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Abstract

Let G be a graph [a digraph] and H be a subgraph of G. A D(G, H, λ) design is a multiset D of subgraphs of G each isomorphic
to H so that every 2-path [directed 2-path] of G lies in exactly λ subgraphs in D. In this paper, we show that there exists a
D(Kn,n, C4, λ) design if and only if (i) n is even, or (ii) n is odd and λ is even. We also show that there exists a D(K ∗

n,n,
−→
C 4, λ)

design for every n and λ, where Kn,n and K ∗
n,n are the complete bipartite graph and the complete bipartite digraph, respectively;

C4 and
−→
C 4 are a 4-cycle and a directed 4-cycle, respectively.

c⃝ 2015 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Consider a graph G and a subgraph H of G. A D(G, H, λ) design is a multiset D of subgraphs of G each
isomorphic to H so that every 2-path (path of length 2) of G lies in exactly λ subgraphs in D. Analogously, when G
is a directed graph (digraph) and H is a subgraph of G (a subgraph of a directed graph means a directed subgraph), a
D(G, H, λ) design is a multiset D of subgraphs of G each isomorphic to H so that every directed 2-path of G lies in
exactly λ subgraphs in D. We call these designs Dudeney designs [1].

Let G be a graph [a digraph]. A D(G, H, λ) design is resolvable1 if the subgraphs in the design can be partitioned
into classes so that every vertex of G appears exactly once in each class. Each such class is called a parallel class of
the design. A D(G, H, λ) design is edge-resolvable [arc-resolvable] if the subgraphs in the design can be partitioned
into classes so that every edge [arc] of G appears exactly once in each class ([2], p. 101).

Kn is the complete graph on n vertices, Kn,n is the complete bipartite graph on partite sets with n vertices each, K ∗
n

is the complete digraph on n vertices, and K ∗
n,n is the complete bipartite digraph on partite sets with n vertices each.
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K ∗
n and K ∗

n,n are digraphs which are obtained from Kn and Kn,n , respectively, by substituting two oppositely directed

edges (arcs) for each edge. Ck is a cycle on k vertices and
−→
C k is a directed cycle on k vertices.

In this paper, we consider D(G, H, λ) designs in which G is Kn , Kn,n , K ∗
n or K ∗

n,n , and H is a cycle or a directed
cycle on 4 vertices. In the case of k-cycles where k ≠ 4, see [3,1].

The following theorems are known.

Theorem A ([4,5]). Let n ≥ 4 and λ ≥ 1 be integers.

(1) There exists a D(Kn, C4, λ) design if and only if
(i) n is even, or

(ii) n ≡ 1 (mod 4) and λ is even, or
(iii) n ≡ 3 (mod 4) and λ ≡ 0 (mod 4).

(2) There exists a resolvable D(Kn, C4, 1) design if and only if n ≡ 0 (mod 4).

We note that there cannot exist edge-resolvable D(Kn, C4, 1) designs ([2], p. 106).

Theorem B ([2], p. 110). 2 Let n ≥ 2 be an integer.

(1) There exists a D(Kn,n, C4, 1) design if and only if n is even.
(2) There exists a resolvable D(Kn,n, C4, 1) design if and only if n is even.
(3) There exists an edge-resolvable D(Kn,n, C4, 1) design if and only if n is even.

In this paper, we show the following theorems.

Theorem 1.1. Let n ≥ 2 and λ ≥ 1 be integers. There exists a D(Kn,n, C4, λ) design if and only if
(i) n is even, or
(ii) n is odd and λ is even.

Theorem 1.2. Let n ≥ 2 and λ ≥ 1 be integers.

(1) There exists a D(K ∗
n,n,

−→
C 4, λ) design for every n and λ.

(2) There exists a resolvable D(K ∗
n,n,

−→
C 4, 1) design if and only if n is even.

(3) There exists an arc-resolvable D(K ∗
n,n,

−→
C 4, 1) design if and only if n is even.

The existence problem of D(Kn, C4, λ) designs has been solved by Theorem A. In this paper, we solved the
existence problems of D(Kn,n, C4, λ) designs and D(K ∗

n,n,
−→
C 4, λ) designs. The remaining problem for D(G, H, λ)

designs in which G is Kn , Kn,n , K ∗
n or K ∗

n,n , and H is a cycle or a directed cycle on 4 vertices, is the existence problem

of D(K ∗
n ,

−→
C 4, λ) designs.

2. Proofs of the theorems

Let n ≥ 2 and λ ≥ 1 be integers.

Lemma 2.1. If there exists a D(Kn,n, C4, λ) design, then
(i) n is even, or
(ii) n is odd and λ is even.

Proof. We denote by V and W the partite sets of vertices in Kn,n with |V | = |W | = n. Assume that there exists a
D(Kn,n, C4, λ) design C = {C1, C2, . . . , Ct }, where Ci is a 4-cycle of Kn,n (1 ≤ i ≤ t). Note that C is a multiset of
4-cycles, so it may have a 4-cycle more than once.

Let a, b be any vertices in V (a ≠ b). Let Ca,b be a multiset of all 4-cycles (a, x, b, y) (x, y ∈ W ) in C. Put
Pa,b = {2 − path (a, x, b) | x ∈ W }, then we have |Pa,b| = n. Since each 4-cycle (a, x, b, y) in Ca,b has two 2-paths
in Pa,b, we have |Ca,b| = λn/2. Therefore we have λn ≡ 0 (mod 2) which follows Lemma 2.1. �

2 It is easy to see that if there exists a D(Kn,n , C4, 1) design, then n is even (see Lemma 2.1). Together with Theorem 3.1 of [2] (p. 110),
Theorem B is obtained.



72 M. Kobayashi et al. / AKCE International Journal of Graphs and Combinatorics 12 (2015) 70–73

Lemma 2.2. When n is odd, there exists a D(K ∗
n,n,

−→
C 4, 1) design.

Proof. We denote by V and W the partite sets of vertices in Kn,n with |V | = |W | = n. Assume that n is odd. Let
H = {Hi | 1 ≤ i ≤ (n − 1)/2} and G = {Gi | 1 ≤ i ≤ (n − 1)/2} be Hamilton decompositions of KV and
KW , respectively. (KV and KW are the complete graphs with vertex sets V and W , respectively.) We put arbitrary
directions to Hamilton cycles Hi ∈ H and Gi ∈ G (1 ≤ i ≤ (n − 1)/2), then denote those by

−→
H i and

−→
G i . For any i

(1 ≤ i ≤ (n − 1)/2), we define a set of directed 4-cycles
−→
H i ×

−→
G i as

−→
H i ×

−→
G i = {(a, x, b, y) | (a, b) ∈

−→
H i , (x, y) ∈

−→
G i }

and put

C =

(n−1)/2
i=1

−→
H i ×

−→
G i .

Note that we have |C| = n2(n − 1)/2.
For any directed 2-path (u, v, w) of K ∗

n,n with u, w ∈ V, v ∈ W , there exists a directed Hamilton cycle
−→
H k such

that an arc (u, w) or (w, u) lies on
−→
H k , and there are vertices s, t ∈ W such that arcs (s, v), (v, t) lie on

−→
G k . So, if

(u, w) ∈
−→
H k , then we have (u, v, w, t) ∈

−→
H k ×

−→
G k , and if (w, u) ∈

−→
H k , then we have (w, s, u, v) ∈

−→
H k ×

−→
G k .

In both cases, the directed 2-path (u, v, w) belongs to
−→
H k ×

−→
G k . Similarly, for any directed 2-path (u, v, w) of K ∗

n,n
with u, w ∈ W, v ∈ V belongs to C.

Since the number of directed 2-paths of K ∗
n,n is 2n2(n−1), we see that every directed 2-path of K ∗

n,n lies on exactly

one directed 4-cycle in C. Hence C is a D(K ∗
n,n,

−→
C 4, 1) design. �

Lemma 2.3. When n is odd, there exists a D(Kn,n, C4, 2) design.

Proof. When n is odd, there is a D(K ∗
n,n,

−→
C 4, 1) design from Lemma 2.2. Replace each directed 4-cycle in the design

by an undirected 4-cycle, then we obtain a D(Kn,n, C4, 2) design. �

Lemma 2.4. When n is even, then there exist a D(K ∗
n,n,

−→
C 4, 1) design, a resolvable D(K ∗

n,n,
−→
C 4, 1) design, and an

arc-resolvable D(K ∗
n,n,

−→
C 4, 1) design.

Proof. When n is even, there are a D(Kn,n, C4, 1) design, a resolvable D(Kn,n, C4, 1) design, and an edge-resolvable
D(Kn,n, C4, 1) design from Theorem B. Replace each 4-cycle by two oppositely directed 4-cycles, then we obtain a

D(K ∗
n,n,

−→
C 4, 1) design, a resolvable D(K ∗

n,n,
−→
C 4, 1) design, and an arc-resolvable D(K ∗

n,n,
−→
C 4, 1) design. �

Lemma 2.5. (1) If there exists a resolvable D(K ∗
n,n,

−→
C 4, 1) design, then n is even.

(2) If there exists an arc-resolvable D(K ∗
n,n,

−→
C 4, 1) design, then n is even.

Proof. If there is a resolvable D(K ∗
n,n,

−→
C 4, 1) design, then the number of vertices in K ∗

n,n , 2n, is a multiple of 4, so

n is even. If there is an arc-resolvable D(K ∗
n,n,

−→
C 4, 1) design, then the number of arcs in K ∗

n,n , 2n2, is a multiple of
4, so n is even. �

To prove Theorems 1.1 and 1.2, we note that a D(G, H, kµ) design can be obtained by taking k copies of a
D(G, H, µ) design. From Theorem B(1), Lemmas 2.1 and 2.3, we obtain Theorem 1.1. From Lemmas 2.2 and 2.4,
we obtain Theorem 1.2(1). From Lemmas 2.4 and 2.5, we obtain Theorem 1.2(2) and (3). This completes the proofs
of Theorems 1.1 and 1.2.
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