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Abstract

Let G be a graph [a digraph] and H be a subgraph of G. A D(G, H, }) design is a multiset D of subgraphs of G each isomorphic
to H so that every 2-path [directed 2-path] of G lies in exactly A subgraphs in D. In this paper, we show that there exists a
D(Ky,n, Cy4, 1) design if and only if (i) n is even, or (ii) n is odd and A is even. We also show that there exists a D(K,’f’n, ?4, A)
design for every n and A, where K, , and K, ;f ,, are the complete bipartite graph and the complete bipartite digraph, respectively;
C4 and 2‘)4 are a 4-cycle and a directed 4-cycle, respectively.
(© 2015 Kalasalingam University. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Consider a graph G and a subgraph H of G. A D(G, H, X) design is a multiset D of subgraphs of G each
isomorphic to H so that every 2-path (path of length 2) of G lies in exactly A subgraphs in D. Analogously, when G
is a directed graph (digraph) and H is a subgraph of G (a subgraph of a directed graph means a directed subgraph), a
D(G, H, )) design is a multiset D of subgraphs of G each isomorphic to H so that every directed 2-path of G lies in
exactly A subgraphs in D. We call these designs Dudeney designs [1].

Let G be a graph [a digraph]. A D(G, H, A) design is resolvable' if the subgraphs in the design can be partitioned
into classes so that every vertex of G appears exactly once in each class. Each such class is called a parallel class of
the design. A D(G, H, X) design is edge-resolvable [arc-resolvable] if the subgraphs in the design can be partitioned
into classes so that every edge [arc] of G appears exactly once in each class ([2], p. 101).

K, is the complete graph on n vertices, K, , is the complete bipartite graph on partite sets with n vertices each, K’
is the complete digraph on n vertices, and K,; , is the complete bipartite digraph on partite sets with n vertices each.
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K, and K/, are digraphs which are obtained from K, and K, ,,, respectively, by substituting two oppositely directed

edges (arcs) for each edge. Cy is a cycle on k vertices and E’> k is a directed cycle on k vertices.

In this paper, we consider D(G, H, 1) designs in which G is K,,, K, », K, or K,’{yn, and H is a cycle or a directed
cycle on 4 vertices. In the case of k-cycles where k # 4, see [3,1].

The following theorems are known.

Theorem A (/4,5]). Let n > 4 and A > 1 be integers.

(1) There exists a D(K,, Ca, 1) design if and only if
(1) n is even, or
(i1) n = 1 (mod 4) and A is even, or
(iii) n = 3 (mod 4) and . = 0 (mod 4).
(2) There exists a resolvable D(K,,, C4, 1) design if and only if n = 0 (mod 4).

We note that there cannot exist edge-resolvable D(K,,, C4, 1) designs ([2], p. 106).

Theorem B (/2], p. 110).> Let n > 2 be an integer.

(1) There exists a D(K,, ,, Ca, 1) design if and only if n is even.
(2) There exists a resolvable D(K, ,, Ca, 1) design if and only if n is even.
(3) There exists an edge-resolvable D(K, n, C4, 1) design if and only if n is even.

In this paper, we show the following theorems.

Theorem 1.1. Let n > 2 and X > 1 be integers. There exists a D(Ky », Ca, A) design if and only if
(i) n is even, or
(ii) n is odd and X is even.

Theorem 1.2. Let n > 2 and ) > 1 be integers.

—
(1) There exists a D(K* ,, C 4, A) design for every n and A.

n,n’
—
(2) There exists a resolvable D(K}; ,,, C 4, 1) design if and only if n is even.

*
n,n’

(3) There exists an arc-resolvable D(K 2')4, 1) design if and only if n is even.

The existence problem of D(K,, C4, A) designs has been solved by Theorem A. In this paper, we solved the
—

existence problems of D(K, ,, C4, 1) designs and D (K, ,’1“’”, C 4, A) designs. The remaining problem for D(G, H, 1)

designs in which G is K,, K, ,, K;¥ or K, ., and H is a cycle or a directed cycle on 4 vertices, is the existence problem

i . n,n’
of D(K}, C 4, )) designs.
2. Proofs of the theorems
Letn > 2 and A > 1 be integers.

Lemma 2.1. If there exists a D(Ky », Ca, A) design, then
(1) n is even, or
(ii) n is odd and X is even.

Proof. We denote by V and W the partite sets of vertices in K, , with |V| = |W| = n. Assume that there exists a
D(K,. ,, C4, 1) design C = {Cq, Ca, ..., C;}, where C; is a 4-cycle of K, , (1 <i < t). Note that C is a multiset of
4-cycles, so it may have a 4-cycle more than once.

Let a, b be any vertices in V (a # b). Let C;; be a multiset of all 4-cycles (a,x,b,y) (x,y € W) in C. Put
Par = {2 — path (a, x, b) | x € W}, then we have |P, ;| = n. Since each 4-cycle (a, x, b, y) in C,4,, has two 2-paths
in P, p, we have |C4, | = An/2. Therefore we have An = 0 (mod 2) which follows Lemma 2.1. [

21t s easy to see that if there exists a D(Kj 5, Cy4, 1) design, then n is even (see Lemma 2.1). Together with Theorem 3.1 of [2] (p. 110),
Theorem B is obtained.
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Lemma 2.2. When n is odd, there exists a D(K* 2')4, 1) design.

n,n’
Proof. We denote by V and W the partite sets of vertices in K, , with |V| = [W| = n. Assume that # is odd. Let
H={H |1 <i<m-1/2tand G = {G; | 1 <i < (n— 1)/2} be Hamilton decompositions of Ky and
Kw, respectively. (Ky and Kw are the complete graphs with vertex sets V and W, respectively.) We put arbitrary
— -
directions to Hamilton cycles H; € Hand G; € G (1 <i < (n — 1)/2), then denote those by H; and G ;. For any i
= =

(1 <i < (n—1)/2), we define a set of directed 4-cycles H; x G; as

— — — —

Hix Gi={(a,x,b,y)|(a,b) € Hi, (x,y) € G}
and put

(n—=1)/2
C= U 7{),' X E)i.
i=1
Note that we have |C| = n*(n — 1)/2.
—
For any directed 2-path (u, v, w) of K,T’n with u, w € V, v € W, there exists a directed Hamilton cycle H ; such

that an arc_gu, w) or (w, u) lies on T-I)k, and_}herege vertices s, t € W_silch that arcs (s, v), (v, t) lic on 81(. Sg,) if
(u, w) € Hp, then we have (u, v, w,t) € Hy x Gy, and if (w, u) € Hp, then we have (w, s, u,v) € Hy x Gy.
In both cases, the directed 2-path (u, v, w) belongs to Hj x G . Similarly, for any directed 2-path (u, v, w) of K:,n
with u, w € W, v € V belongs to C.

Since the number of directed 2-paths of Ky ,, is 2n%(n— 1), we see that every directed 2-path of K . lies on exactly

one directed 4-cycle in C. Hence C is a D(K ! 2')4, 1) design. [OJ

n,n’
Lemma 2.3. When n is odd, there exists a D(K,, ,, Ca, 2) design.

Proof. When 7 is odd, there isa D(K* 2‘)4, 1) design from Lemma 2.2. Replace each directed 4-cycle in the design

n,n’

by an undirected 4-cycle, then we obtain a D(K, ,, C4,2) design. U

Lemma 2.4. When n is even, then there exist a D(K* 64, 1) design, a resolvable D(K* 6)4, 1) design, and an

e n,n’ n,n’
arc-resolvable D(K,’f’n, C 4, 1) design.

Proof. When 7 is even, there are a D(K}, ,, C4, 1) design, aresolvable D(K,, ,, Cs4, 1) design, and an edge-resolvable
D(Ky n, Ca, 1) design from Theorem B. Replace each 4-cycle by two oppositely directed 4-cycles, then we obtain a

D(K,f’n, 2’)4, 1) design, a resolvable D(K* 6)4, 1) design, and an arc-resolvable D(K* ?4, 1) design. [

n,n° n,n°
Lemma 2.5. (1) If there exists a resolvable D(K;l“’n, 224, 1) design, then n is even.

—
(2) If there exists an arc-resolvable D(K ;'[‘n, C 4, 1) design, then n is even.

*
n,n?

84, 1) design, then the number of arcs in K

Proof. If there is a resolvable D(K :,n, 2')4, 1) design, then the number of vertices in K

n is even. If there is an arc-resolvable D (K
4,soniseven. [

2n, is a multiple of 4, so

*

g 2n?, is a multiple of

,n?

To prove Theorems 1.1 and 1.2, we note that a D(G, H, ki) design can be obtained by taking k copies of a
D(G, H, ) design. From Theorem B(1), Lemmas 2.1 and 2.3, we obtain Theorem 1.1. From Lemmas 2.2 and 2.4,
we obtain Theorem [.2(1). From Lemmas 2.4 and 2.5, we obtain Theorem 1.2(2) and (3). This completes the proofs
of Theorems 1.1 and 1.2.
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