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Abstract 

Coppo, M. and A. Ferrari, Type inference, abstract interpretation and strictness analysis, Theoret- 

ical Computer Science 121 (1993) 113-143. 

Filter domains (Coppo et al., 1984) can be seen as abstract domains for the interpretation of 

(functional) type-free programming languages. What is remarkable is the fact that in filter domains 

the interpretation of a term is given by the set of its types in the intersection type discipline with 

inclusion, thus reducing the computation of an abstract interpretation to typechecking. As a main 

example, an abstract filter domain for strictness analysis of type-free functional languages is 

presented. The inclusion relation between types representing strictness properties has a complete 

recursive axiomatization. Type inference rules cannot be complete (strictness being a II? property), 

but a complete extension of the type inference system is presented. 

1. Introduction 

Abstract interpretation is an elegant and useful framework to study a number of 

methods for extracting informations from programs, usually with the aim of perform- 

ing complile time optimizations. The basic idea is to define interpretations of the 

source language in “abstract” (usually finite) domains whose elements represent, 

roughly speaking, properties of elements of the initial “standard” domain, which can 

be mapped homomorphically in the abstract domain. A basic request to this mapping 

is that of being safe, in the sense that if an element x is mapped to x’ then the property 

represented by x’ is surely a property of x. What is usually not required from abstract 
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interpretations is completeness since this, in most cases, immediately leads to unde- 

cidability while abstract interpretations are expected to be computable in a reasonable 

time. Abstract interpretation has been applied to the study of several kinds of program 

analysis like data flow analysis [25] and strictness analysis [9]. Strictness analysis, in 

particular, is one of the most interesting applications of abstract interpretation for 

functional languages. 

Abstract interpretation has been developed mainly for first-order, simply typed 

languages. In this case, in fact, the number of elements of both the basic and the 

functional abstract domains is small, and the computation of abstract interpretations 

is easy. For instance, taking a language defined on the flat c.p.0. NL of integers the 

abstract domain for strictness analysis A has only two elements: {I} and {N,} 

representing, respectively, the property of “being the value I” and that of “being any 

value” (possibly I). The space of continuous functions [A+A] has then only three 

elements: the function constantly _L (which represents the abstract interpretation of 

the function constantly _L on the standard domain), the identity (which represents the 

abstract interpretation of strict functions) and the function constantly T (which can be 

the abstract interpretation of any function). When languages with higher-order 

functions are considered as in [7], the number of elements of the abstract domain 

increase exponentially with the complexity of types and the standard techniques for 

the evaluation of abstract interpretation become quickly impractical. It seems more 

difficult to generalize the notion of abstract interpretation to polymorphic languages. 

A possible way out is to develop abstract interpretations for typed higher-order 

languages [7] and to use the notion of polymorphic invariance [l, 41. It seems even 

more difficult to define a notion of abstract interpretation for type-free languages. No 

satisfactory attempt of doing this is known to the authors. 

In this paper, we use filter domains [6] to define a notion of abstract semantics for 

(higher-order) type-free or polymorphic functional languages, in which the same term 

can be applied to arguments of different types. The elements of a filter domain are 

defined as sets of formal types representing properties of values closed under implica- 

tion and conjunction. Types are defined from a set of basic types by the + (function 

space) and A (intersection) type constructors, and are associated with terms by 

a formal type inference system with inclusion. The interpretation of types as subsets 

determines an inclusion relation that can often be axiomatized in a simple way and 

characterizes the properties of the type assignment system and of the associated filter 

domain (our “abstract” domain). 

A basic feature of our approach is that, instead of introducing a simplified abstract 

language to compute abstract interpretations (see e.g. [9]), we interpret directly the 

basic language in the abstract domain reducing the computation of abstract inter- 

pretation to typechecking. This view is especially interesting in the case of higher- 

order functions where types are a natural way of representing complex functional 

properties. The inference procedures for a specific type system (like the one for 

strictness analysis), moreover, can be combined with standard type inference algo- 

rithm [16] in order to reduce the total amount of compile time effort. Typechecking of 
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intersection types is in general undecidable [6], but a complete inference procedure is 

known [12,26] and decidable restrictions have been studied [14]. 

The fact that domains can be defined by taking as elements the collection of subsets 

(types) of a given family closed under inclusion and intersection is well known. An 

approach to the theory of domains based on this idea has been given in [28], and then 

further developed in [29], leading to the notion of information system. Filter domains, 

indeed, can be seen as particular cases of information systems in which the interpreta- 

tion of the elements of the formal filters as types is made explicit. The basic properties 

of filter domains have been investigated in [ 111. The aim of this paper is that of linking 

the notion of filter domain with that of abstract interpretation. 

A similar approach to the theory of domains has been developed, in a more general 

framework, in [2], where a notion of domain logic as a tool to reason about elements 

of domains based on Stone duality is introduced. The technique developed in [2] gives 

a tool to find a “logical” representation of a given domain via an isomorphism in 

which each point of the domain is represented by a set of formulae characterizing it. In 

our approach, we are interested, instead, in finding out the (abstract) domain con- 

sidering only some properties of its elements (the ones under investigation). This can 

lead, for instance, to the identification of points which share the same properties. 

What we find is not, in general, an isomorphism but rather an embedding of the 

standard domain into the abstract one. The structure of a filter domain is determined 

essentially by the inclusion relation between types induced by the properties under 

investigation. Filter domains, however, can turn out to be isomorphic to solutions of 

recursive domain equations (as it happens for the examples of this paper). 

The basic example developed in this paper is strictness analysis. The abstract 

(reflexive) domain will be obtained as the filter model determined by a type system for 

the study of strictness properties of lazy functional languages. We will show, in 

particular, that the inclusion relation determined by the interpretation of types as 

strictness properties has a complete finite axiomatization. 

An application of domain logic [2] to the investigation of strictness properties of 

a simply typed functional language has been given in [ 181. The main achievement of 

[18] is a logical representation of the abstract domains defined in [7] in which the 

logical formulae (types) are interpreted as ideals over the (abstract) domains. This 

approach is useful in order to use inference to prove strictness properties of simply 

typed terms, but cannot be extended to polymorphic or type-free languages. In [lS], 

moreover, no link is established between abstract domains and standard ones (for this 

purpose the paper relies on the results of [7]). 

The idea of using type inference to prove strictness properties of higher-order 

functional languages was first introduced by Kuo and Mishra [19,20], but there are 

many substantial differences between their approach and ours. The type system of Kuo 

and Mishra is sound for a head reduction evaluation strategy (for which 1x.M diverges 

if M diverges), while we consider a lazy evaluation in the sense of [3] (in which Ix.M is 

not divergent even if M is). We also prove stronger completeness results for our inference 

system, with respect to both the inclusion relation and the type assignment rules. 
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The type assignment system for strictness properties however is not complete (even 

if it determines a filter domain which is indeed a A-model) in the sense that not all 

types that represent a property true of a term can be assigned to it. This is a conse- 

quence of the fact that strictness for higher-order languages (based on lambda- 

calculus) is a II: property while the finitary inference system is Zy. A complete 

extension of the inference system can be defined by adding an infinitary rule based on 

the notion of approximant of a term [S]. This extended system will be used, for 

instance, to justify our treatment of fixed points in the abstract interpretation. 

Section 2 is devoted to the introduction of the basic notions about type inference 

and type interpretation, while filter models and their connections with abstract 

interpretation are presented in Section 3. Section 4 presents the inference system for 

the study of strictness properties. The basic completeness theorems are proved in 

Section 5. 

2. Type assignment and type interpretation 

In this section we give a short survey of the intersection type system for terms 

of a functional programming language. For more details and insight, see [S]. We 

assume that the reader is familiar with the basic type inference system of ML-like 

languages. 

Intersection types can naturally be introduced in type inference systems in which 

the same term can have many different types. In this context we can introduce an 

operator of type intersection A which allows to assign different types to the same 

term. A type of the form c1 A /I can be interpreted as the type of terms which have both 
type u and type /I. 

Let us consider, for instance, the operator of self-application Ax.xx, which has no 

type in the basic system because x should be assigned a type c( such that CI=C(+~, 

which is clearly impossible. Using A we can assume x : c1 A (E-P/?) (i.e. x has both types 

c1 and a+/?) from which we can deduce x : a+j3, x : c1 and, using (+E), (xx) : j?. Then 

using (+I) we have Ax.xx: CI A (cr+b)+jl. 

It is useful, moreover, to assume a basic type o to be interpreted as a “universal” 

type that can be assigned to any term (including the unsolvable ones). For instance, let 

P=ly.lx.x. A natural type for P is O+CL+CI for all types ~1, meaning that P can be 

applied to any term giving a term of type c( -KY. This is particularly sensible in 

a language with lazy evaluation. In fact, since P will never evaluate its argument, there 

is no need to assume any type constraint for it. 

Let K be a set of basic types (like int and bool). The set of types over K is the least set 

TK (T when K is understood) such that 

(1) K G TK, 
(2) WET”, 
(3) TV, /kTK =+ tl+/kTK, 
(4) CY., PeTK =s c1 A /~ET~. 
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We agree that A takes precedence over +, i.e. y A a+/3 is equivalent to (y A cr)+/I. 

Intersection types like y A o! are considered modulo permutations and repetitions of 

the same type, i.e. CI A fi is identified with /I A CI and c( A c1 with ~1. 

2.1. Inclusion theories 

The interpretation of types as sets of values leads naturally to the notion of type 

inclusion. We have, for instance, that (the interpretation of) type LX A fl is included in 

(the interpretation of) types CI and /I. We introduce a formal relation 6 to represent 

type inclusion. 

An inclusion statement is an expression c( </I (where c(, PE TK) whose intended 

meaning is that (the interpretation of) c1 is a subset of (the interpretation of) /I. An 

inclusion context (over a set of types TK) is a set C of inclusion statements. Type 

inclusions between types are proved in a formal deduction system where we have 

judgements of the shape C F a<fi, where C is an inclusion context, meaning that 

GIG/I can be proved from the assumptions in C. Usually, TK is implicit in C and will 

not be formally mentioned. The following definition gives the axiomatization of the 

relation < . 

Definition 2.1. (i) The formal system for inclusion judgements is defined by the 

following rules. 

(‘4x1) 

64x4 

64x3) 

64x4) 

64x5) 

(‘4x6) 

64x7) 

(A) 

(-1 

(trans) 

(ii) Let C E LX-~ denote C t- cc<p and C E /?<a. 
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The less intuitive points in the definition of type inclusion are perhaps Ax3, Ax7 and 

rule (-). In case of Ax3 note that w is intended to represent the whole domain, and 

that in our language any function can be seen as a function on the whole domain 

(giving possibly an “error” result). Indeed, using Ax2, Ax3 and (+), we have 

C t M-MD - w+w (for any C). In the case of Ax7 observe that if an object maps a into 

y and CI into p then it maps c( into the intersection of y and fi, i.e. in y A /I. Using the 

other axioms we can prove C k (a-y) A (a-/?)-cc-y A p. Rule (-) represents the 

antimonotonic-monotonic behaviour of +. 

Given an inclusion context C its inclusion theory C is the set of all inclusions cr</? 

provable from C. We will sometimes identify z with C. 

2.2. Type assignment rules 
Our basic language is the (type-free) lambda-calculus with a set C of constants. Let 

/ic denote the set of its terms defined by the grammar 

M ::= C 1 V 1 (MM) 1 h.M 

where V is a set of term variables. A formal notion of convertibility L between terms 

can be defined as usual [S]. Additional conversion rules for the usual arithmetical and 

boolean constants can also be considered if necessary. 

The formal rules for type assignment include, besides the usual arrow introduction 

and elimination rules, two rules for intersection introduction and elimination, one rule 

to handle type inclusion and one for o. We associate with each basic constant c a set of 

types z, which represents the intended types of c. 

A typing statement is an expression of the form M :a where a is a type and 

M a type-free I-term. 

A typing context B is a set of statements of the form {x1 : a,, . . . x, : cc,} where each 

subject xi is a variable. All variables in a typing context are assumed to be distinct. 

A typing judgement is written in the form Z; B F M: CI where C and B are, 

respectively, an inclusion and a typing context. 

Definition 2.2. Type assignment rules. 

War) C;B I- X:CI if x:MEB 

(Const) C;B I- c:tl if aEt, 

(-+E) 
C;B k M:a+/3 C;B I- N:a 

C;B F (MN):fi 

(+I) 
C;Bu(x:d~} I- M:/? 

C;B k Ax.M:cr-+P 
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(AI) 
C;B k M;ci C;B I- M:fl 

C;B k M:aAfl 

(AE) 
C;B E M:ciAB 

C;B k M:a C;B k M:B 

(G) 
C;B t- M:a c I- ‘!x<p 

C;B F M:P 

The syntactic properties of the system depends heavily on C. If we take C = 8, for 

instance, we can prove (a number of) normalization theorems (see [6]) which are not 

true for arbitrary inclusion contexts. For more details on the syntactic properties of 

the system, see [S]. We will often omit Z or B when they are empty. 

2.3. Semantic structures 

As remarked before, a suitable notion of semantics for this system can be given 

interpreting both terms and types in a model of the type-free language. We need 

a definition as general as possible in order to include most interesting examples. The 

following definition of model is based essentially on the notion of environment model 

introduced in [22] (see also [S, Section 53). 

We first define the interpretations of & in structures Al = (D, F, G) where D is a set 

containing at least two elements and F and G are two functions: 

F: D+(D+D), G:(D+D)+D 

and (D+D) is some collection of functions from D to itself. 

In a structure J%? each element of D can be interpreted as a function via F. We say 

that a functionf: D+D is representable in &! iff= F(d) for some dED. Obviously, by 

Cantor’s theorem, not all functions from D to D can be representable but only a subset 

of them. 

Given a structure, an interpretation of A-terms can be defined in a canonical way, 

provided that (D+D) contains enough functions to define the meaning of all A-terms. 

A structure is a model if it satisfies an additional condition which ensures that the 

interpretation of terms is preserved by /3-convertibility. 

Given a set D, let an environment be a function p: V-+D, assigning values to 

variables. p [x/o] is the environment which is like p except for assigning to the variable 

x the element v of D. Let Env denote the set of all environments. Finally, let 99 : &+D 
be a function that interprets the constants of &. 

Definition 2.3. (i) An interpretation of & in a structure 4 = (D, F, G) is a partial 

function 

[-]“:&-Env+D 



120 M. Coppo, A. Fewari 

such that 

(1) irxIl”P=P(x)Y 
(2) ccll~P=Wc)Y 
(3) [[MNn-Kp=F([Mn”p)(~Nn-Up), 
(4) [Lx.Mj”p=G(f) wheref=luED.[[Mn-Kp[x/u] 

provided ~E(D-0). 
(ii) A structure ~2’ = (D, F, G) is a premodel if 1-1 x is always defined, i.e. if 

for all terms M and environments Env. 
(iii) A premodel A= (D, F, G) is a model of /ic if F 0 G= id,,,,,. 

If F 0 G= id,,,,,, F and G define a retraction of D onto (D+D). It can be proved 
that the interpretation of terms in models is preserved under p-conversion (this is not 
necessarily true for arbitrary structures). If D is a domain one usually takes 
(D-D)= [D-D] (the domain of continuous functions from D to itself). Take, for 
instance, a domain D satisfying the equation 

DEA+[D+D], 

where A is any domain of basic values and + represents disjoint sum. A canonical 
choice for F and G, in this case, is the following: 

(e) 

Q 

if d=inlD,Dl(f) for some ~E[D-D], 

F(d)(e)= ID if d= ID, 

? otherwise, 

G= inlD+D1, 

where inl,,,l is the injection of [D-D] in D and ? is a distinguished element of A that 
represents an “error” element. It is well known that [D-D] is rich enough to contain 
all the functions arising from the interpretation of terms. Moreover, it is immediate to 
see that F 0 G = id,,,,, so this structure is a model. 

2.4. Type systems and type interpretation 

Given a model Jx’= (D, F, G), types can be interpreted as subsets of D starting 
from the interpretation of basic types. This is formalized in the following definition of 
type system. 

The choice of the interpretation of the basic types characterizes to a great extent the 
kind of properties represented by types. So, for isntance, if a basic type < is interpreted 
as the set of all elments of D which have a defined value (i.e. different from I in 
a topological model), the interpretation of 5-5 will denote all the elements of D which 
represent total functions on D, i.e. functions which give a defined result whenever 
applied to a defined value, and so on. 
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Another very important point is the interpretation of the + type constructor: it 

defines which elements of D we want to have a meaning with respect to the operation 

of application. For instance, integers are usually considered values which cannot be 

applied to anything in a meaningful program and, for this purpose, an internal “error” 

element is usually defined in D in order to map in it all incorrect applications. But this 

is no longer possible, for instance, in the case of the “undefined’ element of a domain 

(I) since an undefined term applied to any other value cannot produce a defined 

value, not even “error”. So we can consider I as a value for which application can be 

meaningful. 

In the following definition of type system we include a parameter @ which repres- 

ents the elements that we want to include in the interpretation of functional types. 

Obviously, @ must include at least all the elements of D which are representative of 

functions. 

Definition 2.4. (i) A type system is a tuple Y = (A, K, .X, @), where M = (D, F, G) 

is a structure, K a collection of basic types, X : K+2D an interpretation of the basic 

types K in J%’ and @ is a subset of D such that Go F(D) s @. 

(ii) The interpretation of types in a type system Y = (A, K, X, @) is the function 

1-1 9 : TK-+2D defined by 

(1) [‘cljY=X(Jc), 

(2) ilc@=D, 

(3) Ila+rn Y = {de@ 1 eE[lanr + F(d)(e)E[rjT}, 

(4) ww=bnww. 
We will write simply [ma when .Y is understood. We obviously assume that the 

interpretation of types is consistent with the interpretation of the constants of the 

language, i.e. [cj+[Ujr for all CIEZ,. 

Note that @ = i[o-+on F in all type systems. There are some canonical choices for 

@ proposed in the literature. One (called by some authors the “F” semantics of types 

[17]) is to define @= Fo G(D) taking exactly all elements which are images of 

functions via G. Another popular choice, known as the “simple” semantics [17,23], is 

to take @ = D. In this case we consider any application to be meaningful, as in the 

models of the pure A-calculus. 

Note that in interpreting types according to conditions (l)-(4) of Definition 2.4(ii) it 

may happen that the interpretation of some intersection type is empty. In this case 

some types have a trivial interpretation. For instance, if [an r = 8 then [B+cln Y = 8 

while [&-fin Y = @ whichever is the interpretation of p. Obviously, the interpretations 

of types which can be assigned to closed terms are never empty. 

The presence of empty types can be avoided by interpreting types in a collection of 

subsets of D such that intersection is always nonempty, as the collection of all ideals 

over D. A more general approach is that of restricting the set of types in such a way as 

to rule out all types that would have an empty interpretation. In this paper we will 

take the former approach to avoid the introduction of further technical details. This 
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will sometime lead us to obtain lattices instead of c.p.o.s, but this is not relevant in the 

present context. All results of this paper can be formulated in a more general 

framework in which not all types need to be defined (see [S]). 

A particular type system determines an inclusion relation between types. 

Definition 2.5. Let Y be a type system. 

(i) The inclusion theory determined by Y, denoted by CT is defined by 

CT={c&~I [Ml.” E [PI”}. 

(ii) Y satisfies an inclusion context C if C E CT. A Y-inclusion context (theory) is 

any inclusion context which is satisfied by Y. 

It is easy to prove that CT is indeed an inclusion theory, i.e. CT =CT. Indeed CT is - 
the largest inclusion theory satisfied by Y. 

We write Y + a<fi if cz<fi~Z~. C + cc<p if Y I= a<fi for all type systems 

r satisfying C. 

Let JJ%’ be a model and Y = (A, K, X, @) a type system over J+?. If p is a 

term environment (i.e. a mapping V-D), we say that p satis$es a context 

B={q:q,..., x, : a,} if p(xi)E[Uilj Y for all i. Y-; B + M : u means that for all environ- 

ments y satisfying B, one has [A41 Mp~[~I] r and C ; B + M : u that for all type 

systems Y satisfying C one has Y; B + M: a. We will assume implicitly that in 

all interpretations J and all type systems Y over &Z the interpretation of a constant 

c of the language is correct with respect to the types in t,, i.e. [[c~]~~E[c~J~ for 

all NET,. 

An easy induction on derivation shows that inclusion and type assignment rules are 

sound with respect to this notion of semantics. 

Theorem 2.6. (i) C E a</? =S C I= cc<p, 

(ii) C;B F M:CY * C;B + M:u. 

Completeness has been proved [13], for pure A-terms, using term models. 

Theorem 2.7. Let M be a term without constants. Then 
(i) Z I= a</I * C E cc<p, 

(ii) Z;B + M:a =z- C;B F M:a. 

3. Filter models as abstract interpretations 

Filter models have been introduced in [6]. The basic observation [28] is that, under 

certain conditions, the interpretation of, intersection types with inclusion can be seen as 

a basis for a topology whose abstract points determine a domain. The interpretation 
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of a term in this domain is given by the set of its types. Filter domains can also be 

seen as a kind of Scott’s information systems [29] where both elements and consistent 

finite sets are represented by types. In this section we start with a brief review of the 

construction of filter domains. An extensive study of filter domains has been done in 

[ll], to which we refer for more details and proofs. 

Let us first define a collection 9 (the abstract filters) of subsets of TK. 

Definition 3.1. (i) Let C be an inclusion context over a set TK of types. An abstract 

jilter over TK in Z is a subset d of TK such that 

(1) WE4 
(2) if CI, /IEd then c1 A flEd, 
(3) if UEd and C k cl<fl then BEd. 
(ii) Let 9” (F for short when K and C are understood) be the set of all abstract 

filters over TK in Z. B is the jlter domain determined by K and Z. 

Note that the set of all types which can be assigned to a same term (from a given 

context) satisfies the closure conditions (2) and (3) by rules ( A I) and (<) and contains 

0 by (4. 
Given any A s TK let rz { A} (the filter generated by A) its closure under conditions 

(l)-(3) of Definition 3.1. 

It is just routine to show that .P’ is a domain. 

Lemma 3.2. .F” is a consistently complete, countably based algebraic lattice (a domain) 
ordered by set inclusion. 

In particular, the bottom element of 9 is t” {CO}. If d, ee9, we have d n e = d n e and 

d u e = t” {d u e} (note that, in general, the union of two filters is not a filter). Note that 

El--a</3 implies that tI{P} G tz(cr> and C E CC-P implies that t”{~}=t”{cz}. 

Given a filter domain 9, there is a “canonical” way to obtain a structure by 

defining two mappings F, : r J+ -[F-F] and G,: [9+91-F in the following 

way. 

Definition 3.3. Let F = 9” be a filter domain. Define 

(i) F,(d)(e)=fr{j313a.a+/3Ed and tree}, 

(ii) G,(f)=f~{cr-*BIBEf(t~{a})}. 

It is just routine to show that F, and G, are well defined. In particular, for all deD, 
F(d) is a continuous function on 9 and F,(d)(e)sF. We will write d .e for F,(d)(e). 

From the definition of G it turns out that G(f) is defined for allfE[@+F], so 

(F, F,, G,) is always a premodel in the sense of Definition 2.3. Since the choice of 

F, and G, is canonical, we will identify P with the structure (9, F,, G,). 
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However, 9, in general, is not a model. In particular, we only have G, 0 F, E id9 

and id,,,,, c F, 0 G, where c is the extensional order on functions (see [ll, 
Propositions 2.8, 2.101). 

There are interesting cases, however, in which all continuous functions are represen- 
table in 9 (i.e. in which F(9)= [F+R]). In this case it is easy to see (an explicit 
proof is given in the appendix) that F, 0 G, = id,,,,, and so F is a model for /ic (see 
also [S, Section 51). A first example is when C = 8 (for any choice of K). This is the case 
of the filter model introduced in [6]. 

To prove that a filter domain F’ is a model, it is then enough (but not necessary, 
see [ll]) to show that all continuous functions are representable within it. We will 
give in the next definition a set of sufficient conditions on an inclusion context to 
guarantee this. The representability of all continuous functions over F is possible 
iff all step functions over SF are representable. This is possible only if cr+g<y+b 
implies y < M and j<S (a complete characterization is given in the appendix). 
The definition below gives a set of conditions on C which assure that the inclusion 
statements introduced in C do not destroy this property. This is achieved by requiring 
that the basic types in C do not interfere with the inclusion relation between functional 
types. The condition is rather technical but, despite its “ad hoc” nature, it is enough 
to handle many interesting cases (like, for instance, all the examples of this paper). 

Definition 3.4. Let C be an inclusion context over a set K = (ICY, . . . , K,} of basic types. 
Let C* denote the reflexive and transitive closure of C with respect to <. 

(i) A basic type Ki is plain in Z if a-+fi<~&C* for any types CI, /?. 
(ii) A basic type Ki is functional in C if cl+/?-rc+Z*. 

(iii) An inclusion context C is safe if it satisfies the following conditions: 
(1) all basic types are either plain or functional, 
(2) all the inclusion statements in C have one of the following shapes: 
_ c( A rc<fl or KG/I for K plain and a, PeTK, 
- ~-tx+jI for KEK and a, PeTK, 
_ lCi< 7Cj for 7Ci, ICjfZK, 
_ co~o-wl 

(3) If a+~dy+6~C* then both yda and jI<S are in C*. 

Note that in a safe context we allow an atomic type to be equivalent to a functional 
type provided this equivalence is consistent with the inclusion between atomic types. 

Now we can prove the following theorem. 

Theorem 3.5. If C is a safe inclusion context over K then F+ 0 G-. = id[p+~~] and SO 

9’ is a model of AC. 

The proof of this theorem is rather technical and it will be given in the appendix. 
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Example 3.6. Let us consider the set of types T# =T{i”t,bOO’} and Z# as the set 

Note that Z# is the inclusion context satisfied by the interpretation of types as 

ideals [21] over a domain satisfying DrN, 0 BI 0 [D-D], where NI and BI are 

the flat c.p.o.s of integers and booleans values and @ denotes coalesced sum. 

It is immediate to verify that both int and boo1 are plain so that C# is safe. The filter 

domain 9# =9” is a domain which satisfies 

Dz{int}I @ {bool}; @ [P#+F#]‘, 

where {int} and {bool} represent one-element lattices and 0 represents coalesced sum 

of lattices An element of 9 # . m fact, can only 

(1) t’#‘{w} (the bottom ele’ment of 9#, 

be of one of the following: 

which also represents the function con- 

stantly bottom), 

(2) t”” (rc} where K is int or bool, 

(3) a filter d, containing only o and “arrow” types, which is the representative on 

a function via G, 

(4) the whole set T@t~boo’l of types (the top element of F#). 

Each element of B# which contains, for instance, int A (cr+fi) must contain also 

boo1 and all other types in T(‘“‘, boo’). The fact that there is a one-one correspondence 

between the elements d, and the continuous functions from P to 9 is a consequence 

of the results in [l 1,6]. 

There is a close connection between the interpretation of & in a filter domain 

9 and the type assignment system presented in Section 2, namely, roughly speaking, 

that the interpretation of a term M in F is given by the set of its types. 

Note that we directly interpret the basic language in the “abstract” domain. 

Obviously, in this interpretation many elements which are distinct in the concrete 

domain are identified. For instance, in the case of Example 3.6, all integer values are 

interpreted in the element t”“{int} of 9#. 

In particular, if 5: V-9 is an environment assigning to variables values in F, 

define B, as the set of contexts built by assigning to each variable x a type (possibly an 

intersection type) belonging to t(x), i.e. 

&=(Blx:aeB * &(X)}. 

,4, can be interpreted in any Y-filter domain 9 by interpreting the basic constants 

by 

M”= tw. 

We have the following property [ 111. 
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Theorem 3.7. Let 9=9’ be a jilter domain. Then 

[Mj9[={alZ;13 I- M:afor some BEB,}. 

The interpretation in filter domain then is effectively defined by the type assignment 
rules introduced in Section 2. 

In the following definition we introduce the notion of filter model determined by 
a type system. 

Definition 3.8. Let JV = (D, F, G) be a premodel and F = (A, K, X, @) a type 
system over A. Then 

(i) a F-filter domain is any filter domain 9’ such that C is a F-inclusion context, 
i.e. an inclusion context satisfied by F, 

(ii) FF denotes FZ9. 
FY is the least F-filter domain in the sense that for any F-filter model 9 there is 

a unique embedding i:9--+9’ 
d 

. 

A F-filter domain 9 can then be seen as an “abstract” domain whose elements 
represent (sets of) properties of the elements of D. There is a natural way of relating 
D (the domain of concrete interpretation) and F by a map abs, : D-9 as 

which maps ED to the set of all types that represent properties of u. It is easy to verify 
that absr(u)eS”, i.e. abs,(o) is an abstract filter. abs, is not, in general, an injective 
mapping. If we see abs, as a relation ABSr c D x F, its inverse relation 
CONC? = ABS;' represents a kind of “concretization” relation from the abstract 
domain to the concrete one. We have that the relations ABSr and CONCF satisfy 

CONCroABSr 2 idD, 

ABS,oCONC,=id,, 

where idD, ids represent, respectively, the identity relations over D and 9. These are 
the usual relations between the abstraction and concretization maps in the theory of 
abstract interpretation for functional languages [24] (see also [4] for a survey of the 
basic concepts). 

The relation CONC, is in general not a function but induces a map 
concg : 9+2O defined as 

conc,(d)={vIabs,(o)=d}, 

i.e. cone,(D) is the set of all elements of D whose abstraction is represented by d. 
As a simple consequence of the soundness theorem (Theorem 2.6), we have the 

following relation between the interpretations 1-1 M, 1-1 9’, which express the sound- 
ness of our abstract interpretation concepts. 



Type inference, abstract interpretation and strictness analysis 127 

Theorem 3.9. Let 9 =9’ be a F-jilter domain where F= (A’, K, X, @). Then 

for all environments p respecting 5 (i.e. such that t(x) E abs,(p(x))for all variables x). 

The meaning of this theorem, which is only a reformulation of the soundness 

theorem (Theorem 2.6), is that we are able, using the inclusion context determined by 

a given type system, to deduce only properties which are true M. The abstract 

semantics, in this sense, is “safe”. We remark, however, that [Mj”r need not contain 

all the properties (i.e. types) that are true of M in the intended semantics (under the 

assumptions in 5); i.e. [[MjF5 is in general only a (proper) subset of absT( [[Ml&p). 
This kind of incompleteness is typical of abstract interpretation. The finitary nature of 

the type inference rules, in fact, can be an essential limit in the determination of the 

properties of M. We will see an example of this in the section about strictness analysis, 

where it is shown that only an infinitary rule can produce all the strictness information 

about a term. 

Remark 3.10. Usually in the results relating abstract and concrete interpretations [4], 

an intermediate notion of “collecting” the interpretation is introduced. In the collect- 

ing interpretation the standard semantics is lifted to operate over sets of values rather 

than on values themselves. In the present approach, indeed, the relations ABS and 

CONC can be seen as mapping between a collection of subsets of D and S rather 

than D and 9. A theory of collecting interpretation could perhaps be developed, 

following [24], using a suitable notion of powerdomain. It is not clear to the authors, 

however, if this would be useful for the investigation of the relations between concrete 

and abstract semantics. 

An interesting case arises when 9 is a model. In this case we have, for instance, that 

the types of a term M (in any typing context) are invariant under formal p-conversion 

(since in a model the interpretation is invariant under equality). Moreover, we can 

exploit the structure of the model to prove properties of the assignment system, as it 

will be done in the next section. 

Example 3.11. The following example shows how to build an interpretation that gives 

information about the sign of a term [4]. 

We consider a language with only integer values interpreted in a model satisfying 

DEN, @ [D-D]. 
Take the type system F + = (D, K +, 9, @) where K + is the set {nonpos, nonneg, 

int}, 3 the interpretation of basic types which maps nonpos in the ideal of all non 

positive number (including I) and nonneg in the ideal of the nonnegative ones 

(including I) and @ = D. 
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Let C+ be the inclusion context {nonpos<int, nonneg<int}. We associate the 

appropriate types with any number and with the basic functions on integers like 

’ 1 
nonpos-+nonpos+nonpos 

nonneg+nonneg+nonneg 
z+ = 

nonpos + nonneg + int 

nonneg+nonpos-+int 

nonpos+nonpos+nonneg 

nonneg-rnonneg-bnonneg 
T*= 

nonpos-,nonneg+nonpos 

nonneg+nonpos+nonpos 

nonpos -monneg 

5”“,,Y - = 

It is easy to check that the system infers correct information for terms as in 

C+ I- 151515*(-235):nonpos. 

As another example we have 

JJXdy._f(fxx)(fyy): (nonneg-+nonneg-+nonneg)+ 

with obvious meanings. 

nonneg+nonneg+nonneg 

We can now extend C + by defining the safe context: 

~:=C+u(intA(a~B)dyI”,P,yETK+)u{O~O’W}. 

Let 8+ =F--“:. Arguing, as in Example 3.6 we see that 9 + is a domain satisfying 

F+=A@[cF++F+]T, 

where A is the finite lattice 

/+-----l 
nonneg nonpos 

\nneg A nod 

This is the straightforward generalization to type-free languages of the abstract 

interpretation of the “rule of sign”‘ for first-order languages. 

Note that the filter domain construction is interesting also for inclusion contexts 

C strictly weaker than CT. In fact, what is essentially expected from an abstract 

interpretation is that it gives safe information, rather than complete. What is relevant 
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is how natural C is and how easily it can be used to extract information in the more 

interesting cases. 

For instance even FZ+ could, for practical purposes, be a good inclusion context 

for the rule of sign. A simple exercise shows that its associated abstract domain 

satisfies the equation 

9x+ N =A x [F-T+-CW+], 

which, however, seems less interesting as an abstract domain. 

Abstract domains can be defined also for type system which are based on models 

that are not c.p.0.s. The following example, which is taken from [13], introduces 

a type system and an abstract domain for the study of normalization properties of 

pure I-terms. 

Example 3.12. Let us consider the pure lambda-calculus n and the term model of 

b-equality JZ( j?) [S]. Jz’( j3) can be seen as a model in the sense of Definition 2.3 taking 

F as formal application and G as lambda abstraction. Let N be the type system 

(.,&‘(/I), KN, XN, &(/I)) where KN={O, 1} and sC~:/I-+~“(~) is defined by 

l XN(0)= {[N] 1 N has normal form), 

l XN(l) = { [N] 1 N has normal form and, for all n > 0, NMi, . . . , M, has normal form 

whenever Ml, . . . , M, have normal form}. 

Take C’ as the inclusion context built by the following six axioms: 

C’={l<O, o-lG+O, l-O+l, oQo-w}. 

The meaning of these relations is the following: 

(1) If a term preserves normalization then it is normalizable, in other words the 

property represented by 1 is stronger than the one represented by 0 and so 1 GO; 

(2) A normalizable term, applied to a term that preserves normalization, is still 

normalizable; 

(3) If a term preserves normalization, applied to a normalizable term, gives a term 

that still preserves normalization; 

It is easy to verify that C’ is a N-inclusion context, even if C’ c CN (see [13], where it 

is shown that C’ k CX<~ o CN k cc<fl hold s only if tl and /I are types without 

occurrences of A). 

However, C’ is powerful enough to prove interesting facts about normalization 

properties of terms. For instance, we have CN I- Ax.xx: (O+O)+O, i.e. if we apply Ix.xx 

to a term M mapping any normalizable term in another normalizable term, we have 

that ((lx.xx)M) has still a normal form. This can easily be proved by observing that, in 

general, for any type a which does not contain occurrences of o, we have Z’ k orb0. 

Thus, we also have C’ E O+O<O. Now assuming x: O+O we can deduce x: 0 and, 

then, (xx) : 0. 
Yz’ is an (extensional) model satisfying 

~r’~[~--z’,~--z’], 
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which is isomorphic to a D,-like model [27] built using nonstandard initial projec- 
tions (see [13] for more details). 

4. Strictness analysis 

In this section we will study a particular type system suitable for the study of 
strictness properties of (higher-order) functional languages. 

We first define a model for our language, and we will then build a type system for 
strictness properties for it. We assume that the language has a lazy evaluation 
strategy. 

We assume to have integer and boolean values as basic domains. For technical 
reasons we will interpret the language in a lattice instead of a c.p.o., using the top 
element as an error value. The only reason for this is that this makes the proof of the 
completeness theorems (Theorems 4.4 and 4.10) easier. A suitable domain to interpret 
our language is then the domain D satisfying 

where NI and SI are flat lattices of integers and booleans and @ represents coalesced 
sum of lattices. [D-D]: is obtained from the [D-D] by adding new bottom and top 
elements. The lifting operator on [D-D] is introduced to model properly lazy 
evaluation [3]. In this way the interpretation of functional values, also the function 
constantly undefined Av._L, is kept distinct from 1. D is made into a model by 
choosing F and G as 

(e) 

Q 

if d=if~~,_+,~(f) for some ~E[D+D], 

F(d)(e)= ID if d= ID, 

T otherwise, 

G=in,,,,,. 

We take KS = {bot, int, bool} as the set of basic types. Since we want to study strictness 
properties of functions, we need to assume that I is a potential argument of any 
function. This leads to include I in the interpretation of all types. There are however 
other reasons for assuming this, mainly the fact to be able to include recursively 
defined functions in the language (see [21, lo]). bot will be interpreted as the subset of 
D containing only 1. So if we know that a value has type bot we know everything 
about it. It corresponds to a maximum information about an element. 

Definition 4.1. (i) The type interpretation X, is defined by the following: 

(1) X,(bot)= { I>, 
(2) X,(int)=(in,(n)InENI, n#T}u{l}, 
(3) Xs(bool)={inB(n)InEBI, n#T}u(l}. 
(ii) Let S=(D, KS, -X,, inD([D+D])u{_L}). 
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The type system S then gives information about strictness properties of the lan- 

guage. For instance, if S, B I= M : bot+bot then, by Theorem 2.5, M maps I in I and 

is so strict in its first argument. Since the language is essentially type-free, however, we 

must be a little careful in intending what we mean for a function to be strict in one of 

its arguments. A type-free term can be applied, in general, to an arbitrary number of 

arguments. For instance, if 

S,B + M:bot+u+bot 

then M is strict in its first argument when applied to two arguments, while M is not 

strict in its first argument when seen as a function of only one argument, see [19] for 

a more precise definition of the notion of strictness for type-free terms. 

Using types we can also describe more detailed properties of type-free functions 

involving strictness. For instance, a term having type (bot+bot)+w+bot+bot is such 

that whenever applied to a strict function gives a term that is strict in its second 

argument. 

It is easy to verify, by induction on types, that the interpretations of types 

are downward-closed, directed complete subsets of D (i.e. ideals in D) that do not 

contain T. 

Lemma 4.2. Let c1 be an arbitrary type. Then 

(9 IaIi Xs is a downward closed, directed complete subset of D. 
(ii) If a is dz@rent from o then T 4 [a] Xs. 

In particular, we have that I is contained in the interpretation of all types. The 

inclusion theory Cs can be axiomatized in the following way. 

Definition 4.3. Let CL be the inclusion context defined as the union of the following 

sets: 

(1) (bot<yIy~TKs}, 
(2) (bot >int A bool}, 

(3) (botaint A a+j31a,/3ETKs}, 
(4) {bot > boo1 A a-+/I 1 a, BE TKS}. 
Axiom scheme (1) just says that I is included in all interpretation of types. The 

axiom schemes of point (2) mean that the only value which belongs both to a basic 

type and to a functional type, or to two different basic types is 1. ZL is indeed 

a complete axiomatization of Cs. 

Theorem 4.4. CL = Cs, i.e. (1) and (2) completely axiomatize the inclusion theory of S. 

The proof of this theorem will be given in the next section. 

Remark 4.5. We have chosen to include types int and boo1 in S since in this way S can 

be seen as a natural extension of the basic intersection types system with int and boo1 
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as basic types. However, int and boo1 are not essential when only strictness properties 

of terms are considered. In this case axiom (1) of Theorem 4.4 is enough to character- 

ize Es’ where S’ is the type system defined by taking K$ = {bot} instead of KS. Also the 

completeness theorems (Theorems 4.10 and 4.11) are valid for S’. 

This is, for instance, the approach of [ 193 where just one basic type cp is considered 

(having the same meaning of bot). Kuo and Mishra study the property of this type 

system in the term model of P-equality interpreting cp as the set of all unsolvable terms. 

They consider the simple semantics of types with a normal order evaluation and so 

have the axiom W<W-ULL There is no distinction, in this way, from an unsolvable 

term M and Ax.M, both having only type o or equivalent types. They also have 

proved in [20] a completeness theorem similar to Theorem 4.4 but their result holds 

only for types not containing occurrences of the A type operator. 

It is easy to see that bot, int and boo1 are plain in CL. Then by Theorem 3.5 Fs, the 

filter domain associated with CL, is a model of A,. 

Theorem 4.6. 9’ is a model. 

Indeed Ys is a domain which satisfies the equation 

F’g{int}I 0 {bool}I 0 [Fs-Fs]I, 

where, as in Section 3, (int}, {b oo 1} are two one-element lattices. Note the similarities 

with Y# defined in Section 3. Indeed, bot can be seen as a shorthand for int A boo1 

and we have r”” (bot} = T, the top element of > . cs Note also the differences in the 

function space. 

Also S’, as defined above, does determine a filter domain 9” which is a model. In 

particular, 9” satisfies Fs’ r [ Fs’-i8”]I. 

Since 9’ is a model we have that P-convertible terms have the same types. So two 

terms are equal in the theory of P Cs iff they have the same provable strictness 

properties in the sense that the same types can be assigned to them. In particular, all 

unsolvable terms of order 0, like @x.xx)(~x.xx), have only type w and are then 

interpreted as the bottom element of Br. 

However, as the previous example shows, the type assignment system is not 

complete, in the sense that CL, B I= M : ct does not imply CL, B I- M : ~1. In fact, we have 

CL, B I= (Ax.xx)(Ax.xx) : bot but this cannot be proved by the inference system. Indeed, 

to prove CL, B I= M : bot is equivalent to prove that the denotation of M is I and this 

is not an r.e. property. We will give a complete system at the end of this section, 

The types of the basic constants are naturally induced by their strictness properties. 

For instance, a complete set of types for + (and of most binary functions on integers) is 

T+ : {(int-+int+int), (int+hot+bot), (bot+int+bot)) 

which expresses the fact that + is strict in both its arguments (in s’ simply replace int 

by 4. 
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The if-then-else operator ifwith the usual semantics, has both type bot+o-+w+bot 

(which expresses strictness in the first argument) and type bool-+a+u+u for all types 

LX. Then its set of types (which determines its abstract interpretations) is 

Type bot-w-swbot expresses the fact that if is strict in its first argument (note 

that bot+o+o-+bot<bot+cc+~+bot for all c(, fi). Observe that, using 6, we can 

infer for $ the types bool+bot+bot-+bot, bool+o+bot+w and bool+bot+o+o 

which express the other usual strictness properties of if(i.e. $is not strict in its second 

and third argument but is undefined only if both of them are undefined). 

Example 4.7. As an example consider the function 

G=1LjXxJ,y.(fxy)+(fyx) 

which has type 

and 

(int-hot+bot) A (bot-+int+bot)+bot+int+bot 

(int-+bot+bot) A (bot-+int+bot)-+int-,bot+bot, 

which means that G, if applied to a function H which is strict in both its arguments 

(like +, for instance), gives a function (GH) which is strict in its second argument 

(assuming that its first argument is an integer). Similarly, we can prove that GH is 

strict in its first argument. Note that there is no way to prove, for instance, that (G +) 

has type bot-+int+bot without using intersection types. 

As for fixed points we have that the standard interpretation in 9’ of the internal 

operator of the I.-calculus Y, = LJ((nx.f(xx))(lx .f(xx)) is given by [ Y21] ss5 =$x, 

where 

i.e. Yn has all the types of the form @+x1) A (q-+tlz) A ... A (c(,-+cI,+~)+G~,+~. To 

see this, observe that Y, L LJd/d,.L nflf(f(. . . (f(dfAf)))), where d, = ;Ix.f(xx), and 

apply the invariance of types under fi-conversion (we can always assign type w to 

Ix. f(xx)). 

This type of Y1, however, is not very useful in the inference of strictness properties 

of recursively defined functions. Take, for example, Y,F where F is defined as 

F=LJ/Zx.ly.if(x=O)y(f(x- 1)y) 

(i.e. Y,F is the recursive function f defined by fxy = if(x = O)y(f(x - 1)~). Using the 

standard interpretation of Y, we can prove 

CL I- YnF: bot-wwbot, 
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which means that Y,F is strict in x but we cannot prove 

CL E YAF: o+bot+bot, 

which proves that f is strict also in y. 

To fix this, we must consider an explicit fixpoint operator Y,,, defined as a con- 

stant in the basic language with the following interpretation in F”: 

[ YF,,~ KS< = FIX, where FIX = t”“{ (c(+ct)+cI 1 CIE TKS }. 

This means that we assume for Y,,, all types of the form (cI+c()+cI, and corres- 

ponds to the usual type inference rule for fixed points: 

(FIX) 
C;Buf:a t- M:a 

C;B E pf.M:a 

Using this rule (i.e. using Y,,x instead of Y, as the abstract version of the recursion 

operator), we can prove CL F Yfi,F: int-+bot+bot as we want. 

It is easy to check, in fact, that FIX is a fixed point operator on P’(i.e. 

FIX. d = d. (FIX * d) for all ~EF’), but it is not the least one. The least fixed point 

operator over Bs is$x, and we have only fix c_ FIX. 
As an application of Theorem 4.10, however, the use of YFrX as the abstract fixed 

point operator is sound, in the sense that we have 

i.e. Sk YA : c( for all MEFIX. 
In most cases, intersection is not necessary to analyse functions, especially on 

recursively defined functions. Let us consider, for example, the function hofdefined by 

hof(g,x,y)=(g(hof(KO)x(-Y l))+(if(=YO)x(W~3(-Y 1))) 

taken from [9], where K = 2x.iy.x and I = 2x.x. We have, for instance, 

CL F hof: (int+int)+int+bot-+bot, 

thus proving that hofgives a strict function when applied to any function from integers 

to integers and to any integer. All other conclusion from the analysis of [9] can be 

proved within the present approach using FIX. 
As we remarked before, type assignment (with CL as inclusion context) is not 

complete for strictness properties, not even after the explicit introduction of the 

YFrX operator. This incompleteness in not due to CL (which gives a complete inclusion 

theory), but to the type inference rules. Indeed, the type assignment system is r.e.(Ey) 

while a complete system must be at least II: (in fact C, B + M : bot iff M is unsolvable, 

which is a II: property [S]). A complete inference system for C can be obtained by 

adding two new rules to the ones of Definition 2.2. One of these rules is an infinitary 

one, thus making the type assignment system II?. 
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The new rules (which are these introduced, in a slightly different context, in [lo]) 

can be defined with the help of a syntactical notion of approximation for &terms. The 

following definition is taken from [S]. 

The set of jl-l-terms is defined as /IcUiij, where I is a new constant. 

The set of approximate normal forms is defined as the least set JV E &,,,, 

containing variables, constants and I, such that Ax.A and &VI, . . . &EM whenever 

A, AI, . . . , &EN and 4 is either a variable or a constant. 

Definition 4.8. (i) For any ME&, the direct approximant of M is the term R(M) 
defined as follows: 

(1) Q(x)=% 

(2) Q(c) = c, 
(3) S2Qx.M) = 1x4(M), 
(4) SZ((/lx.M)M, . . . M,)=l, 
(5) O(@M1 . . . M,) = @Q(M1). . . @SZ(M,) where @ is a variable or a constant differ- 

ent from 1. 

(ii) The set J&‘(M) of approximants of a term M is defined as 

&(M)={A I3N s.t. M L N and A=S)(N)}. 

The interpretation of terms of &,,,, in D is defined as in Definition 2.3 with 

I interpreted as ID. For any term M and environment p the set ([Al p 1 AE~(M)} is 

directed and has [M] p as least upper bound in D (see [S, Section 19.33). 

The new type assignment rules are a formal counterpart of the properties of types 

stated in Lemma 4.2. 

Definition 4.9. The system kApp is defined by adding to Definition 2.2 the following 

two rules: 

(1) CL;Bl- APP I : 0 for all types 0. 

W’P) 
CL;Bl-APPA:~ VAE&(M) 

CL;Bl- APPM:(’ 

The system l-App is sound and complete for the type system S. Soundness is proved 

by a standard transfinite induction. Completeness is proved only for the functional 

core of A,, consisting of the pure I-terms. 

Theorem 4.10. Let M be a term of A. Then 

CL;Bl- APPM:~ iff S;B + M:a. 

A simple inspection of the proof of this theorem, moreover, shows that rules (APP) 

and (I) are not needed if a term has a normal form. So the basic system I- turns out to 

be complete for the terms that have normal form. 
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Corollary 4.11. Zf M is a term of/i which has a normdform then 

CL;B F M:a iffS;B + M:a. 

The approximants of Y,, for instance, are the terms of the shape from 

A simple analysis shows, for instance, that CL EAPP Y~:(cI+cI)+c( for all types ~1. 
This then implies 

and this shows that FIX is a correct choice for the abstract interpretation of the 
recursion operator. 

All the above results hold also if we consider S’ instead of S, i.e. if we consider only 
bot and w as basic types. 

In the presence of constants, the truth of Theorems 4.4 and 4.10 depends on the 
adequacy of the set of types assigned to the constants. The addition of YF,x, for 
instance, preserves completeness. Completeness fails when $is added. This is due to 
the fact that it is not possible, with the basic types in K,, to give a complete 
characterization of its behaviour. 

We remark, lastly, that if we define 

we do not get an interpretation of A,. In fact [-I* is not compositional, in the sense 
that [MN] *< is not equal, in general, to ([M-j* 5). ([IV]* 5) (we only have 

[MNn*5~([[Mn*r).([Nn*5)). 

5. Completeness proof 

In this section we give in some detail the proofs of Theorems 4.4,4.10 and Corollary 
4.11. The proof will be given using the technique introduced in [lo]. The main idea is 
to define, for each type CI, a value taE[TajS which completely characterizes the 
behaviour of the elements of type CI. 

Recall that application in D is defined by 

i 

f(e) if d=in,,, (f) for some ~E[D-D], 

d’e=F(d)(e)= _t_D if d=_l_D, 

T otherwise. 

For all LXET~~ we now define element PED and A”E[D+[D+D]] by induction on 
types. 
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Definition 5.1. For all CIE TKs let P’, A” be defined by 
(1) t”=T, 
(2) tint = in,(O), 
(3) tboo’ = in&rue), 
(4) tbot = I, 
(5) A” = Iu.idD, 

idD if u=in&) for nEN or u=l, 

idD if v=in,(t) for HEN or o=l, 

(8) A”‘=Lu.if u= I then idD & h.T, 

(9) A’(u)= 
idD if ~=in~,,,~u’ or u= I, 

Au. T otherwise, 

(10) t-b= WWa(4)(tS)), 

(11) A a-s=Iu.(AS(u~t”)~(A’(u)), 

(12) t ““B=t=ntB, 

(13) A =“p=A”~Afi, 

where n, u denote, respectively, the 1.u.b. and g.1.b. in D. Note that d”(u) is either idD 
or lo.T. 

Ai”‘, Abo’ and A’ characterize, respectively, N, B and [D-+0] in the sense that they 
yield T whenever applied to an element of D which does not belong to N, B or 
[D-D]. Note that Ai”‘, Aboo’ and A’ are continuous and internally representable. 

To simplify notations in the rest of this section we will identify a and [[NJ’. 
Moreover, we will write simply cc d p for CL I- a < p. 

The following lemma can easily be proved by induction on types. 

Lemma 5.2. (i) Ifa<B then ta E to and As E A”, 

(ii) ifcr-fl then ta=tP and A”=As. 

In the following lemmas it is proved that ta belongs to the interpretation of a, and A” 

is a function (representable in D) that, in some sense, characterizes type c1 in the same 
way as A” do for K. 

Lemma 5.3. (i) Pax, 

(ii) UEU * A”(u)= idD. 

Proof. (i) and (ii) are proved simultaneously by induction on u. If c1 is a basic type the 
proof is immediate. The induction step is by cases on CL. 

The case CL A /3 where either M. or fi is a basic type and a+/3 are immediate from 
the preceding lemma. 
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Case 1: cr=B-y. 

(i) Let d~B.tP’Y(d)=(Aa(d).ty)=ty by induction hypothesis (i) and (ii). 

(ii) Let &/3+y. Note that in this case d’(d)=idD and d.tSq. Then AB’Y(d)= 
AY(d.ta)o A’(d)= AY(d. tS)= idD by induction hypothesis (i) and (ii). 

Case 2: cl=/j\iel(yi+6i). 
(i) tr\i~I(Yi-~i) E tYi-& Eyi~6i for all iel (by Definition 4.2 and induction hypothe- 

sis). Now recall that the interpretation of types is downward-closed. 

(ii) Let tiE/j\isr(yi-*6i) then UEYi~~i for all iE1. Then AAi=rc~~+si)(u)= 
u {Ayi+6i(u) 1 iEl} = idD by induction hypothesis. 

In the proof of the following lemma we often use the following facts about type 

interpretations: 

l The interpretation of a type a-+fl is contained entirely in the component [O-O] of 

the domain plus I (which belongs to the interpretation of all types), 

l t“, where K is a basic type and cannot belong to the interpretation of any type of the 

shape cl+/% 

Lemma 5.4. (i) YE/3 +- ci <p, 

(ii) AB(t”)#Au.T =S CC</? and A”(t”)=id,, 

(iii) P” . t”#T =a cc</? and t~“.ta=tT. 

Proof. By induction on the total number of “arrows” in U, /I and z. If c1 is a basic type 

or a type of the form AiGl( flj+j?;) A k where k is a basic type different from o, (i)-(iii) 

are obvious. 

The induction step is by cases on CI. Observe that tp”. ta = As(P)(f). 
Case 1: c(=y+& 

(i) ty”E/3 implies that either PEW or /I=Ai,l(B:+fi;) for some finite set I of 

indices. The former case is trivial. In the latter case we must have ty”e( /?:--+/?I’) for all 

iEZ. We omit the subscript i writing (/I’+/?“) for (ji-+/3;). It is enough to prove that 

y-CI<(/?‘+/?“). Now we have ty”. tS’=AY(tS’)(td) which is equal to (ifAY(ta’)#lv.T 
then t’ eEse T)E~” (by induction hypothesis). Then either j?“=o or, by induction 

hypothesis, we must have 8’ d y and 6 G/Y’. In either case y-+S d/I’+/?“. 

(ii) Also in this case we have either /?=o or /I= ~\i,l(B:-B’i’) for some finite set 

I of indices. In fact, if /I=Ai,,( /$--+b:‘) A k for any basic type k, we have immediately 

AS(ty’d) = Iv. T. If B = w, the case is trivial. Otherwise, arguing as before, it is enough 

to prove y-&<(j3’+fi”) where (/3’+/3”) is (/I+/$‘) for any iE1. Now 
Aa'-fl"(tY'")=A@"(t y+6. ta') #Au. T implies either /I” = o or t y-a. tp’ # T. In the former 

case, y+66/3’-+w always holds. In the other one we have, by induction hypothesis 

(iii), p’ d y and tY’“. tS = ts from which 6 <fi” follows by induction hypothesis. The 

thesis follows from rule (-) of Definition 2.1. 

(iii) tS”. ta= As(t”)(t’). We must have As(P) #Iu.T, and the proof follows easily by 

induction hypothesis. 



Type inference, abstract interpretation and strictness analysis 139 

Case 2: GI = ~\iEI(Yi-*8i). For points (i) and (ii), arguing as in the previous case, we 

can reduce to the case in which fl= p’- 0”. 

(i) t/j\‘.,(Y; +s~),/?‘-+Bf’ implies that e “Lf t~i~~(yi”~). tb’~/?“. The case B” z w is trivial. 

Else we have e = niol {A yi(tp’)(tdi)} = n (tat 1 p’ < yi} (by induction hypo- 

thesis)=tAiEl’i where J= {i 1 /?‘<yi}. Moreover, e=t A~~J*~~/?” implies, by induction 

hypothesis, A\isJ 6i <p”. Then we have ~\i.r(Yi-‘Gi)~~i,J(Yi~6i)~~isJ(Yi)-’ 

/j\isJ tGi)GP’+P”. 

(ii) dB”B”(t”)= dfi”(ta. tfi’) and proof proceeds as before using induction 

hypothesis. 

(iii) ds(t”)(t’) # T . implies Aa(P‘)#2u. T and the proof is similar. 

Proof of Theorem 4.4. We have to prove that CI E p implies CI Q b. Now TV c p implies 

t’E/?, which implies u < j? by the preceding lemma. 

We need one more lemma to prove the completeness theorem (Theorems 4.10 and 

4.11). Let B denote a typing context. Let ps be the environment defined by 

ps(x)= ta if x:cr~B, 

T otherwise. 

Let t, be the system obtained by eliminating rule (APP) from t-,,,. 

Lemma 5.5. Let A be an approximate normal form without occurrences of constants. Then 
(i) [A] pBeo implies B FI A: 6, 

(ii) Au. T # A”( [A] pe) implies B I-, A : o. 

Proof. By simultaneous induction on A. We have four cases. 

Case 1: A=l.. 
Both (i) and (ii) are trivial by rule (I). 

Case 2: A E x. 
(i) We must have x : TEB, so pB(x) = t’. By Lemma 5.4 trEo implies T < 0. We can 

then prove B ki x: 0 using rule (G). 

(ii) Similar, using Lemma 5.4(ii). 

Case 3: A=xA, . ..xA. (n>O). 
(i) We must have x: TEB for some type z. 

If r=/‘/iel (rf-+zy) A k where k is a basic type and I is any finite set of indices, then 
2<0+ ... +W+CJ (n occurrences of w) and, since B l-, Ak: co (1 Q kdn), we have 

BklxAl . . . A,:o. Else let ZN/~~~~(+Z~)) we have 

[xA1 . . . A.IIPB=[xIIPB.[[A~~~P~...[IA~~~P~ 

=T ‘-I (7’+r’) [A 1 ] pB . . . [An] pB 

=ii {A”(lIAd /M”+ [1Ad PB ... CAnI PB 

= PEJ@:). [AZ] pB . . . [A”] PB, 
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where J=(iI(dr:([A,ljps)#~v.T}. Then, for all &J, we have BFIA1:r: by induc- 
tion hypothesis, i.e. B t, Aj: AjeJ ti by (A I). 
Moreover, observe that tA\‘EJ(7Y). [A21 pB . . . [An] pB= [yA, . . . An] pBf, where B’ = 
B~{y:~~,,r~} where y is any variable not free in B. Let t=A\isJz;. We then have 

lyAz . . . A,JPB~{~:~}= and this, by induction hypothesis (i), implies 

Bu(Y:~) ä I(YAZ . . . A,) : 6. Then we get a proof of B FI ( yA2 . . . A,) : CJ by replacing 
the assumption y: r with the deduction of B Fl(xAI): 5 obtained using 
B~-,A,:A~,,T;} and the fact that l\i.J(Tt:~Z;)~~\ieJZ;~~\ipJZ;. 

(ii) The argument is similar to the previous one. Now we must have 
2v.T #d”([yA2 . . . A,,] pBv~v:~~) and we can argue as before by using induction 
hypothesis. 

Case 4: A-LA’. 
This case is simple and is left as an exercise. 

Proof of Theorems 4.10 and 4.11. We prove the “if” direction. Assume S; B + M 

CT using 
rule APP. 

As for the corollary observe that if M is in normal form we need neither rule (I) nor 
APP. Then we can use the fact that types are preserved by B-equality. 

Since FApp on approximate normal forms is a decidable relation, we have that 
F APP is II?. Indeed, it is complete II:. 

We conjecture that, with a slight complication in the proof, these theorems hold 
also if we consider c.p.o.s instead of lattices. 
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Appendix 

In [ll, Proposition 2.13(ii)] the following characterization of filter domains in 
which all continuous functions are representable, is given. 

Theorem A.l. In a jilter domain 9’ all continuous functions are representable ifs 
Z t- AiEI(ai+fii) <y+6 (where 6 #CO and I is a jinite set of indices) implies that there 
exists J G I such that C I- y ,< A\isl ai and .Z F ~\ielpi < 6. 

The proof of [12] is given for context C containing o < w--to; however, this axiom 
is not used in the proof, which holds unchanged assuming the weaker axiom. The 
basic difference is that assuming o < w+w the least “constantly bottom” function is 
identified with the bottom element of 9, while in our case it is not (see also [15]). 
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Note that if CIE TK then u = disk (Cri-Bi) A ~\isJ (Ki) where I and .Z are finite sets of 

indices. 

In order to obtain the relation F 0 G = id we still need to prove the following 

theorem. 

Theorem A.2. In a jilter domain, if all continuous functions are representable then 
F, 0 G, = idCgz,pl. 

Proof. LetfE[F+P]. Let d=G,(f)=t”{a-+PIflEf(t”a)}. Now let g=F,(d) and 

assume g#J: Then there exists a point y such that g( f”y)#f(f”y). Then there must 

be a type 6 such that GEg(f”y) but G$f(f’y). Now GEg(t”y)=F,(d)(f’y) if y4Ed 
for some type y. But y4Ed implies ~\i.l(ai-pi)~y~G for some finite I, where 

Bi~f( t’cci) for all ill. By Theorem A.1 then there exist J G Z such that y E A\isJ ai and 

A\isJpi G 6. NOW t’ai c t’y and, by monotonicity, f( r”Ui) Gf(t’y) and, since 

piEf( t”Ei), then fljEff( t”y) for all ~E.J. Clearly, Aiel (fii)Ef( t”y) and then SEf( t”y) 

against the hypothesis. 0 

Now we want to define a notion of normal form of a type. 

Definition A.3. Let C be a safe context. The function normal form of a type 

AieI(ai+Bi) A Ai.J( i) . K 1s o bt ained by replacing all the occurrences of functional 

atoms ICY in A\isJ (xi) by their equivalent C(i~pi. Letfnf((a) denote the functional normal 

form of ~1. Thefnf of a type c1 is clearly equivalent to ~1. 

Lemma A.4 Let z be a safe inclusion context over K. Zf C k- a<B and fnf((cr)= 

~\i,l(afjai2)(a:#0)thenfnf(b)=~j,,(Bj_BjZ) d an we have that, for all jeJ there 
exists ZJ c Z such that 

(1) CFPfG/jieIJ~!2 

(2) Ct-A/l\i,I,mf<fij’. 

Proof. The proof is by induction on the derivation of C t- c1 Qfl. If C k cc<B is an 

axiom the proof is immediate from the definition of safe context. In the induction step 

the only nontrivial case is rule (trans): 

by the induction hypothesis fnf(y)=AKEx(y~+y~) and so, again by the induction 

hypothesis,fnf(P)=~j.J(PS~83). 
We have now to show that conditions (1) and (2) hold. We give the proof for (1) ((2) 

is very similar). 

By the induction hypothesis for all /3j there exists Kj E K such that 

CFPj’<A KEXJyi. Again for induction hypothesis, for each yi there exists I, c Z 

such that C t- 7; < Aiel, CC!. Then, by transitivity C k pj <l\ieH af where 

Z-Z= UKEXIZK. 0 
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Corollary A.5. If C is a safe inclusion context over K, then all continuous functions are 
representable in 9” and 9’ is a model of A,. 

The proof is a trivial application of the preceding lemma. 
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