and fast-cooling respectively.

A simple approaching to modeling the behavior of the cooling 
break, is to ignore the spatial structure of the blast wave for the 
purpose of determining the cooling time, using a steady-state ap-
proximation to Eq. (18) and equating overall cooling time to burst 
duration, resulting in

γc = 6πmecγ

σT B2t
, (19)

connected to a characteristic frequency in the usual manner via 
νc ∝ γ 2

c B (Sari et al., 1998). This approach has been used in sim-
ulations as well (e.g. Zhang and MacFadyen, 2009; De Colle et al., 
2012b; van Eerten et al., 2012), even though other quantities (νm , 
Fig. 2. A fast cooling synchrotron spectrum.

peak flux) are calculated completely locally. The correct scalings 
and temporal evolution are reproduced in this manner, but this 
hybrid approach (in the simulation case), implies an offset of the 
cooling break relative to a fully local approach to cooling. The rea-
son for this is that the full fluid profile provides a dimensionless 
constant of integration when computing the cooling break from 
local spectra (which exhibit an exponential cut-off locally, rather 
than a power-law transition, only globally adding up to such a 
transition) that is different from the one provided by an effectively 
flat fluid profile. The good news is that this off-set remains es-
sentially constant throughout the evolution of the blast wave (van 
Eerten et al., 2010a), but the effect on multi-band analysis of after-
glows can be substantial (Guidorzi et al., 2014). A local approach 
to electron cooling in simulations (e.g. by rewriting Eq. (18) in the 
form of an advection equation for γm), requires extreme resolu-
tions, which is challenging already in one dimension (van Eerten 
et al., 2010b), but only achievable in multi-dimensions by special-
ized methods (e.g. van Eerten and MacFadyen, 2013).

In the global approach, the emission coefficient equations (16)
can be extended to include the effect of electron cooling as indi-
cated in Figs. 1 and 2, leading to

ε′
ν = ε′

base

(
ν ′

c

ν ′
m

)(1−p)/2 (
ν ′

ν ′
c

)−p/2

, ν ′
m < ν ′

c < ν ′,

ε′
ν = ε′

base

(
ν ′

ν ′
c

)−1/2

, ν ′
c < ν ′ < ν ′

m. (20)

Here ε′
base tracks the peak of the spectrum, which not necessar-

ily coincides with νm . In the local approach to cooling, this only 
describes the shape of the globally emergent spectrum (i.e. flux, 
rather than emission coefficients). The −1/2 power can be un-
derstood as follows. The frequencies in this regime probe electron 
Lorentz factors below the injection value of γm , while the cool-
ing timescales are extremely short since we are above νc (mean-
ing that the shape of the injected profile is not relevant, so no 
p-dependency). All available energy is quickly radiated away. Per 
frequency, this yields Fν ∝ γemec2/[γ 2

e B] ∝ γ −1
e ∝ ν−1/2.

3.2. Synchrotron self-absorption

At low frequencies (typically in the radio regime), synchrotron 
self-absorption (ssa) becomes important and a characteristic break 
νa appears in the spectrum, below which the flux drops off more 
steeply. Since ssa is not a scattering process, it is relatively straight-
forward to model in a linear radiative transfer approach (Granot 
et al., 1999; Granot and Sari, 2002) that can also be applied to 
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Fig. 3. Self-absorbed spectrum beyond νm , in terms of regular ordering for νa < νm .

adiabatic relativistic blast wave simulations (Mimica et al., 2009a;
van Eerten et al., 2010b). In the absence of electron cooling, the 
absorption coefficient due to ssa is given by

α′
ν ′ ∼ (p − 1)(p + 2)ξNn

√
3q3

e B

γm16πm2
e c2

(ν ′)−2
(

ν ′

ν ′
m

)κ

, (21)

where κ = 1/3 if ν ′ < ν ′
m and κ = −p/2 otherwise. In a simplified 

computation in order to obtain the model parameter dependen-
cies, we need to consider an emitting surface A ∝ (R/γ )2 and a 
source function below νa , rather than the emitting volume for the 
optically thin case (Sari et al., 1998; Waxman et al., 1998), i.e.

Fν ′,⊕ ∝ 1 + z

d2
L

A
εν ′

αν ′
. (22)

In the lab frame αν ′ ≈ α′
ν/γ . In the slow cooling case and with 

νm > νa , the spectral slope 2 below νa (see Fig. 1) follows from 
a comparison between Eqs. (21) and (16). In case νm and νa flip, 
a new slope of 5/2 is introduced, as can be seen from the same 
equations. Once νa > νm , the temporal evolution of νa will change, 
as will the peak of the spectrum, which now occurs at νa , rather 
than νm . Nevertheless, these differing characteristics follow from 
the regular self-absorption and ε′

base evolution, as can be seen ge-
ometrically in Fig. 3, where νa,1 the position when extrapolating 
the νm > νa case and νa,5 the actual position of the self-absorption 
break (see also Leventis et al., 2012 for a discussion. The numbers 
1 and 5 were chosen to match the notation from Granot and Sari, 
2002). The model parameter dependency and evolution of νa (i.e. 
νa,1) can be determined by looking for the meeting point between 
the flux according to Eq. (22) and Eq. (17), using ν < νm for both.

As said, the case νa,5 > νm does not introduce anything new, 
although the flux equations look different. This minor observa-
tion has the practical implication that, when constructing scale-
invariant spectral templates from high-resolution simulations, all 
that is needed are the temporal evolution curves for νm , νc , νa,1
and Fpeak , with the understanding that the latter does not coincide 
with the actual spectral peak once νa,5 > νm .

The fact that self-absorption renders only the front of the blast 
wave visible to the observer should serve as caution when at-
tempting to seek out early time emission from a reverse shock in 
the radio domain: depending on density and profile of the envi-
ronment, this component might well be hidden from view by ssa. 
A precise analysis of the early stage radio emission is further com-
plicated by the role of electron cooling. At early time, we might 
also be observing the fast cooling case, rather than the slow cool-
ing case, and the cooling break will help shape the absorption 
coefficient. At this point the difference between local and global 
cooling emerges again as well. An exact treatment of local cool-
ing will actually introduce additional spectral regimes that are not 
apparent in a global approximation. These topics are discussed fur-
ther by Granot et al. (1999), Granot and Sari (2002).
3.3. The sharpness of spectral breaks

The connected power law description of the synchrotron spec-
trum that we applied above, is of course an approximation. In re-
ality, the asymptotic regimes approach one another smoothly, with 
the underlying shape for a single electron spectrum being an in-
tegrated modified Bessel function of fractional order. Since the full 
expression for a spectral transition is cumbersome and, more im-
portantly, since the spectral sharpness also depends on the fluid 
configuration that shapes all the local contributions to the emer-
gent spectra, it is more convenient in practice to use approximate 
formulae, typically smooth power laws of the type

Y (x) = Y0

[(
x

x0

)−sα1

+
(

x

x0

)−sα2
]−1/s

, (23)

and varieties thereof, with the most useful shape depending on 
e.g. the sign of the transition α2 − α1. The larger s, the sharper 
the transition. Such approximations can be applied to temporal 
transitions (e.g. jet breaks) as well and have been applied to both 
light curves and spectra (e.g. Beuermann et al., 1999; Harrison et 
al., 1999; Granot and Sari, 2002; van Eerten and Wijers, 2009;
Leventis et al., 2012; van Eerten and MacFadyen, 2013). Smooth 
power laws can lead to significantly better fits to data, and the 
flux exactly at a spectral transition can differ up to an order of 
magnitude from sharply connected power laws. The exact value of 
s is hard to determine in practice from the data, and good fits can 
typically be obtained for a range of values. The theoretical values 
of s are influenced by many things. In addition to the fluid profile, 
the closeness of other spectral transitions also plays a role even if 
their presence is not immediately apparent from the data. Finally, 
the sharpness of the spectrum is sensitive to the orientation of the 
jet, since a given observer time corresponds to a different set of 
emission times for each angle (van Eerten and MacFadyen, 2012a).

3.4. Further complications

Aside from the complexities introduced by more realistic parti-
cle spectra and by multiple emission sites for synchrotron emission 
(e.g. a forward shock and a reverse shock), the most obvious fur-
ther complication is the addition of other radiative processes. Of 
these, inverse Compton scattering and synchrotron self-Compton 
scattering are the most likely candidates. Inverse Compton scatter-
ing has a noticeable impact on the cooling of electrons when εB �
εe (Sari et al., 1996; Panaitescu and Kumar, 2000; Sari and Esin, 
2001). This effect can be included in prescriptions for synchrotron 
spectra. Even when not observed directly, Inverse Compton scatter-
ing will shift the cooling break downwards, and, in the fast cool-
ing stage, the self-absorption break upwards (Sari and Esin, 2001;
Granot and Sari, 2002).

Other factors that complicate interpreting the observed emis-
sion in terms of a synchrotron blast wave origin, is the contribu-
tion from completely separate components, such as host galaxies 
and supernovae, or dust echoes of the prompt emission (Evans et 
al., 2014).

4. Model-based data analysis

When analyzing the data, a number of approaches can be taken. 
The conventional approach has been to start from analysis of light 
curves and spectra (when available) in terms of simplified heuristic 
fit functions, typically power laws, augmented where appropriate 
by descriptions of extinction and absorption due to intervening 
material and host galaxy and supernova flux contributions. This 
approach results in a concise description of the data (in itself al-
ready useful) that can subsequently be interpreted in terms of 



30 H.J. van Eerten / Journal of High Energy Astrophysics 7 (2015) 23–34
physical models, under the assumption that the essence of these 
models can be captured sufficiently in the form of power laws. On 
the other hand, once can test physical models against the data di-
rectly in a manner that does not require synchronous multi-band 
observations (e.g. Panaitescu and Kumar, 2001, 2002; Yost et al., 
2003), which has become increasingly popular in recent years (e.g. 
van Eerten et al., 2012; Leventis et al., 2013; Laskar et al., 2013;
Perley et al., 2014; Urata et al., 2014; Guidorzi et al., 2014;
Ryan et al., 2015; Zhang et al., submitted for publication). Rather 
than yielding the ‘best’ short-hand description of the data set, this 
immediately addresses the question of whether a given physical 
model can explain it, and to the extent that it can, provides esti-
mates for the model parameters. An additional advantage of this 
approach is that arbitrarily complex light curve shapes (as pro-
vided by the underlying model) can be accounted for.

These model fitting approaches also naturally connect to proba-
bilistic data analysis methods, including Bayesian inference, which 
are having a transformative effect on the field. Software pack-
ages that implement numerical methods such as affine invariant 
Markov-Chain Monte Carlo (MCMC, Goodman and Weare, 2010;
Foreman-Mackey et al., 2013) or multi-modal nested sampling 
(Feroz et al., 2009; Buchner et al., 2014) are becoming readily 
available and are ideally suited to GRB afterglow analysis, due to 
their capability of dealing efficiently with expensive fitting func-
tions, large numbers of free parameters and bimodal posterior 
distributions. The possibility in Bayesian data analysis of marginal-
izing over nuisance parameters is extremely valuable for assessing 
the performance of a model in case not all parameters can be con-
strained fully (as is often the case for afterglows, since this would 
require broadband data covering all spectral regimes of the syn-
chrotron spectrum; such data sets exist, but are still rare, although 
the sample is growing).

4.1. Simulations

Because the deceleration to trans-relativistic velocities and the 
spreading behavior of relativistic blast waves are difficult to cap-
ture analytically, many groups have used RHD simulations in one 
and more dimensions to study this crucial stage of afterglow 
blast wave evolution (including, but not limited to Kobayashi et 
al., 1999; Downes et al., 2002; Cannizzo et al., 2004; Meliani et 
al., 2007; Zhang and MacFadyen, 2009; van Eerten et al., 2011;
Wygoda et al., 2011; De Colle et al., 2012a; van Eerten and 
MacFadyen, 2013; Duffell and MacFadyen, 2013). Most multi-
dimensional simulations employ special strategies to deal with the 
stringent resolution requirements (i.e. �R ∼ R/�2, with � � 1), 
specifically adaptive-mesh refinement, where the grid resolution 
is locally dynamically doubled (or halved) along each dimension, 
depending on the variability of the flow. With this approach, the 
six orders of magnitude between initial shell width and final shell 
radius could be more or less covered numerically. However, it is 
important to note that all simulations prior to 2013 failed to fully 
resolve numerically the blast wave at the key dynamical stage of 
jet spreading. That qualitatively correct behavior was neverthe-
less reproduced, could only be confirmed recently (van Eerten and 
MacFadyen, 2013) by simulations in a specialized Lorentz-boosted 
frame (a natural antidote against 1/�2 related issues). These reso-
lution issues also impact light curves computed from simulations. 
The strategy for such computations is not dissimilar from inferring 
flux from simplified models: take the dynamics as a given, assum-
ing adiabatic expansion, and employ radiative transfer or, above 
the self-absorption break, perform a straightforward summation of 
locally emitted power. As described previously, the time-dependent 
synchrotron spectrum can be captured concisely based on its key 
characteristics. An example is provided by Fig. 4, showing both lab-
frame and boosted frame evolution curves for the spectral peak.
Fig. 4. Evolution of the synchrotron spectral peak, computed from lab-frame (blue) 
and boosted-frame (red) simulations. Dashed gray lines denote the asymptotic self-
similar limits. The drop between 100–101 days describes the effect of a jet-break. 
The additional bump at late time the rise of the counterjet. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

Because derived synthetic light curves contain emission from 
many different emission times arriving at each single observer 
time, the resolution issue is in practice not problematic at the 
light curve level for homogeneous medium simulations: the res-
olution issue is at its most severe early on during the simulation, 
and the emission from these times is observed jointly with emis-
sion preceding the simulation starting time (i.e. from the analyti-
cal self-similar Blandford–McKee solution that provides the initial 
conditions for the simulation). Only when jets become too nar-
row (θ0 � 0.05 rad), observer frequencies drop too far below νa at 
early times, or for certain circumburst medium profiles (including, 
unfortunately, stellar wind), this becomes a potential issue.

4.2. Scale-invariance and model templates

The complete evolution of a blast wave, from early time conic 
wedge out of the relativistic self-similar solution to the spherical 
non-relativistic self-similar solution, exhibits a useful scale invari-
ance that can be employed for model comparisons to data (van 
Eerten et al., 2012). This invariance goes beyond self-similarity 
and follows straightforwardly from dimensional analysis. The fluid 
equations can be expressed in terms of spacetime coordinates A ≡
rc/t , ξ , θ , rather than r, t , θ . In the non-relativistic limit A ↓ 0, 
while θ no longer applies due to sphericity, and the self-similar 
solution of single variable ξ is recovered. In the ultra-relativistic 
limit A ↑ 1, while θ again does not apply due to the radial flow as-
sumption, leaving again a self-similar solution. Note that χ = χ(ξ)

and the Blandford–McKee self-similarity variable is more practi-
cal in this limit. But even for intermediate values of A, it remains 
true that rescaling in explosion energy or circumburst density can 
be compensated for with a rescaling of the coordinates. Taking 
Eiso → κ Eiso , ρref Rk

ref → λ(ρref Rk
ref ), r → (κ/λ)1/(3−k)r and t →

(κ/λ)1/(3−k) , leads to the invariance A → A, ξ → ξ and θ → θ : 
a bigger explosion (or one in a more dilute medium) goes through 
the exact same stages as a smaller one, albeit at larger radii and 
at later times. In terms of dimensions, we scaled grams by a factor 
of κ , and centimeters and seconds both by a factor (κ/λ)−3/(3−k) . 
The implied scalings for mass densities, energy densities and pres-
sure are identical: ρ → κ−k/(3−k)λ3/(3−k)ρ , e → κ−k/(3−k)λ3/(3−k)e, 
p → κ−k/(3−k)λ3/(3−k) p. Lorentz factors remain unaffected, γ → γ .

The big practical relevance of this comes when building a tem-
plate set out of simulations, for comparison to observational data. 
Two dimensions in parameter space are now accounted for Eiso
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and ρext , leaving only θ0. And, although we have no exact ana-
lytical solution for the spreading stage, the blast wave neverthe-
less segues smoothly from one asymptote towards the other. This 
means that we can use our intuition from the self-similar asymp-
totes (with features such as e.g. �R ∝ R/�2) to guide us towards 
a suitable compression algorithm for simulation data, rendering 
the construction of templates feasible even if the original simu-
lations are very computationally intensive. In this manner, model 
results along the remaining θ0 dimension in parameter space can 
be tabulated concisely (van Eerten et al., 2012). It should be noted 
that introducing energy injection does not break dynamical scale 
invariance, even though it introduces extra dimensions in parame-
ter space, such as energy injection duration, that scale along (van 
Eerten, 2014b).

Although dynamical templates are in principle sufficient for 
simulation-based afterglow analysis (with the caveat that radia-
tive transfer based on dynamical templates needs to be calculated 
on-the-fly), we can do better if the radiative process of inter-
est is sufficiently simple: a convenient feature of the power law 
nature of the synchrotron spectrum is that it renders it scale in-
variant (van Eerten and MacFadyen, 2012a). Like the dynamical 
scale-invariance, this follows directly from dimensional analysis, 
and although in synchrotron spectra a number of additional con-
stants appear (such as me), this invariance is not compromised 
within a single power law regime. In the flux equation, the role of 
fractions εB , εe and ξN does not change over time either. All this 
implies that evolution curves for νm and other characteristics of 
the synchrotron spectrum (peak flux, cooling break, self-absorption 
break), even when derived from high-resolution multi-dimensional 
simulations, can be rescaled between model parameters, allowing 
for a synchrotron spectral template-based approach to afterglow 
fitting.

4.3. boxfit and scalefit

The scale-invariances described above have been used to pre-
pare synchrotron templates directly from relativistic hydrodynam-
ics simulations (van Eerten et al., 2012; van Eerten and MacFadyen, 
2012a; Ryan et al., 2015). A simulation-based analysis code uti-
lizing a set of 19 homogeneous medium simulations and dynam-
ical scale invariance (boxfit, van Eerten et al., 2012), is freely 
available for download.3 Its follow-up, using scale-invariance at 
the level of spectral templates directly, is currently in preparation 
(scalefit; a first application to Swift XRT data can be found in 
Ryan et al., 2015, limited to homogeneous medium simulations) 
and will be available in the near future via the same website as
boxfit. The full release of scalefit will include spectral templates 
based on approximately 70+ high-resolution simulations including 
‘boosted Lorentz frame’ based simulations (van Eerten and Mac-
Fadyen, 2013) and a stellar-wind environment. An example fit re-
sult taken from Ryan et al. (2015) is shown in Fig. 5.

When emission is computed from radiative transfer through a 
fluid dynamical solution provided either analytically, from simu-
lations directly, or from templates, the resulting spectra will be 
smooth automatically. Direct reconstruction of spectra from scale-
invariant templates, on the other hand, requires that this smooth-
ness is either ignored or accounted for explicitly: spectral sharp-
ness itself is not scale-invariant, because it connects two regimes 
where the flux equations scale differently for changes in Eiso and 
ρext . Additionally, there is the practical issue of how to deal with 
crossings of spectral breaks (Leventis et al., 2012).

Another complication is that the physical models describe spec-
tral flux, while detectors such as Swift/XRT count photons. A tran-

3 http :/ /cosmo .nyu .edu /afterglowlibrary.
Fig. 5. A spectral template-based fit to the X-ray afterglow for GRB 071020, from 
Ryan et al. (2015). Top figure shows the best fit, bottom figure the posterior proba-
bility distribution projections for jet opening angle and observer angle, marginalized 
over the other fit parameters (Eiso , ρext , p, εB , εe ). In a single band fit, most param-
eters remain unconstrained.

sition from count space to flux space needs to be made (Evans et 
al., 2009), while at the same time absorption (in X-rays) and ex-
tinction (in the optical) need to be accounted for. This transition is 
not completely trivial, and for example requires that some choice 
be made for the underlying spectral shape in the relevant spec-
tral range. Ideally, the spectral shape is provided by the physical 
model as well, and the fit is essentially done in count space. The 
disadvantage of this approach is that this renders the fit software 
instrument-specific.

5. Conclusions

Gamma-ray burst afterglows provide a unique opportunity to 
study highly relativistic flows and fundamental plasma kinetic the-
ory in a setting that is impossible to repeat on earth. Their core 
ingredients, relativistic blast waves and non-thermal emission from 
shock-accelerated particles, can be well understood from simplified 
models, a few of which have been described in detail in this paper. 
Nevertheless, GRB afterglows exhibit a rich range of features that 
follow both from the interplay of the standard model components 
and from the inevitable complications that can be added to the 

http://cosmo.nyu.edu/afterglowlibrary
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basic models. Jet and blast wave dynamics present an example of 
this, and it has only recently become possible to accurately model 
the evolution of GRB outflows, through high-resolution numerical 
hydrodynamics simulations, in a manner that can be compared di-
rectly to broadband observations. Even then, ‘accurate’ has to be 
understood in terms of the simplicity of the initial assumptions for 
the jets, and more complicated initial jet profiles will (at least ini-
tially), give rise to more complicated light curves.

The two codes mentioned by name, boxfit and scalefit, offer 
the means to perform this type of simulation-based model fitting, 
but much work remains to be done. An extensive set of templates 
is being generated including stellar-wind type circumburst profile, 
and the public release for scalefit is in preparation. The strengths 
of these model-based codes are that they allow for direct model 
testing and fitting of complicated light curve shapes, incorporate 
advanced statistical methods and avoid the need for simultaneous 
broadband observations. The obvious disadvantage of direct model 
fits, is that features not included in the model are not tested for, 
and might drive the fit into a wrong region of parameter space 
when occurring in the light curve and when the model is forced 
to account for them (e.g. interpreting a plateau stage as regular 
decay with low p value). The open source nature of the software 
should help facilitate the addition of additional dynamical mod-
els and radiative processes. This can be done both on the level of 
the dynamical templates (e.g. by including a more complex evolu-
tion of the shock-accelerated electrons, Sironi and Giannios, 2013), 
and on the level of the spectral templates (e.g. shifting the cooling 
break directly, Guidorzi et al., 2014).
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