
Theoretical Computer Science 121 (1993) 113-143

Elsevier

113

Type inference, abstract
interpretation and
strictness analysis*

Mario Coppo and Albert0 Ferrari
Dipartimento di Informutica, Universith di Torino, Corso Svizzera 185, 10149 Torino, Italy

Abstract

Coppo, M. and A. Ferrari, Type inference, abstract interpretation and strictness analysis, Theoret-

ical Computer Science 121 (1993) 113-143.

Filter domains (Coppo et al., 1984) can be seen as abstract domains for the interpretation of

(functional) type-free programming languages. What is remarkable is the fact that in filter domains

the interpretation of a term is given by the set of its types in the intersection type discipline with

inclusion, thus reducing the computation of an abstract interpretation to typechecking. As a main

example, an abstract filter domain for strictness analysis of type-free functional languages is

presented. The inclusion relation between types representing strictness properties has a complete

recursive axiomatization. Type inference rules cannot be complete (strictness being a II? property),

but a complete extension of the type inference system is presented.

1. Introduction

Abstract interpretation is an elegant and useful framework to study a number of

methods for extracting informations from programs, usually with the aim of perform-

ing complile time optimizations. The basic idea is to define interpretations of the

source language in “abstract” (usually finite) domains whose elements represent,

roughly speaking, properties of elements of the initial “standard” domain, which can

be mapped homomorphically in the abstract domain. A basic request to this mapping

is that of being safe, in the sense that if an element x is mapped to x’ then the property

represented by x’ is surely a property of x. What is usually not required from abstract

Correspondence to: M. Coppo, Dipartimento di Informatica, Universita di Torino, Corso Svizzera 185,

10149 Torino, Italy. Email addresses of the authors: coppo@di.unito.it and ferrari@di.unito.it.

* Research partially supported by M.P.I. 60%, comitato per la matematica.

0304-3975/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved

114 M. Coppo, A. Ferrari

interpretations is completeness since this, in most cases, immediately leads to unde-

cidability while abstract interpretations are expected to be computable in a reasonable

time. Abstract interpretation has been applied to the study of several kinds of program

analysis like data flow analysis [25] and strictness analysis [9]. Strictness analysis, in

particular, is one of the most interesting applications of abstract interpretation for

functional languages.

Abstract interpretation has been developed mainly for first-order, simply typed

languages. In this case, in fact, the number of elements of both the basic and the

functional abstract domains is small, and the computation of abstract interpretations

is easy. For instance, taking a language defined on the flat c.p.0. NL of integers the

abstract domain for strictness analysis A has only two elements: {I} and {N,}

representing, respectively, the property of “being the value I” and that of “being any

value” (possibly I). The space of continuous functions [A+A] has then only three

elements: the function constantly _L (which represents the abstract interpretation of

the function constantly _L on the standard domain), the identity (which represents the

abstract interpretation of strict functions) and the function constantly T (which can be

the abstract interpretation of any function). When languages with higher-order

functions are considered as in [7], the number of elements of the abstract domain

increase exponentially with the complexity of types and the standard techniques for

the evaluation of abstract interpretation become quickly impractical. It seems more

difficult to generalize the notion of abstract interpretation to polymorphic languages.

A possible way out is to develop abstract interpretations for typed higher-order

languages [7] and to use the notion of polymorphic invariance [l, 41. It seems even

more difficult to define a notion of abstract interpretation for type-free languages. No

satisfactory attempt of doing this is known to the authors.

In this paper, we use filter domains [6] to define a notion of abstract semantics for

(higher-order) type-free or polymorphic functional languages, in which the same term

can be applied to arguments of different types. The elements of a filter domain are

defined as sets of formal types representing properties of values closed under implica-

tion and conjunction. Types are defined from a set of basic types by the + (function

space) and A (intersection) type constructors, and are associated with terms by

a formal type inference system with inclusion. The interpretation of types as subsets

determines an inclusion relation that can often be axiomatized in a simple way and

characterizes the properties of the type assignment system and of the associated filter

domain (our “abstract” domain).

A basic feature of our approach is that, instead of introducing a simplified abstract

language to compute abstract interpretations (see e.g. [9]), we interpret directly the

basic language in the abstract domain reducing the computation of abstract inter-

pretation to typechecking. This view is especially interesting in the case of higher-

order functions where types are a natural way of representing complex functional

properties. The inference procedures for a specific type system (like the one for

strictness analysis), moreover, can be combined with standard type inference algo-

rithm [16] in order to reduce the total amount of compile time effort. Typechecking of

Type inference, abstract interpretation and strictness analysis 115

intersection types is in general undecidable [6], but a complete inference procedure is

known [12,26] and decidable restrictions have been studied [14].

The fact that domains can be defined by taking as elements the collection of subsets

(types) of a given family closed under inclusion and intersection is well known. An

approach to the theory of domains based on this idea has been given in [28], and then

further developed in [29], leading to the notion of information system. Filter domains,

indeed, can be seen as particular cases of information systems in which the interpreta-

tion of the elements of the formal filters as types is made explicit. The basic properties

of filter domains have been investigated in [111. The aim of this paper is that of linking

the notion of filter domain with that of abstract interpretation.

A similar approach to the theory of domains has been developed, in a more general

framework, in [2], where a notion of domain logic as a tool to reason about elements

of domains based on Stone duality is introduced. The technique developed in [2] gives

a tool to find a “logical” representation of a given domain via an isomorphism in

which each point of the domain is represented by a set of formulae characterizing it. In

our approach, we are interested, instead, in finding out the (abstract) domain con-

sidering only some properties of its elements (the ones under investigation). This can

lead, for instance, to the identification of points which share the same properties.

What we find is not, in general, an isomorphism but rather an embedding of the

standard domain into the abstract one. The structure of a filter domain is determined

essentially by the inclusion relation between types induced by the properties under

investigation. Filter domains, however, can turn out to be isomorphic to solutions of

recursive domain equations (as it happens for the examples of this paper).

The basic example developed in this paper is strictness analysis. The abstract

(reflexive) domain will be obtained as the filter model determined by a type system for

the study of strictness properties of lazy functional languages. We will show, in

particular, that the inclusion relation determined by the interpretation of types as

strictness properties has a complete finite axiomatization.

An application of domain logic [2] to the investigation of strictness properties of

a simply typed functional language has been given in [181. The main achievement of

[18] is a logical representation of the abstract domains defined in [7] in which the

logical formulae (types) are interpreted as ideals over the (abstract) domains. This

approach is useful in order to use inference to prove strictness properties of simply

typed terms, but cannot be extended to polymorphic or type-free languages. In [lS],

moreover, no link is established between abstract domains and standard ones (for this

purpose the paper relies on the results of [7]).

The idea of using type inference to prove strictness properties of higher-order

functional languages was first introduced by Kuo and Mishra [19,20], but there are

many substantial differences between their approach and ours. The type system of Kuo

and Mishra is sound for a head reduction evaluation strategy (for which 1x.M diverges

if M diverges), while we consider a lazy evaluation in the sense of [3] (in which Ix.M is

not divergent even if M is). We also prove stronger completeness results for our inference

system, with respect to both the inclusion relation and the type assignment rules.

116 M. Coppo, A. Ferrari

The type assignment system for strictness properties however is not complete (even

if it determines a filter domain which is indeed a A-model) in the sense that not all

types that represent a property true of a term can be assigned to it. This is a conse-

quence of the fact that strictness for higher-order languages (based on lambda-

calculus) is a II: property while the finitary inference system is Zy. A complete

extension of the inference system can be defined by adding an infinitary rule based on

the notion of approximant of a term [S]. This extended system will be used, for

instance, to justify our treatment of fixed points in the abstract interpretation.

Section 2 is devoted to the introduction of the basic notions about type inference

and type interpretation, while filter models and their connections with abstract

interpretation are presented in Section 3. Section 4 presents the inference system for

the study of strictness properties. The basic completeness theorems are proved in

Section 5.

2. Type assignment and type interpretation

In this section we give a short survey of the intersection type system for terms

of a functional programming language. For more details and insight, see [S]. We

assume that the reader is familiar with the basic type inference system of ML-like

languages.

Intersection types can naturally be introduced in type inference systems in which

the same term can have many different types. In this context we can introduce an

operator of type intersection A which allows to assign different types to the same

term. A type of the form c1 A /I can be interpreted as the type of terms which have both
type u and type /I.

Let us consider, for instance, the operator of self-application Ax.xx, which has no

type in the basic system because x should be assigned a type c(such that CI=C(+~,

which is clearly impossible. Using A we can assume x : c1 A (E-P/?) (i.e. x has both types

c1 and a+/?) from which we can deduce x : a+j3, x : c1 and, using (+E), (xx) : j?. Then

using (+I) we have Ax.xx: CI A (cr+b)+jl.

It is useful, moreover, to assume a basic type o to be interpreted as a “universal”

type that can be assigned to any term (including the unsolvable ones). For instance, let

P=ly.lx.x. A natural type for P is O+CL+CI for all types ~1, meaning that P can be

applied to any term giving a term of type c(-KY. This is particularly sensible in

a language with lazy evaluation. In fact, since P will never evaluate its argument, there

is no need to assume any type constraint for it.

Let K be a set of basic types (like int and bool). The set of types over K is the least set

TK (T when K is understood) such that

(1) K G TK,
(2) WET”,
(3) TV, /kTK =+ tl+/kTK,
(4) CY., PeTK =s c1 A /~ET~.

Type inference, abstract interpretation and strictness analysis 117

We agree that A takes precedence over +, i.e. y A a+/3 is equivalent to (y A cr)+/I.

Intersection types like y A o! are considered modulo permutations and repetitions of

the same type, i.e. CI A fi is identified with /I A CI and c(A c1 with ~1.

2.1. Inclusion theories

The interpretation of types as sets of values leads naturally to the notion of type

inclusion. We have, for instance, that (the interpretation of) type LX A fl is included in

(the interpretation of) types CI and /I. We introduce a formal relation 6 to represent

type inclusion.

An inclusion statement is an expression c(</I (where c(, PE TK) whose intended

meaning is that (the interpretation of) c1 is a subset of (the interpretation of) /I. An

inclusion context (over a set of types TK) is a set C of inclusion statements. Type

inclusions between types are proved in a formal deduction system where we have

judgements of the shape C F a<fi, where C is an inclusion context, meaning that

GIG/I can be proved from the assumptions in C. Usually, TK is implicit in C and will

not be formally mentioned. The following definition gives the axiomatization of the

relation < .

Definition 2.1. (i) The formal system for inclusion judgements is defined by the

following rules.

(‘4x1)

64x4

64x3)

64x4)

64x5)

(‘4x6)

64x7)

(A)

(-1

(trans)

(ii) Let C E LX-~ denote C t- cc<p and C E /?<a.

118 M. Coppo, A. Ferrari

The less intuitive points in the definition of type inclusion are perhaps Ax3, Ax7 and

rule (-). In case of Ax3 note that w is intended to represent the whole domain, and

that in our language any function can be seen as a function on the whole domain

(giving possibly an “error” result). Indeed, using Ax2, Ax3 and (+), we have

C t M-MD - w+w (for any C). In the case of Ax7 observe that if an object maps a into

y and CI into p then it maps c(into the intersection of y and fi, i.e. in y A /I. Using the

other axioms we can prove C k (a-y) A (a-/?)-cc-y A p. Rule (-) represents the

antimonotonic-monotonic behaviour of +.

Given an inclusion context C its inclusion theory C is the set of all inclusions cr</?

provable from C. We will sometimes identify z with C.

2.2. Type assignment rules
Our basic language is the (type-free) lambda-calculus with a set C of constants. Let

/ic denote the set of its terms defined by the grammar

M ::= C 1 V 1 (MM) 1 h.M

where V is a set of term variables. A formal notion of convertibility L between terms

can be defined as usual [S]. Additional conversion rules for the usual arithmetical and

boolean constants can also be considered if necessary.

The formal rules for type assignment include, besides the usual arrow introduction

and elimination rules, two rules for intersection introduction and elimination, one rule

to handle type inclusion and one for o. We associate with each basic constant c a set of

types z, which represents the intended types of c.

A typing statement is an expression of the form M :a where a is a type and

M a type-free I-term.

A typing context B is a set of statements of the form {x1 : a,, . . . x, : cc,} where each

subject xi is a variable. All variables in a typing context are assumed to be distinct.

A typing judgement is written in the form Z; B F M: CI where C and B are,

respectively, an inclusion and a typing context.

Definition 2.2. Type assignment rules.

War) C;B I- X:CI if x:MEB

(Const) C;B I- c:tl if aEt,

(-+E)
C;B k M:a+/3 C;B I- N:a

C;B F (MN):fi

(+I)
C;Bu(x:d~} I- M:/?

C;B k Ax.M:cr-+P

Type inference, abstract interpretation and strictness analysis 119

(AI)
C;B k M;ci C;B I- M:fl

C;B k M:aAfl

(AE)
C;B E M:ciAB

C;B k M:a C;B k M:B

(G)
C;B t- M:a c I- ‘!x<p

C;B F M:P

The syntactic properties of the system depends heavily on C. If we take C = 8, for

instance, we can prove (a number of) normalization theorems (see [6]) which are not

true for arbitrary inclusion contexts. For more details on the syntactic properties of

the system, see [S]. We will often omit Z or B when they are empty.

2.3. Semantic structures

As remarked before, a suitable notion of semantics for this system can be given

interpreting both terms and types in a model of the type-free language. We need

a definition as general as possible in order to include most interesting examples. The

following definition of model is based essentially on the notion of environment model

introduced in [22] (see also [S, Section 53).

We first define the interpretations of & in structures Al = (D, F, G) where D is a set

containing at least two elements and F and G are two functions:

F: D+(D+D), G:(D+D)+D

and (D+D) is some collection of functions from D to itself.

In a structure J%? each element of D can be interpreted as a function via F. We say

that a functionf: D+D is representable in &! iff= F(d) for some dED. Obviously, by

Cantor’s theorem, not all functions from D to D can be representable but only a subset

of them.

Given a structure, an interpretation of A-terms can be defined in a canonical way,

provided that (D+D) contains enough functions to define the meaning of all A-terms.

A structure is a model if it satisfies an additional condition which ensures that the

interpretation of terms is preserved by /3-convertibility.

Given a set D, let an environment be a function p: V-+D, assigning values to

variables. p [x/o] is the environment which is like p except for assigning to the variable

x the element v of D. Let Env denote the set of all environments. Finally, let 99 : &+D
be a function that interprets the constants of &.

Definition 2.3. (i) An interpretation of & in a structure 4 = (D, F, G) is a partial

function

[-]“:&-Env+D

120 M. Coppo, A. Fewari

such that

(1) irxIl”P=P(x)Y
(2) ccll~P=Wc)Y
(3) [[MNn-Kp=F([Mn”p)(~Nn-Up),
(4) [Lx.Mj”p=G(f) wheref=luED.[[Mn-Kp[x/u]

provided ~E(D-0).
(ii) A structure ~2’ = (D, F, G) is a premodel if 1-1 x is always defined, i.e. if

for all terms M and environments Env.
(iii) A premodel A= (D, F, G) is a model of /ic if F 0 G= id,,,,,.

If F 0 G= id,,,,,, F and G define a retraction of D onto (D+D). It can be proved
that the interpretation of terms in models is preserved under p-conversion (this is not
necessarily true for arbitrary structures). If D is a domain one usually takes
(D-D)= [D-D] (the domain of continuous functions from D to itself). Take, for
instance, a domain D satisfying the equation

DEA+[D+D],

where A is any domain of basic values and + represents disjoint sum. A canonical
choice for F and G, in this case, is the following:

(e)

Q

if d=inlD,Dl(f) for some ~E[D-D],

F(d)(e)= ID if d= ID,

? otherwise,

G= inlD+D1,

where inl,,,l is the injection of [D-D] in D and ? is a distinguished element of A that
represents an “error” element. It is well known that [D-D] is rich enough to contain
all the functions arising from the interpretation of terms. Moreover, it is immediate to
see that F 0 G = id,,,,, so this structure is a model.

2.4. Type systems and type interpretation

Given a model Jx’= (D, F, G), types can be interpreted as subsets of D starting
from the interpretation of basic types. This is formalized in the following definition of
type system.

The choice of the interpretation of the basic types characterizes to a great extent the
kind of properties represented by types. So, for isntance, if a basic type < is interpreted
as the set of all elments of D which have a defined value (i.e. different from I in
a topological model), the interpretation of 5-5 will denote all the elements of D which
represent total functions on D, i.e. functions which give a defined result whenever
applied to a defined value, and so on.

Type inference, abstract interpretation and strictness analysis 121

Another very important point is the interpretation of the + type constructor: it

defines which elements of D we want to have a meaning with respect to the operation

of application. For instance, integers are usually considered values which cannot be

applied to anything in a meaningful program and, for this purpose, an internal “error”

element is usually defined in D in order to map in it all incorrect applications. But this

is no longer possible, for instance, in the case of the “undefined’ element of a domain

(I) since an undefined term applied to any other value cannot produce a defined

value, not even “error”. So we can consider I as a value for which application can be

meaningful.

In the following definition of type system we include a parameter @ which repres-

ents the elements that we want to include in the interpretation of functional types.

Obviously, @ must include at least all the elements of D which are representative of

functions.

Definition 2.4. (i) A type system is a tuple Y = (A, K, .X, @), where M = (D, F, G)

is a structure, K a collection of basic types, X : K+2D an interpretation of the basic

types K in J%’ and @ is a subset of D such that Go F(D) s @.

(ii) The interpretation of types in a type system Y = (A, K, X, @) is the function

1-1 9 : TK-+2D defined by

(1) [‘cljY=X(Jc),

(2) ilc@=D,

(3) Ila+rn Y = {de@ 1 eE[lanr + F(d)(e)E[rjT},

(4) ww=bnww.
We will write simply [ma when .Y is understood. We obviously assume that the

interpretation of types is consistent with the interpretation of the constants of the

language, i.e. [cj+[Ujr for all CIEZ,.

Note that @ = i[o-+on F in all type systems. There are some canonical choices for

@ proposed in the literature. One (called by some authors the “F” semantics of types

[17]) is to define @= Fo G(D) taking exactly all elements which are images of

functions via G. Another popular choice, known as the “simple” semantics [17,23], is

to take @ = D. In this case we consider any application to be meaningful, as in the

models of the pure A-calculus.

Note that in interpreting types according to conditions (l)-(4) of Definition 2.4(ii) it

may happen that the interpretation of some intersection type is empty. In this case

some types have a trivial interpretation. For instance, if [an r = 8 then [B+cln Y = 8

while [&-fin Y = @ whichever is the interpretation of p. Obviously, the interpretations

of types which can be assigned to closed terms are never empty.

The presence of empty types can be avoided by interpreting types in a collection of

subsets of D such that intersection is always nonempty, as the collection of all ideals

over D. A more general approach is that of restricting the set of types in such a way as

to rule out all types that would have an empty interpretation. In this paper we will

take the former approach to avoid the introduction of further technical details. This

122 M. Coppo, A. Ferrari

will sometime lead us to obtain lattices instead of c.p.o.s, but this is not relevant in the

present context. All results of this paper can be formulated in a more general

framework in which not all types need to be defined (see [S]).

A particular type system determines an inclusion relation between types.

Definition 2.5. Let Y be a type system.

(i) The inclusion theory determined by Y, denoted by CT is defined by

CT={c&~I [Ml.” E [PI”}.

(ii) Y satisfies an inclusion context C if C E CT. A Y-inclusion context (theory) is

any inclusion context which is satisfied by Y.

It is easy to prove that CT is indeed an inclusion theory, i.e. CT =CT. Indeed CT is -
the largest inclusion theory satisfied by Y.

We write Y + a<fi if cz<fi~Z~. C + cc<p if Y I= a<fi for all type systems

r satisfying C.

Let JJ%’ be a model and Y = (A, K, X, @) a type system over J+?. If p is a

term environment (i.e. a mapping V-D), we say that p satis$es a context

B={q:q,..., x, : a,} if p(xi)E[Uilj Y for all i. Y-; B + M : u means that for all environ-

ments y satisfying B, one has [A41 Mp~[~I] r and C ; B + M : u that for all type

systems Y satisfying C one has Y; B + M: a. We will assume implicitly that in

all interpretations J and all type systems Y over &Z the interpretation of a constant

c of the language is correct with respect to the types in t,, i.e. [[c~]~~E[c~J~ for

all NET,.

An easy induction on derivation shows that inclusion and type assignment rules are

sound with respect to this notion of semantics.

Theorem 2.6. (i) C E a</? =S C I= cc<p,

(ii) C;B F M:CY * C;B + M:u.

Completeness has been proved [13], for pure A-terms, using term models.

Theorem 2.7. Let M be a term without constants. Then
(i) Z I= a</I * C E cc<p,

(ii) Z;B + M:a =z- C;B F M:a.

3. Filter models as abstract interpretations

Filter models have been introduced in [6]. The basic observation [28] is that, under

certain conditions, the interpretation of, intersection types with inclusion can be seen as

a basis for a topology whose abstract points determine a domain. The interpretation

Type inference, abstract interpretation and strictness analysis 123

of a term in this domain is given by the set of its types. Filter domains can also be

seen as a kind of Scott’s information systems [29] where both elements and consistent

finite sets are represented by types. In this section we start with a brief review of the

construction of filter domains. An extensive study of filter domains has been done in

[ll], to which we refer for more details and proofs.

Let us first define a collection 9 (the abstract filters) of subsets of TK.

Definition 3.1. (i) Let C be an inclusion context over a set TK of types. An abstract

jilter over TK in Z is a subset d of TK such that

(1) WE4
(2) if CI, /IEd then c1 A flEd,
(3) if UEd and C k cl<fl then BEd.
(ii) Let 9” (F for short when K and C are understood) be the set of all abstract

filters over TK in Z. B is the jlter domain determined by K and Z.

Note that the set of all types which can be assigned to a same term (from a given

context) satisfies the closure conditions (2) and (3) by rules (A I) and (<) and contains

0 by (4.
Given any A s TK let rz { A} (the filter generated by A) its closure under conditions

(l)-(3) of Definition 3.1.

It is just routine to show that .P’ is a domain.

Lemma 3.2. .F” is a consistently complete, countably based algebraic lattice (a domain)
ordered by set inclusion.

In particular, the bottom element of 9 is t” {CO}. If d, ee9, we have d n e = d n e and

d u e = t” {d u e} (note that, in general, the union of two filters is not a filter). Note that

El--a</3 implies that tI{P} G tz(cr> and C E CC-P implies that t”{~}=t”{cz}.

Given a filter domain 9, there is a “canonical” way to obtain a structure by

defining two mappings F, : r J+ -[F-F] and G,: [9+91-F in the following

way.

Definition 3.3. Let F = 9” be a filter domain. Define

(i) F,(d)(e)=fr{j313a.a+/3Ed and tree},

(ii) G,(f)=f~{cr-*BIBEf(t~{a})}.

It is just routine to show that F, and G, are well defined. In particular, for all deD,
F(d) is a continuous function on 9 and F,(d)(e)sF. We will write d .e for F,(d)(e).

From the definition of G it turns out that G(f) is defined for allfE[@+F], so

(F, F,, G,) is always a premodel in the sense of Definition 2.3. Since the choice of

F, and G, is canonical, we will identify P with the structure (9, F,, G,).

124 M. Coppo, A. Ferrari

However, 9, in general, is not a model. In particular, we only have G, 0 F, E id9

and id,,,,, c F, 0 G, where c is the extensional order on functions (see [ll,
Propositions 2.8, 2.101).

There are interesting cases, however, in which all continuous functions are represen-
table in 9 (i.e. in which F(9)= [F+R]). In this case it is easy to see (an explicit
proof is given in the appendix) that F, 0 G, = id,,,,, and so F is a model for /ic (see
also [S, Section 51). A first example is when C = 8 (for any choice of K). This is the case
of the filter model introduced in [6].

To prove that a filter domain F’ is a model, it is then enough (but not necessary,
see [ll]) to show that all continuous functions are representable within it. We will
give in the next definition a set of sufficient conditions on an inclusion context to
guarantee this. The representability of all continuous functions over F is possible
iff all step functions over SF are representable. This is possible only if cr+g<y+b
implies y < M and j<S (a complete characterization is given in the appendix).
The definition below gives a set of conditions on C which assure that the inclusion
statements introduced in C do not destroy this property. This is achieved by requiring
that the basic types in C do not interfere with the inclusion relation between functional
types. The condition is rather technical but, despite its “ad hoc” nature, it is enough
to handle many interesting cases (like, for instance, all the examples of this paper).

Definition 3.4. Let C be an inclusion context over a set K = (ICY, . . . , K,} of basic types.
Let C* denote the reflexive and transitive closure of C with respect to <.

(i) A basic type Ki is plain in Z if a-+fi<~&C* for any types CI, /?.
(ii) A basic type Ki is functional in C if cl+/?-rc+Z*.

(iii) An inclusion context C is safe if it satisfies the following conditions:
(1) all basic types are either plain or functional,
(2) all the inclusion statements in C have one of the following shapes:
_ c(A rc<fl or KG/I for K plain and a, PeTK,
- ~-tx+jI for KEK and a, PeTK,
_ lCi< 7Cj for 7Ci, ICjfZK,
_ co~o-wl

(3) If a+~dy+6~C* then both yda and jI<S are in C*.

Note that in a safe context we allow an atomic type to be equivalent to a functional
type provided this equivalence is consistent with the inclusion between atomic types.

Now we can prove the following theorem.

Theorem 3.5. If C is a safe inclusion context over K then F+ 0 G-. = id[p+~~] and SO

9’ is a model of AC.

The proof of this theorem is rather technical and it will be given in the appendix.

Type inference, abstract interpretation and strictness analysis 12.5

Example 3.6. Let us consider the set of types T# =T{i”t,bOO’} and Z# as the set

Note that Z# is the inclusion context satisfied by the interpretation of types as

ideals [21] over a domain satisfying DrN, 0 BI 0 [D-D], where NI and BI are

the flat c.p.o.s of integers and booleans values and @ denotes coalesced sum.

It is immediate to verify that both int and boo1 are plain so that C# is safe. The filter

domain 9# =9” is a domain which satisfies

Dz{int}I @ {bool}; @ [P#+F#]‘,

where {int} and {bool} represent one-element lattices and 0 represents coalesced sum

of lattices An element of 9 # . m fact, can only

(1) t’#‘{w} (the bottom ele’ment of 9#,

be of one of the following:

which also represents the function con-

stantly bottom),

(2) t”” (rc} where K is int or bool,

(3) a filter d, containing only o and “arrow” types, which is the representative on

a function via G,

(4) the whole set T@t~boo’l of types (the top element of F#).

Each element of B# which contains, for instance, int A (cr+fi) must contain also

boo1 and all other types in T(‘“‘, boo’). The fact that there is a one-one correspondence

between the elements d, and the continuous functions from P to 9 is a consequence

of the results in [l 1,6].

There is a close connection between the interpretation of & in a filter domain

9 and the type assignment system presented in Section 2, namely, roughly speaking,

that the interpretation of a term M in F is given by the set of its types.

Note that we directly interpret the basic language in the “abstract” domain.

Obviously, in this interpretation many elements which are distinct in the concrete

domain are identified. For instance, in the case of Example 3.6, all integer values are

interpreted in the element t”“{int} of 9#.

In particular, if 5: V-9 is an environment assigning to variables values in F,

define B, as the set of contexts built by assigning to each variable x a type (possibly an

intersection type) belonging to t(x), i.e.

&=(Blx:aeB * &(X)}.

,4, can be interpreted in any Y-filter domain 9 by interpreting the basic constants

by

M”= tw.

We have the following property [111.

126 M. Coppo, A. Ferrari

Theorem 3.7. Let 9=9’ be a jilter domain. Then

[Mj9[={alZ;13 I- M:afor some BEB,}.

The interpretation in filter domain then is effectively defined by the type assignment
rules introduced in Section 2.

In the following definition we introduce the notion of filter model determined by
a type system.

Definition 3.8. Let JV = (D, F, G) be a premodel and F = (A, K, X, @) a type
system over A. Then

(i) a F-filter domain is any filter domain 9’ such that C is a F-inclusion context,
i.e. an inclusion context satisfied by F,

(ii) FF denotes FZ9.
FY is the least F-filter domain in the sense that for any F-filter model 9 there is

a unique embedding i:9--+9’
d

.

A F-filter domain 9 can then be seen as an “abstract” domain whose elements
represent (sets of) properties of the elements of D. There is a natural way of relating
D (the domain of concrete interpretation) and F by a map abs, : D-9 as

which maps ED to the set of all types that represent properties of u. It is easy to verify
that absr(u)eS”, i.e. abs,(o) is an abstract filter. abs, is not, in general, an injective
mapping. If we see abs, as a relation ABSr c D x F, its inverse relation
CONC? = ABS;' represents a kind of “concretization” relation from the abstract
domain to the concrete one. We have that the relations ABSr and CONCF satisfy

CONCroABSr 2 idD,

ABS,oCONC,=id,,

where idD, ids represent, respectively, the identity relations over D and 9. These are
the usual relations between the abstraction and concretization maps in the theory of
abstract interpretation for functional languages [24] (see also [4] for a survey of the
basic concepts).

The relation CONC, is in general not a function but induces a map
concg : 9+2O defined as

conc,(d)={vIabs,(o)=d},

i.e. cone,(D) is the set of all elements of D whose abstraction is represented by d.
As a simple consequence of the soundness theorem (Theorem 2.6), we have the

following relation between the interpretations 1-1 M, 1-1 9’, which express the sound-
ness of our abstract interpretation concepts.

Type inference, abstract interpretation and strictness analysis 127

Theorem 3.9. Let 9 =9’ be a F-jilter domain where F= (A’, K, X, @). Then

for all environments p respecting 5 (i.e. such that t(x) E abs,(p(x))for all variables x).

The meaning of this theorem, which is only a reformulation of the soundness

theorem (Theorem 2.6), is that we are able, using the inclusion context determined by

a given type system, to deduce only properties which are true M. The abstract

semantics, in this sense, is “safe”. We remark, however, that [Mj”r need not contain

all the properties (i.e. types) that are true of M in the intended semantics (under the

assumptions in 5); i.e. [[MjF5 is in general only a (proper) subset of absT([[Ml&p).
This kind of incompleteness is typical of abstract interpretation. The finitary nature of

the type inference rules, in fact, can be an essential limit in the determination of the

properties of M. We will see an example of this in the section about strictness analysis,

where it is shown that only an infinitary rule can produce all the strictness information

about a term.

Remark 3.10. Usually in the results relating abstract and concrete interpretations [4],

an intermediate notion of “collecting” the interpretation is introduced. In the collect-

ing interpretation the standard semantics is lifted to operate over sets of values rather

than on values themselves. In the present approach, indeed, the relations ABS and

CONC can be seen as mapping between a collection of subsets of D and S rather

than D and 9. A theory of collecting interpretation could perhaps be developed,

following [24], using a suitable notion of powerdomain. It is not clear to the authors,

however, if this would be useful for the investigation of the relations between concrete

and abstract semantics.

An interesting case arises when 9 is a model. In this case we have, for instance, that

the types of a term M (in any typing context) are invariant under formal p-conversion

(since in a model the interpretation is invariant under equality). Moreover, we can

exploit the structure of the model to prove properties of the assignment system, as it

will be done in the next section.

Example 3.11. The following example shows how to build an interpretation that gives

information about the sign of a term [4].

We consider a language with only integer values interpreted in a model satisfying

DEN, @ [D-D].
Take the type system F + = (D, K +, 9, @) where K + is the set {nonpos, nonneg,

int}, 3 the interpretation of basic types which maps nonpos in the ideal of all non

positive number (including I) and nonneg in the ideal of the nonnegative ones

(including I) and @ = D.

128 M. Coppo, A. Ferrari

Let C+ be the inclusion context {nonpos<int, nonneg<int}. We associate the

appropriate types with any number and with the basic functions on integers like

’ 1
nonpos-+nonpos+nonpos

nonneg+nonneg+nonneg
z+ =

nonpos + nonneg + int

nonneg+nonpos-+int

nonpos+nonpos+nonneg

nonneg-rnonneg-bnonneg
T*=

nonpos-,nonneg+nonpos

nonneg+nonpos+nonpos

nonpos -monneg

5”“,,Y - =

It is easy to check that the system infers correct information for terms as in

C+ I- 151515*(-235):nonpos.

As another example we have

JJXdy._f(fxx)(fyy): (nonneg-+nonneg-+nonneg)+

with obvious meanings.

nonneg+nonneg+nonneg

We can now extend C + by defining the safe context:

~:=C+u(intA(a~B)dyI”,P,yETK+)u{O~O’W}.

Let 8+ =F--“:. Arguing, as in Example 3.6 we see that 9 + is a domain satisfying

F+=A@[cF++F+]T,

where A is the finite lattice

/+-----l
nonneg nonpos

\nneg A nod

This is the straightforward generalization to type-free languages of the abstract

interpretation of the “rule of sign”‘ for first-order languages.

Note that the filter domain construction is interesting also for inclusion contexts

C strictly weaker than CT. In fact, what is essentially expected from an abstract

interpretation is that it gives safe information, rather than complete. What is relevant

Type inference, abstract interpretation and strictness analysis 129

is how natural C is and how easily it can be used to extract information in the more

interesting cases.

For instance even FZ+ could, for practical purposes, be a good inclusion context

for the rule of sign. A simple exercise shows that its associated abstract domain

satisfies the equation

9x+ N =A x [F-T+-CW+],

which, however, seems less interesting as an abstract domain.

Abstract domains can be defined also for type system which are based on models

that are not c.p.0.s. The following example, which is taken from [13], introduces

a type system and an abstract domain for the study of normalization properties of

pure I-terms.

Example 3.12. Let us consider the pure lambda-calculus n and the term model of

b-equality JZ(j?) [S]. Jz’(j3) can be seen as a model in the sense of Definition 2.3 taking

F as formal application and G as lambda abstraction. Let N be the type system

(.,&‘(/I), KN, XN, &(/I)) where KN={O, 1} and sC~:/I-+~“(~) is defined by

l XN(0)= {[N] 1 N has normal form),

l XN(l) = { [N] 1 N has normal form and, for all n > 0, NMi, . . . , M, has normal form

whenever Ml, . . . , M, have normal form}.

Take C’ as the inclusion context built by the following six axioms:

C’={l<O, o-lG+O, l-O+l, oQo-w}.

The meaning of these relations is the following:

(1) If a term preserves normalization then it is normalizable, in other words the

property represented by 1 is stronger than the one represented by 0 and so 1 GO;

(2) A normalizable term, applied to a term that preserves normalization, is still

normalizable;

(3) If a term preserves normalization, applied to a normalizable term, gives a term

that still preserves normalization;

It is easy to verify that C’ is a N-inclusion context, even if C’ c CN (see [13], where it

is shown that C’ k CX<~ o CN k cc<fl hold s only if tl and /I are types without

occurrences of A).

However, C’ is powerful enough to prove interesting facts about normalization

properties of terms. For instance, we have CN I- Ax.xx: (O+O)+O, i.e. if we apply Ix.xx

to a term M mapping any normalizable term in another normalizable term, we have

that ((lx.xx)M) has still a normal form. This can easily be proved by observing that, in

general, for any type a which does not contain occurrences of o, we have Z’ k orb0.

Thus, we also have C’ E O+O<O. Now assuming x: O+O we can deduce x: 0 and,

then, (xx) : 0.
Yz’ is an (extensional) model satisfying

~r’~[~--z’,~--z’],

130 M. Coppo, A. Ferrari

which is isomorphic to a D,-like model [27] built using nonstandard initial projec-
tions (see [13] for more details).

4. Strictness analysis

In this section we will study a particular type system suitable for the study of
strictness properties of (higher-order) functional languages.

We first define a model for our language, and we will then build a type system for
strictness properties for it. We assume that the language has a lazy evaluation
strategy.

We assume to have integer and boolean values as basic domains. For technical
reasons we will interpret the language in a lattice instead of a c.p.o., using the top
element as an error value. The only reason for this is that this makes the proof of the
completeness theorems (Theorems 4.4 and 4.10) easier. A suitable domain to interpret
our language is then the domain D satisfying

where NI and SI are flat lattices of integers and booleans and @ represents coalesced
sum of lattices. [D-D]: is obtained from the [D-D] by adding new bottom and top
elements. The lifting operator on [D-D] is introduced to model properly lazy
evaluation [3]. In this way the interpretation of functional values, also the function
constantly undefined Av._L, is kept distinct from 1. D is made into a model by
choosing F and G as

(e)

Q

if d=if~~,_+,~(f) for some ~E[D+D],

F(d)(e)= ID if d= ID,

T otherwise,

G=in,,,,,.

We take KS = {bot, int, bool} as the set of basic types. Since we want to study strictness
properties of functions, we need to assume that I is a potential argument of any
function. This leads to include I in the interpretation of all types. There are however
other reasons for assuming this, mainly the fact to be able to include recursively
defined functions in the language (see [21, lo]). bot will be interpreted as the subset of
D containing only 1. So if we know that a value has type bot we know everything
about it. It corresponds to a maximum information about an element.

Definition 4.1. (i) The type interpretation X, is defined by the following:

(1) X,(bot)= { I>,
(2) X,(int)=(in,(n)InENI, n#T}u{l},
(3) Xs(bool)={inB(n)InEBI, n#T}u(l}.
(ii) Let S=(D, KS, -X,, inD([D+D])u{_L}).

Type inference, abstract interpretation and strictness analysis 131

The type system S then gives information about strictness properties of the lan-

guage. For instance, if S, B I= M : bot+bot then, by Theorem 2.5, M maps I in I and

is so strict in its first argument. Since the language is essentially type-free, however, we

must be a little careful in intending what we mean for a function to be strict in one of

its arguments. A type-free term can be applied, in general, to an arbitrary number of

arguments. For instance, if

S,B + M:bot+u+bot

then M is strict in its first argument when applied to two arguments, while M is not

strict in its first argument when seen as a function of only one argument, see [19] for

a more precise definition of the notion of strictness for type-free terms.

Using types we can also describe more detailed properties of type-free functions

involving strictness. For instance, a term having type (bot+bot)+w+bot+bot is such

that whenever applied to a strict function gives a term that is strict in its second

argument.

It is easy to verify, by induction on types, that the interpretations of types

are downward-closed, directed complete subsets of D (i.e. ideals in D) that do not

contain T.

Lemma 4.2. Let c1 be an arbitrary type. Then

(9 IaIi Xs is a downward closed, directed complete subset of D.
(ii) If a is dz@rent from o then T 4 [a] Xs.

In particular, we have that I is contained in the interpretation of all types. The

inclusion theory Cs can be axiomatized in the following way.

Definition 4.3. Let CL be the inclusion context defined as the union of the following

sets:

(1) (bot<yIy~TKs},
(2) (bot >int A bool},

(3) (botaint A a+j31a,/3ETKs},
(4) {bot > boo1 A a-+/I 1 a, BE TKS}.
Axiom scheme (1) just says that I is included in all interpretation of types. The

axiom schemes of point (2) mean that the only value which belongs both to a basic

type and to a functional type, or to two different basic types is 1. ZL is indeed

a complete axiomatization of Cs.

Theorem 4.4. CL = Cs, i.e. (1) and (2) completely axiomatize the inclusion theory of S.

The proof of this theorem will be given in the next section.

Remark 4.5. We have chosen to include types int and boo1 in S since in this way S can

be seen as a natural extension of the basic intersection types system with int and boo1

132 M. Coppo, A. Ferrari

as basic types. However, int and boo1 are not essential when only strictness properties

of terms are considered. In this case axiom (1) of Theorem 4.4 is enough to character-

ize Es’ where S’ is the type system defined by taking K$ = {bot} instead of KS. Also the

completeness theorems (Theorems 4.10 and 4.11) are valid for S’.

This is, for instance, the approach of [193 where just one basic type cp is considered

(having the same meaning of bot). Kuo and Mishra study the property of this type

system in the term model of P-equality interpreting cp as the set of all unsolvable terms.

They consider the simple semantics of types with a normal order evaluation and so

have the axiom W<W-ULL There is no distinction, in this way, from an unsolvable

term M and Ax.M, both having only type o or equivalent types. They also have

proved in [20] a completeness theorem similar to Theorem 4.4 but their result holds

only for types not containing occurrences of the A type operator.

It is easy to see that bot, int and boo1 are plain in CL. Then by Theorem 3.5 Fs, the

filter domain associated with CL, is a model of A,.

Theorem 4.6. 9’ is a model.

Indeed Ys is a domain which satisfies the equation

F’g{int}I 0 {bool}I 0 [Fs-Fs]I,

where, as in Section 3, (int}, {b oo 1} are two one-element lattices. Note the similarities

with Y# defined in Section 3. Indeed, bot can be seen as a shorthand for int A boo1

and we have r”” (bot} = T, the top element of > . cs Note also the differences in the

function space.

Also S’, as defined above, does determine a filter domain 9” which is a model. In

particular, 9” satisfies Fs’ r [Fs’-i8”]I.

Since 9’ is a model we have that P-convertible terms have the same types. So two

terms are equal in the theory of P Cs iff they have the same provable strictness

properties in the sense that the same types can be assigned to them. In particular, all

unsolvable terms of order 0, like @x.xx)(~x.xx), have only type w and are then

interpreted as the bottom element of Br.

However, as the previous example shows, the type assignment system is not

complete, in the sense that CL, B I= M : ct does not imply CL, B I- M : ~1. In fact, we have

CL, B I= (Ax.xx)(Ax.xx) : bot but this cannot be proved by the inference system. Indeed,

to prove CL, B I= M : bot is equivalent to prove that the denotation of M is I and this

is not an r.e. property. We will give a complete system at the end of this section,

The types of the basic constants are naturally induced by their strictness properties.

For instance, a complete set of types for + (and of most binary functions on integers) is

T+ : {(int-+int+int), (int+hot+bot), (bot+int+bot))

which expresses the fact that + is strict in both its arguments (in s’ simply replace int

by 4.

Type inference, abstract interpretation and strictness analysis 133

The if-then-else operator ifwith the usual semantics, has both type bot+o-+w+bot

(which expresses strictness in the first argument) and type bool-+a+u+u for all types

LX. Then its set of types (which determines its abstract interpretations) is

Type bot-w-swbot expresses the fact that if is strict in its first argument (note

that bot+o+o-+bot<bot+cc+~+bot for all c(, fi). Observe that, using 6, we can

infer for $ the types bool+bot+bot-+bot, bool+o+bot+w and bool+bot+o+o

which express the other usual strictness properties of if(i.e. $is not strict in its second

and third argument but is undefined only if both of them are undefined).

Example 4.7. As an example consider the function

G=1LjXxJ,y.(fxy)+(fyx)

which has type

and

(int-hot+bot) A (bot-+int+bot)+bot+int+bot

(int-+bot+bot) A (bot-+int+bot)-+int-,bot+bot,

which means that G, if applied to a function H which is strict in both its arguments

(like +, for instance), gives a function (GH) which is strict in its second argument

(assuming that its first argument is an integer). Similarly, we can prove that GH is

strict in its first argument. Note that there is no way to prove, for instance, that (G +)

has type bot-+int+bot without using intersection types.

As for fixed points we have that the standard interpretation in 9’ of the internal

operator of the I.-calculus Y, = LJ((nx.f(xx))(lx .f(xx)) is given by [Y21] ss5 =$x,

where

i.e. Yn has all the types of the form @+x1) A (q-+tlz) A ... A (c(,-+cI,+~)+G~,+~. To

see this, observe that Y, L LJd/d,.L nflf(f(. . . (f(dfAf)))), where d, = ;Ix.f(xx), and

apply the invariance of types under fi-conversion (we can always assign type w to

Ix. f(xx)).

This type of Y1, however, is not very useful in the inference of strictness properties

of recursively defined functions. Take, for example, Y,F where F is defined as

F=LJ/Zx.ly.if(x=O)y(f(x- 1)y)

(i.e. Y,F is the recursive function f defined by fxy = if(x = O)y(f(x - 1)~). Using the

standard interpretation of Y, we can prove

CL I- YnF: bot-wwbot,

134 M. Coppo, A. Ferrari

which means that Y,F is strict in x but we cannot prove

CL E YAF: o+bot+bot,

which proves that f is strict also in y.

To fix this, we must consider an explicit fixpoint operator Y,,, defined as a con-

stant in the basic language with the following interpretation in F”:

[YF,,~ KS< = FIX, where FIX = t”“{ (c(+ct)+cI 1 CIE TKS }.

This means that we assume for Y,,, all types of the form (cI+c()+cI, and corres-

ponds to the usual type inference rule for fixed points:

(FIX)
C;Buf:a t- M:a

C;B E pf.M:a

Using this rule (i.e. using Y,,x instead of Y, as the abstract version of the recursion

operator), we can prove CL F Yfi,F: int-+bot+bot as we want.

It is easy to check, in fact, that FIX is a fixed point operator on P’(i.e.

FIX. d = d. (FIX * d) for all ~EF’), but it is not the least one. The least fixed point

operator over Bs is$x, and we have only fix c_ FIX.
As an application of Theorem 4.10, however, the use of YFrX as the abstract fixed

point operator is sound, in the sense that we have

i.e. Sk YA : c(for all MEFIX.
In most cases, intersection is not necessary to analyse functions, especially on

recursively defined functions. Let us consider, for example, the function hofdefined by

hof(g,x,y)=(g(hof(KO)x(-Y l))+(if(=YO)x(W~3(-Y 1)))

taken from [9], where K = 2x.iy.x and I = 2x.x. We have, for instance,

CL F hof: (int+int)+int+bot-+bot,

thus proving that hofgives a strict function when applied to any function from integers

to integers and to any integer. All other conclusion from the analysis of [9] can be

proved within the present approach using FIX.
As we remarked before, type assignment (with CL as inclusion context) is not

complete for strictness properties, not even after the explicit introduction of the

YFrX operator. This incompleteness in not due to CL (which gives a complete inclusion

theory), but to the type inference rules. Indeed, the type assignment system is r.e.(Ey)

while a complete system must be at least II: (in fact C, B + M : bot iff M is unsolvable,

which is a II: property [S]). A complete inference system for C can be obtained by

adding two new rules to the ones of Definition 2.2. One of these rules is an infinitary

one, thus making the type assignment system II?.

Type inference, abstract interpretation and strictness analysis 135

The new rules (which are these introduced, in a slightly different context, in [lo])

can be defined with the help of a syntactical notion of approximation for &terms. The

following definition is taken from [S].

The set of jl-l-terms is defined as /IcUiij, where I is a new constant.

The set of approximate normal forms is defined as the least set JV E &,,,,

containing variables, constants and I, such that Ax.A and &VI, . . . &EM whenever

A, AI, . . . , &EN and 4 is either a variable or a constant.

Definition 4.8. (i) For any ME&, the direct approximant of M is the term R(M)
defined as follows:

(1) Q(x)=%

(2) Q(c) = c,
(3) S2Qx.M) = 1x4(M),
(4) SZ((/lx.M)M, . . . M,)=l,
(5) O(@M1 . . . M,) = @Q(M1). . . @SZ(M,) where @ is a variable or a constant differ-

ent from 1.

(ii) The set J&‘(M) of approximants of a term M is defined as

&(M)={A I3N s.t. M L N and A=S)(N)}.

The interpretation of terms of &,,,, in D is defined as in Definition 2.3 with

I interpreted as ID. For any term M and environment p the set ([Al p 1 AE~(M)} is

directed and has [M] p as least upper bound in D (see [S, Section 19.33).

The new type assignment rules are a formal counterpart of the properties of types

stated in Lemma 4.2.

Definition 4.9. The system kApp is defined by adding to Definition 2.2 the following

two rules:

(1) CL;Bl- APP I : 0 for all types 0.

W’P)
CL;Bl-APPA:~ VAE&(M)

CL;Bl- APPM:(’

The system l-App is sound and complete for the type system S. Soundness is proved

by a standard transfinite induction. Completeness is proved only for the functional

core of A,, consisting of the pure I-terms.

Theorem 4.10. Let M be a term of A. Then

CL;Bl- APPM:~ iff S;B + M:a.

A simple inspection of the proof of this theorem, moreover, shows that rules (APP)

and (I) are not needed if a term has a normal form. So the basic system I- turns out to

be complete for the terms that have normal form.

136 M. Coppo, A. Ferrari

Corollary 4.11. Zf M is a term of/i which has a normdform then

CL;B F M:a iffS;B + M:a.

The approximants of Y,, for instance, are the terms of the shape from

A simple analysis shows, for instance, that CL EAPP Y~:(cI+cI)+c(for all types ~1.
This then implies

and this shows that FIX is a correct choice for the abstract interpretation of the
recursion operator.

All the above results hold also if we consider S’ instead of S, i.e. if we consider only
bot and w as basic types.

In the presence of constants, the truth of Theorems 4.4 and 4.10 depends on the
adequacy of the set of types assigned to the constants. The addition of YF,x, for
instance, preserves completeness. Completeness fails when $is added. This is due to
the fact that it is not possible, with the basic types in K,, to give a complete
characterization of its behaviour.

We remark, lastly, that if we define

we do not get an interpretation of A,. In fact [-I* is not compositional, in the sense
that [MN] *< is not equal, in general, to ([M-j* 5). ([IV]* 5) (we only have

[MNn*5~([[Mn*r).([Nn*5)).

5. Completeness proof

In this section we give in some detail the proofs of Theorems 4.4,4.10 and Corollary
4.11. The proof will be given using the technique introduced in [lo]. The main idea is
to define, for each type CI, a value taE[TajS which completely characterizes the
behaviour of the elements of type CI.

Recall that application in D is defined by

i

f(e) if d=in,,, (f) for some ~E[D-D],

d’e=F(d)(e)= _t_D if d=_l_D,

T otherwise.

For all LXET~~ we now define element PED and A”E[D+[D+D]] by induction on
types.

Type inference, abstract interpretation and strictness analysis 137

Definition 5.1. For all CIE TKs let P’, A” be defined by
(1) t”=T,
(2) tint = in,(O),
(3) tboo’ = in&rue),
(4) tbot = I,
(5) A” = Iu.idD,

idD if u=in&) for nEN or u=l,

idD if v=in,(t) for HEN or o=l,

(8) A”‘=Lu.if u= I then idD & h.T,

(9) A’(u)=
idD if ~=in~,,,~u’ or u= I,

Au. T otherwise,

(10) t-b= WWa(4)(tS)),

(11) A a-s=Iu.(AS(u~t”)~(A’(u)),

(12) t ““B=t=ntB,

(13) A =“p=A”~Afi,

where n, u denote, respectively, the 1.u.b. and g.1.b. in D. Note that d”(u) is either idD
or lo.T.

Ai”‘, Abo’ and A’ characterize, respectively, N, B and [D-+0] in the sense that they
yield T whenever applied to an element of D which does not belong to N, B or
[D-D]. Note that Ai”‘, Aboo’ and A’ are continuous and internally representable.

To simplify notations in the rest of this section we will identify a and [[NJ’.
Moreover, we will write simply cc d p for CL I- a < p.

The following lemma can easily be proved by induction on types.

Lemma 5.2. (i) Ifa<B then ta E to and As E A”,

(ii) ifcr-fl then ta=tP and A”=As.

In the following lemmas it is proved that ta belongs to the interpretation of a, and A”

is a function (representable in D) that, in some sense, characterizes type c1 in the same
way as A” do for K.

Lemma 5.3. (i) Pax,

(ii) UEU * A”(u)= idD.

Proof. (i) and (ii) are proved simultaneously by induction on u. If c1 is a basic type the
proof is immediate. The induction step is by cases on CL.

The case CL A /3 where either M. or fi is a basic type and a+/3 are immediate from
the preceding lemma.

138 M. Coppo, A. Ferrari

Case 1: cr=B-y.

(i) Let d~B.tP’Y(d)=(Aa(d).ty)=ty by induction hypothesis (i) and (ii).

(ii) Let &/3+y. Note that in this case d’(d)=idD and d.tSq. Then AB’Y(d)=
AY(d.ta)o A’(d)= AY(d. tS)= idD by induction hypothesis (i) and (ii).

Case 2: cl=/j\iel(yi+6i).
(i) tr\i~I(Yi-~i) E tYi-& Eyi~6i for all iel (by Definition 4.2 and induction hypothe-

sis). Now recall that the interpretation of types is downward-closed.

(ii) Let tiE/j\isr(yi-*6i) then UEYi~~i for all iE1. Then AAi=rc~~+si)(u)=
u {Ayi+6i(u) 1 iEl} = idD by induction hypothesis.

In the proof of the following lemma we often use the following facts about type

interpretations:

l The interpretation of a type a-+fl is contained entirely in the component [O-O] of

the domain plus I (which belongs to the interpretation of all types),

l t“, where K is a basic type and cannot belong to the interpretation of any type of the

shape cl+/%

Lemma 5.4. (i) YE/3 +- ci <p,

(ii) AB(t”)#Au.T =S CC</? and A”(t”)=id,,

(iii) P” . t”#T =a cc</? and t~“.ta=tT.

Proof. By induction on the total number of “arrows” in U, /I and z. If c1 is a basic type

or a type of the form AiGl(flj+j?;) A k where k is a basic type different from o, (i)-(iii)

are obvious.

The induction step is by cases on CI. Observe that tp”. ta = As(P)(f).
Case 1: c(=y+&

(i) ty”E/3 implies that either PEW or /I=Ai,l(B:+fi;) for some finite set I of

indices. The former case is trivial. In the latter case we must have ty”e(/?:--+/?I’) for all

iEZ. We omit the subscript i writing (/I’+/?“) for (ji-+/3;). It is enough to prove that

y-CI<(/?‘+/?“). Now we have ty”. tS’=AY(tS’)(td) which is equal to (ifAY(ta’)#lv.T
then t’ eEse T)E~” (by induction hypothesis). Then either j?“=o or, by induction

hypothesis, we must have 8’ d y and 6 G/Y’. In either case y-+S d/I’+/?“.

(ii) Also in this case we have either /?=o or /I= ~\i,l(B:-B’i’) for some finite set

I of indices. In fact, if /I=Ai,,(/$--+b:‘) A k for any basic type k, we have immediately

AS(ty’d) = Iv. T. If B = w, the case is trivial. Otherwise, arguing as before, it is enough

to prove y-&<(j3’+fi”) where (/3’+/3”) is (/I+/$‘) for any iE1. Now
Aa'-fl"(tY'")=A@"(t y+6. ta') #Au. T implies either /I” = o or t y-a. tp’ # T. In the former

case, y+66/3’-+w always holds. In the other one we have, by induction hypothesis

(iii), p’ d y and tY’“. tS = ts from which 6 <fi” follows by induction hypothesis. The

thesis follows from rule (-) of Definition 2.1.

(iii) tS”. ta= As(t”)(t’). We must have As(P) #Iu.T, and the proof follows easily by

induction hypothesis.

Type inference, abstract interpretation and strictness analysis 139

Case 2: GI = ~\iEI(Yi-*8i). For points (i) and (ii), arguing as in the previous case, we

can reduce to the case in which fl= p’- 0”.

(i) t/j\‘.,(Y; +s~),/?‘-+Bf’ implies that e “Lf t~i~~(yi”~). tb’~/?“. The case B” z w is trivial.

Else we have e = niol {A yi(tp’)(tdi)} = n (tat 1 p’ < yi} (by induction hypo-

thesis)=tAiEl’i where J= {i 1 /?‘<yi}. Moreover, e=t A~~J*~~/?” implies, by induction

hypothesis, A\isJ 6i <p”. Then we have ~\i.r(Yi-‘Gi)~~i,J(Yi~6i)~~isJ(Yi)-’

/j\isJ tGi)GP’+P”.

(ii) dB”B”(t”)= dfi”(ta. tfi’) and proof proceeds as before using induction

hypothesis.

(iii) ds(t”)(t’) # T . implies Aa(P‘)#2u. T and the proof is similar.

Proof of Theorem 4.4. We have to prove that CI E p implies CI Q b. Now TV c p implies

t’E/?, which implies u < j? by the preceding lemma.

We need one more lemma to prove the completeness theorem (Theorems 4.10 and

4.11). Let B denote a typing context. Let ps be the environment defined by

ps(x)= ta if x:cr~B,

T otherwise.

Let t, be the system obtained by eliminating rule (APP) from t-,,,.

Lemma 5.5. Let A be an approximate normal form without occurrences of constants. Then
(i) [A] pBeo implies B FI A: 6,

(ii) Au. T # A”([A] pe) implies B I-, A : o.

Proof. By simultaneous induction on A. We have four cases.

Case 1: A=l..
Both (i) and (ii) are trivial by rule (I).

Case 2: A E x.
(i) We must have x : TEB, so pB(x) = t’. By Lemma 5.4 trEo implies T < 0. We can

then prove B ki x: 0 using rule (G).

(ii) Similar, using Lemma 5.4(ii).

Case 3: A=xA, . ..xA. (n>O).
(i) We must have x: TEB for some type z.

If r=/‘/iel (rf-+zy) A k where k is a basic type and I is any finite set of indices, then
2<0+ ... +W+CJ (n occurrences of w) and, since B l-, Ak: co (1 Q kdn), we have

BklxAl . . . A,:o. Else let ZN/~~~~(+Z~)) we have

[xA1 . . . A.IIPB=[xIIPB.[[A~~~P~...[IA~~~P~

=T ‘-I (7’+r’) [A 1] pB . . . [An] pB

=ii {A”(lIAd /M”+ [1Ad PB ... CAnI PB

= PEJ@:). [AZ] pB . . . [A”] PB,

140 M. Coppo, A. Ferrari

where J=(iI(dr:([A,ljps)#~v.T}. Then, for all &J, we have BFIA1:r: by induc-
tion hypothesis, i.e. B t, Aj: AjeJ ti by (A I).
Moreover, observe that tA\‘EJ(7Y). [A21 pB . . . [An] pB= [yA, . . . An] pBf, where B’ =
B~{y:~~,,r~} where y is any variable not free in B. Let t=A\isJz;. We then have

lyAz . . . A,JPB~{~:~}= and this, by induction hypothesis (i), implies

Bu(Y:~) ä I(YAZ . . . A,) : 6. Then we get a proof of B FI (yA2 . . . A,) : CJ by replacing
the assumption y: r with the deduction of B Fl(xAI): 5 obtained using
B~-,A,:A~,,T;} and the fact that l\i.J(Tt:~Z;)~~\ieJZ;~~\ipJZ;.

(ii) The argument is similar to the previous one. Now we must have
2v.T #d”([yA2 . . . A,,] pBv~v:~~) and we can argue as before by using induction
hypothesis.

Case 4: A-LA’.
This case is simple and is left as an exercise.

Proof of Theorems 4.10 and 4.11. We prove the “if” direction. Assume S; B + M

CT using
rule APP.

As for the corollary observe that if M is in normal form we need neither rule (I) nor
APP. Then we can use the fact that types are preserved by B-equality.

Since FApp on approximate normal forms is a decidable relation, we have that
F APP is II?. Indeed, it is complete II:.

We conjecture that, with a slight complication in the proof, these theorems hold
also if we consider c.p.o.s instead of lattices.

Acknowledgment

We thank both referees for their useful comments on an earlier draft of this paper.

Appendix

In [ll, Proposition 2.13(ii)] the following characterization of filter domains in
which all continuous functions are representable, is given.

Theorem A.l. In a jilter domain 9’ all continuous functions are representable ifs
Z t- AiEI(ai+fii) <y+6 (where 6 #CO and I is a jinite set of indices) implies that there
exists J G I such that C I- y ,< A\isl ai and .Z F ~\ielpi < 6.

The proof of [12] is given for context C containing o < w--to; however, this axiom
is not used in the proof, which holds unchanged assuming the weaker axiom. The
basic difference is that assuming o < w+w the least “constantly bottom” function is
identified with the bottom element of 9, while in our case it is not (see also [15]).

Type inference, abstract interpretation and strictness analysis 141

Note that if CIE TK then u = disk (Cri-Bi) A ~\isJ (Ki) where I and .Z are finite sets of

indices.

In order to obtain the relation F 0 G = id we still need to prove the following

theorem.

Theorem A.2. In a jilter domain, if all continuous functions are representable then
F, 0 G, = idCgz,pl.

Proof. LetfE[F+P]. Let d=G,(f)=t”{a-+PIflEf(t”a)}. Now let g=F,(d) and

assume g#J: Then there exists a point y such that g(f”y)#f(f”y). Then there must

be a type 6 such that GEg(f”y) but G$f(f’y). Now GEg(t”y)=F,(d)(f’y) if y4Ed
for some type y. But y4Ed implies ~\i.l(ai-pi)~y~G for some finite I, where

Bi~f(t’cci) for all ill. By Theorem A.1 then there exist J G Z such that y E A\isJ ai and

A\isJpi G 6. NOW t’ai c t’y and, by monotonicity, f(r”Ui) Gf(t’y) and, since

piEf(t”Ei), then fljEff(t”y) for all ~E.J. Clearly, Aiel (fii)Ef(t”y) and then SEf(t”y)

against the hypothesis. 0

Now we want to define a notion of normal form of a type.

Definition A.3. Let C be a safe context. The function normal form of a type

AieI(ai+Bi) A Ai.J(i) . K 1s o bt ained by replacing all the occurrences of functional

atoms ICY in A\isJ (xi) by their equivalent C(i~pi. Letfnf((a) denote the functional normal

form of ~1. Thefnf of a type c1 is clearly equivalent to ~1.

Lemma A.4 Let z be a safe inclusion context over K. Zf C k- a<B and fnf((cr)=

~\i,l(afjai2)(a:#0)thenfnf(b)=~j,,(Bj_BjZ) d an we have that, for all jeJ there
exists ZJ c Z such that

(1) CFPfG/jieIJ~!2

(2) Ct-A/l\i,I,mf<fij’.

Proof. The proof is by induction on the derivation of C t- c1 Qfl. If C k cc<B is an

axiom the proof is immediate from the definition of safe context. In the induction step

the only nontrivial case is rule (trans):

by the induction hypothesis fnf(y)=AKEx(y~+y~) and so, again by the induction

hypothesis,fnf(P)=~j.J(PS~83).
We have now to show that conditions (1) and (2) hold. We give the proof for (1) ((2)

is very similar).

By the induction hypothesis for all /3j there exists Kj E K such that

CFPj’<A KEXJyi. Again for induction hypothesis, for each yi there exists I, c Z

such that C t- 7; < Aiel, CC!. Then, by transitivity C k pj <l\ieH af where

Z-Z= UKEXIZK. 0

M. Coppo, A. Ferrari

Corollary A.5. If C is a safe inclusion context over K, then all continuous functions are
representable in 9” and 9’ is a model of A,.

The proof is a trivial application of the preceding lemma.

References

Ill

PI
c31

c41

c51
C61

c71

PI

c91

Cl01

Cl11

WI

Cl31

Cl41

S. Abramsky, Strictness analysis and polymoprhic invariance, in: Proc. Workshop on Programs as
Data Objects, Lecture Notes in Computer Science, Vol. 217 (Springer, Berlin, 1985) l-23.

S. Abramsky, Domain theory in logical form, Ann. Pure Appl. Logic 51 (1991) l-77.

S. Abramsky, Research topics in functional programming, in: D. Turner, ed., The Lazy Lambda-
Calculus (Addison-Wesley, Reading, MA, 1990) 65-l 16.

S. Abramsky and C. Hankin, An introduction to abstract interpretation, in: S. Abramsky and C.

Hanki eds., Abstract Interpretation of Declarative Languages (Ellis Horwood, Chichester, 1987)

9-31.

H. Barendregt, The Lambda Calculus: its Syntax and Semantics (North-Holland, Amsterdam, 1984).
H.P. Barendregt, M. Coppo and M. Dezani Ciancaglini, A filter lambda model and the completeness

of type assignment, J. Symbolic Logic 48 (1983) 931-940.
G. Burn, L. Hankin and S. Abramsky, Strictness analysis of higher order functions, Sci. Comput.
Programming 7 (1986) 249-278.
F. Cardone and M. Coppo, Two extensions of Curry’s type inference system, Logic and Comput. Sci.
(1990).
C. Clak and S. Peyton Jones, Strictness analysis: a practical approach, in: Proc. IFIP Symp. on
Functional Programming Languages and Computer Architecture, Lecture Notes in Computer Science,

Vol. 201 (Springer, Berlin, 1985).

M. Coppo, Completeness of type assignment in continuous lambda models, Theoret. Comput. Sci. 29
(1984) 309-324.
M. Coppo, M. Dezani Ciancaglini, F. Honsell and G. Longo, Extended type structures and filter

lambda models, in: G. Lolli and G. Longo, eds., Proc. Logic Colloq. ‘82 (North-Holland, Amsterdam,

1984).

M. Coppo, M. Dezani Ciancaglini and B. Venneri, Principal type schemes and lambda calculus

semantics, in: J. Seldin and R. Hindley, eds., To H.B. Curry: Essays on Combinatory Logic, Lambda-
Calculus and Formalism (Academic Press, New York, 1980) 536-560.

M. Coppo, M. Dezani-Ciancaglini and M. Zacchi, Type theories, normal forms and D, lambda-

models. Inform. and Comput. 72 (1987) 85-116.
M. Coppo and P. Giannini, A complete type inference algorithm for simple intersection types, in:

Proc. 17th Colloq. on Trees in Algebra and Programming, Lecture Notes in Computer Science, Vol. 581

(Springer, Berlin, 1992).

[15] M. Dezani-Ciancaglini and I. Margaria, A characterization off-complete type assignments, Theoret.

Comput. Sci. 45 (1986) 121-157.

[16] A. Ferrari, Un sistema di tipi per analisi di strictness, Master’s Thesis, Universita degli Studi di
Torino, 1992.

[17] R. Hindley, The completeness theorem for typing I-terms, Theoret. Comput. Sci. 22 (1983) 1-17.
[IS] T. Jensen, Strictness analysis in logical form, in: J. Huges, ed., Proc. Functional Programming

Languages and Computer Architecture, Lecture Notes in Computer Science, Vol. 532 (Springer, Berlin,

1991).

[19] T. Kuo and P. Mishra, On strictness and its analysis, in: Proc. ACM POPL ‘87 (1987) 144155.
[20] T. Kuo and P. Mishra, Inferring strictness properties of the pure I-calculus: completeness and

incompleteness theorems, Technical Report, 1990.

[21] D. MacQueen, G.D. Plotkin and R. Sethi, An ideal model for recursive polymorphic types, Inform.
and Control 71 (1986) 95-130.

[22] A.R. Meyer, What is a model of the i-calculus? Inform. and Control 52 (1982) 87-122.

Type inference, abstract interpretation and strictness analysis 143

[23] J.C. Mitchell, Type inference and type containment, Inform. and Comput. 76 (1988) 211-249.
[24] A. Mycroft and F. Nielsen, Strong abstract interpretation using power domains, in: Proc. ICALP ‘83,

Lecture Notes in Computer Science, Vol. 154 (Springer, Berlin, 1983).
[25] F. Nielsen, Abstract interpretation of denotational definitions, in: Proc. STACS ‘86, Lecture Notes in

Computer Science, Vol. 210 (Springer, Berlin, 1986) l-20.

[26] S. Ronchi della Rocca, Principal type scheme and unification for intersection type discipline, Theoret.

Comput. Sci. 59 (1988) 181-209.
[27] D. Scott, Continuous lattices, in: F.W. Lawvere, ed., Toposes, Algebraic Geometry and Logic, Lecture

Notes in Math., Vol. 274 (Springer, Berlin, 1972) 97-136.

[28] D. Scott, Lectures on a Mathematical Theory of Computation, Merton College, Oxford, Michaelmas

term, 1981.
[29] D. Scott, Domains for denotational semantics, in: E.M. Schmidt and M. Nielsen, eds., Proc. 9th

Internat. Colloq. on Automata, Languages and Programming, Lecture Notes in Computer Science,
Vol. 140 (Springer, Berlin, 1982) 577-613.

