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Abstract

We consider a family of pairs of m × p and m × q matrices, in which some entries are
required to be zero and the others are arbitrary, with respect to transformations (A,B) �→
(SAR1, SBR2) with nonsingular S, R1, and R2. We prove that almost all of these pairs reduce
to the same pair (A0, B0) from this family, except for pairs whose arbitrary entries are zeros of
a certain polynomial. The polynomial and the pair (A0, B0) are constructed by a combinatorial
method based on properties of a certain graph.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let A : U1 → V and B : U2 → V be linear mappings of vector spaces over an
arbitrary field F. Changing the bases of the vector spaces, we may reduce the matrices
A and B of these mappings by transformations

(A,B) �→ (SAR1, SBR2) with nonsingular S, R1, and R2. (1)

∗ Corresponding author.
E-mail address: sergeich@imath.kiev.ua (V.V. Sergeichuk).
1 Partially supported by NSF grant DMS-0070503.

0024-3795/$ - see front matter � 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2003.10.011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82485211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


242 T.N. Gaiduk, V.V. Sergeichuk / Linear Algebra and its Applications 380 (2004) 241–251

A canonical form of (A,B) for these transformations is




Ir 0 0
0 Is 0
0 0 0
0 0 0


 ,




0 Ir 0
0 0 0
It 0 0
0 0 0





 , (2)

where Ir denotes the r-by-r identity matrix and r , s, and t are determined by
the equalities r + s = rankA, r + t = rankB, and r + s + t = rank[A|B] (see
Lemma 3).

We consider a family of pairs (A,B), in which n entries a1, . . . , an are arbitrary
and the others are required to be zero. We prove that there exists a nonzero poly-
nomial f (x1, . . . , xn) such that all pairs (A,B) with f (a1, . . . , an) /= 0 reduce to
the same pair (Agen, Bgen) from this family. The pair (Agen, Bgen) has the form (2)
up to permutations of columns and simultaneous permutations of rows in A and
B. Following [6], we call (Agen, Bgen) a generic canonical form of the family (this
notion has no sense if F is a finite field). We give a combinatorial method of finding
f (x1, . . . , xn) and (Agen, Bgen).

1.1. Generic canonical form of matrices with zeros

Since the rows of A and B in (1) are transformed by the same matrix S, we
represent the pair (A,B) by the block matrix M = [A|B], which will be called a
bipartite matrix. A family of bipartite matrices, in which some entries are zero and
the others are arbitrary, may be given by a matrix

M(x) = [A(x)|B(x)], x = (x1, . . . , xn), (3)

whose n entries are unknowns x1, . . . , xn and the others are zero. For instance,

M(x) =




0 0 x4 x7 0
x1 0 x5 0 0
0 x2 0 0 x9
0 x3 x6 x8 0


 (4)

gives the family {M(a) | a ∈ F9}.
Considering (3) as a matrix over the field

K =
{
f (x1, . . . , xn)

g(x1, . . . , xn)

∣∣∣∣ f, g ∈ F[x1, . . . , xn] and g /= 0

}
(5)

of rational functions (its elements are quotients of polynomials), we put

rA = rankK A(x), rB = rankK B(x), rM = rankK M(x). (6)

The following theorem is proved in Section 2.

Theorem 1. Let M(x) = [A(x)|B(x)] be a matrix whose n entries are unknowns
x1, . . . , xn and the others are zero. Then there exists a nonzero polynomial
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f (x) =
∑

cix
mi1
1 · · · xmin

n (7)

such that all matrices of the family

Mf = {
M(a) | a ∈ Fn and f (a) /= 0

}
reduce by transformations [A|B] �→ [SAR1|SBR2] with nonsingular S, R1, and R2
to the same matrix

Mgen = [Agen|Bgen] ∈ Mf . (8)

Up to a permutation of columns within Agen and Bgen and a permutation of rows,
the matrix Mgen has the form



Ir 0 0 0 Ir 0
0 Is 0 0 0 0
0 0 0 It 0 0
0 0 0 0 0 0


 , (9)

which is uniquely determined by M(x) due to the equalities

r + s = rA, r + t = rB, r + s + t = rM (see (6)). (10)

We call Mgen a generic canonical form of the family {M(a) | a ∈ Fn} because
M(a) reduces to Mgen for all a ∈ Fn except for those in the proper algebraic variety
{a ∈ Fn | f (a) = 0}.

1.2. A combinatorial method

The polynomial f (x) and the matrix Mgen can be constructed by a combinatorial
method: we represent the matrix M(x) = [A(x)|B(x)] by a graph and study its sub-
graphs. Similar methods were applied in [2,4–6] to square matrices up to similarity
and to pencils of matrices.

The graph is defined as follows. Its vertices are

1, . . . , m, 1−, . . . , p−, 1−, . . . , q+,

where m × p and m × q are the sizes of A(x) and B(x). Its edges

α1, . . . , αn (11)

are determined by the unknowns x1, . . . , xn: if xl is the (i, j) entry of A(x) then
αl : i—j− (that is, αl links the vertices i and j−), and if xl is the (i, j) entry of B(x)

then αl : i—j+. The edges between {1, . . . , m} and {1−, . . . , p−} are called left
edges, and the edges between {1, . . . , m} and {1+, . . . , q+} are called right edges.
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For example, the matrix (4) is represented by the graph

• • • • •

• • • •

1− 2− 1+ 2+ 3+

1 2 3 4
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�
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❅

❆
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✁
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◗
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◗
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◗
◗

◗
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❅

❅
❅

❅
❅

(12)

with the left edges α1, α2, α3 and the right edges α4, α5, . . . , α9.
Each subset S in the set of edges (11) can be given by the characteristic vector

εS = (e1, . . . , en), el =
{

1 if αl ∈ S,

0 otherwise.

By a matchbox we mean a set of edges (=matches) that have no common vertices.
The size of a matchbox S is the number of its matches; since each row and each
column of M(εS) have at most one 1 and the other entries are zero,

sizeS = rankM(εS). (13)

A matchbox is left (right) if all its matches are left (right). Such a matchbox is said to
be largest if it has the maximal size among all left (right) matchboxes. For example,
the subgraph
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of (12) is formed by the largest left and right matchboxes

A = {2—1−, 3—2−} and B = {1—2+, 2—1+, 3—3+}. (14)

For a left matchbox A and a right matchbox B, we denote by A � B the match-
box obtained from A ∪ B by removing all matches of B that have common vertices
with matches of A. For example,

A � B = {2—1−, 3—2−, 1—2+} (15)

for the matchboxes (14).
For every matchbox

S = {
i1—j1

−, . . . , iα—j−
α , iα+1—k+

1 , . . . , iα+β—k+
β

}
,
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we denote by µS(x) the minor of order α + β in M(x) = [A(x)|B(x)] whose mat-
rix belongs to the rows numbered i1, . . . , iα+β , to the columns of A(x) numbered
j1, . . . , jα , and to the columns of B(x) numbered k1, . . . , kβ . For example, the
matchbox (15) determines the minor

µA � B(x) =
∣∣∣∣∣∣

0 0 x7
x1 0 0
0 x2 0

∣∣∣∣∣∣ = x1x2x7 in (4).

The next theorem will be proved in Section 2.

Theorem 2. The generic canonical form Mgen and the polynomial f (x) from Theo-
rem 1 may be constructed as follows. We represent M(x) by the graph. Among pairs
consisting of a largest left matchbox and a largest right matchbox, we choose a pair
(A,B) with the minimal number v(A,B) of common vertices, and take

Mgen = M(εA∪B), f (x) = fAB(x), (16)

where fAB(x) is the lowest common multiple of µA(x), µB(x), and µA�B(x):
fAB(x) = LCM

{
µA(x), µB(x), µA�B(x)

}
. (17)

Up to permutations of columns within Agen and Bgen and a permutation of rows, the
matrix M(εA∪B) has the form (9) with

r = v(A,B), s = size A − r, and t = size B − r. (18)

1.3. An example

Let us apply Theorems 1 and 2 to the family given by the matrix (4) with the
graph (12). The matchboxes (14) do not satisfy the conditions of Theorem 2 because
they have two common vertices ‘2’ and ‘3’. This number is not minimal since the
largest matchboxes

A = {2—1−, 3—2−}, B = {1—1+, 3—3+, 4—2+} (19)

forming the graph
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have a single common vertex ‘3’. The matchboxes (19) satisfy the conditions of
Theorem 2 since there is no pair of largest matchboxes without common vertices.
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The conditions of Theorem 2 also hold for the largest matchboxes

A′ = {2—1−, 4—2−}, B′ = {1—2+, 2—1+, 3—3+}
forming the graph
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since they have a single common vertex too.
For these pairs of matchboxes, we have

A � B = {
2—1−, 3—2−, 1—1+, 4—2+}

,

fAB(x) = LCM
{
x1x2, x9(x6x7 − x4x8), x1x2(x4x8 − x6x7)

}
and

A′ � B′ = {
2—1−, 4—2−, 1—2+, 3—3+}

,

fA′B′(x) = LCM
{
x1x3,−x5x7x9,−x1x3x7x9

}
.

By Theorems 1 and 2,


0 0 a4 a7 0
a1 0 a5 0 0
0 a2 0 0 a9
0 a3 a6 a8 0


 with a1, . . . , a9 ∈ F

(see (4)) reduces to the matrix

M(εA∪B) =




0 0 1 0 0
1 0 0 0 0
0 1 0 0 1
0 0 0 1 0


 if fAB(a) = a1a2a9(a4a8 − a6a7) /= 0

and to the matrix

M(εA′∪B′) =




0 0 0 1 0
1 0 1 0 0
0 0 0 0 1
0 1 0 0 0


 if fA′B′(a) = a1a3a5a7a9 /= 0.

Up to permutations of columns within vertical strips and permutations of rows, these
matrices have the form
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

1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


 (see (9)).

2. Proof of Theorems 1 and 2

2.1. Bipartite matrices

The canonical form of a pair for transformations (1) is well known, see [1, Section
1.2]. We recall it since we will use it in the proof of Theorems 1 and 2.

Clearly, (A,B) reduces to (A′, B ′) by transformations (1) if and only if [A|B]
reduces to [A′|B ′] by a sequence of

(i) elementary row-transformations in [A|B],
(ii) elementary column-transformations in A, and

(iii) elementary column-transformations in B.

Lemma 3. Every bipartite matrix M = [A|B] over a field F reduces by transforma-
tions (i)–(iii) to the form


Ir 0 0 0 Ir 0
0 Is 0 0 0 0
0 0 0 It 0 0
0 0 0 0 0 0


 (20)

determined by the equalities

r + s = rankA, r + t = rankB, r + s + t = rankM. (21)

Proof. By transformations (i) and (ii), we reduce M to the form[
Ih 0 B1
0 0 B2

]
,

and then by elementary row-transformations within the second horizontal strip and
by transformations (iii) to the form

Ih 0 B3 B4
0 0 It 0
0 0 0 0


 .

Adding linear combinations of rows of It to rows of B3 by transformations (i), we
“kill” all nonzero entries of B3:

Ih 0 0 B4
0 0 It 0
0 0 0 0


 .



248 T.N. Gaiduk, V.V. Sergeichuk / Linear Algebra and its Applications 380 (2004) 241–251

At last, we reduce B4 to Ir ⊕ 0 by elementary transformations. The row-transforma-
tions with B4 have “spoiled” the block Ih, but we restore it by the inverse column-
transformations (ii) and obtain the matrix (20) with r + s = h.

Since the transformations (i)–(iii) with M = [A|B] preserve the ranks of M , A,
and B, we have the equalities (21). This implies the uniqueness of (20) since s =
rankM − rankB, t = rankM − rankA, and r = rankA + rankB − rankM . �

2.2. Reduction of bipartite matrices by permutations of rows and columns

In this section we consider a bipartite matrix M = [A|B] with respect to permu-
tations of rows and columns.

Lemma 4. Every bipartite matrix [A|B] with linearly independent columns reduces
by a permutation of rows to the form

A′ �
� B ′
� �


 , (22)

where A′ and B ′ are nonsingular square blocks and the points denote unspecified
blocks.

Proof. By permutations of rows we reduce [A|B] to the form[
A1 B1
� �

]

with a nonsingular square matrix [A1|B1]. Laplace’s theorem (see [3, Theorem 2.4.1])
states that the determinant of [A1|B1] is equal to the sum of products of the minors
whose matrices belong to the rows of A1 by their cofactors (belonging to B1). One
of these summands is nonzero since [A1|B1] is nonsingular. We collect the rows of
the minor from this summand at the top and obtain the matrix (22). �

Lemma 5. Every bipartite matrix [A|B] reduces by permutations of rows and per-
mutations of columns in A and B to the form


Xr � � � Yr �
� Zs � � � �
� � � Tt � �
� � � � � �


 , (23)

where Xr, Yr , Zs, and Tt are nonsingular r × r, r × r, s × s, and t × t blocks in
which all diagonal entries are nonzero and

r + s = rankA, r + t = rankB, r + s + t = rank [A|B]. (24)
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Proof. Denote

ρA = rankA, ρB = rankB, ρM = rank [A|B].
We first reduce [A|B] by a permutation of columns to the form [� A1|B], where

A1 has ρA columns and they are linearly independent. Then we reduce it to the form
[� A1|B1 �], where [A1|B1] has ρM columns and they are linearly independent.

Lemma 4 to [A1|B1] ensures that the matrix [� A1|B1 �] reduces by a permutation
of rows to the form

ρA rows{ 
� A2 � �

� � B2 �
� � � �




}
ρM rows

(25)

with nonsingular square matrices A2 and B2.
Rearranging rows of the first strip and breaking it into two substrips, we reduce

(25) to the form

ρA rows
{ 


� A3 � �
� A4 B3 �
� � B2 �
� � � �


}

ρB rows

}
ρM rows

(26)

where the matrices[
A3

A4

]
and

[
B3 �
B2 �

]

have linearly independent rows. Lemma 4 to their transposes insures that (26) re-
duces by permutations of columns to the form

ρA

{ 


� Z � � � �
� � X Y � �
� � � � T �
� � � � � �




}
ρB

}
ρM (27)

with nonsingular X, Y , Z, and T . If an n-by-n matrix has a nonzero determinant,
then one of its n! summands is nonzero, and we may dispose the entries of this
summand along the main diagonal by a permutation of columns. In this manner we
make nonzero the diagonal entries of X, Y , Z, and T . At last, we reduce (27) to the
form (23) by permutations of rows and columns. �

2.3. Proof of Theorems 1 and 2

In this section M(x) = [A(x)|B(x)] is the matrix (3), A and B are the match-
boxes from Theorem 2, and rA, rB, rM are the numbers (6).
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Lemma 6

size A = rA, size B = rB, size A � B = rM. (28)

Proof. By Lemma 5, the matrix M(x) over the field K of rational functions (5)
reduces by permutations of rows and by permutations of columns within A(x) and
B(x) to a matrix N(x) of the form (23), in which by (24)

r + s = rA, r + t = rB, r + s + t = rM. (29)

The diagonal entries of Xr , Yr , Zs , and Tt are all nonzero, and hence they are inde-
pendent unknowns; replacing them by 1 and the other unknowns by 0, we obtain the
matrix

N(a) =



Ir 0 0 0 Ir 0
0 Is 0 0 0 0
0 0 0 It 0 0
0 0 0 0 0 0


 , a ∈ {0, 1}n. (30)

The inverse permutations of rows and columns reduce N(x) to M(x), and hence
N(a) to M(a). As follows from (30), a = εA′∪B′ , where A′ is a left matchbox, B′
is a right matchbox, and by (29)

size A′ = rA, size B′ = rB, size A′ � B′ = rM.

Since the matchboxes A and B are largest, size A � rA and size B � rB . The
minors µA(x) of A(x) and µB(x) of B(x) (defined in Section 1.2) are nonzero and
their orders are equal to the sizes of A and B, hence size A � rA and size B � rB .
We have

size A = size A′ = rA, size B = size B′ = rB,

and so the matchboxes A′ and B′ are largest too. Because of the minimality of the
number v(A,B) of common vertices and since

size A � B = size A + size B − v(A,B), (31)

we have

v(A,B) � v(A′,B′), size A � B � size A′ � B′ = rM.

In actual fact the last inequality is an equality since the size of A � B is equal to the
order of the minor µA � B(x). This minor is nonzero and hence its order is at most
rM . �

Lemma 7. If a ∈ Fn and fAB(a) /= 0, then

rankA(a) = rA, rankB(a) = rB, rankM(a) = rM. (32)

Proof. The matrix A(a) has a nonzero minor h(a), whose order is equal to the rank
of A(a). The corresponding minor h(x) of A(x) (belonging to the same rows and col-
umns) is a nonzero polynomial, and so rankA(a) � rankK A(x) = rA. Analogously
rankB(a) � rB and rankM(a) � rM .
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By (17), the minors µA(a) of A(a), µB(a) of B(a), and µA � B(a) of M(a) are
nonzero. Their orders are equal to the sizes of A, B, and A � B, hence

rankA(a) � sizeA, rankB(a) � sizeB, rankM(a) � sizeA � B.

This proves (32) due to (28). �

Let a ∈ Fn and fAB(a) /= 0. By Lemma 3, M(a) reduces to the matrix (9), which
is determined by (10) due to (21) and (32). The matrix M(εA∪B) reduces by permu-
tations of rows and columns to the same matrix (9) because (13) and (28) imply

rankA(εA∪B) = sizeA = rA, rankB(εA∪B) = sizeB = rB, (33)

rankM(εA∪B) = rankM(εA � B) = sizeA � B = rM. (34)

Hence M(a) reduces to M(εA � B). This proves Theorem 1: we can take Mgen and
f (x) as indicated in (16). This also proves Theorem 2; the equalities (18) follow
from (33), (34), and (31).
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