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Abstract

We obtain a compactness result for various classes of Riemannian metrics in dimension four;
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substantially from the Einstein case in that we do not assume any pointwise Ricci curvature
bound.
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1. Introduction

Critical points of the total scalar curvature functional (restricted to the space of unit
volume metrics)

R:g|—>/ Ry dVyg, (1.1)
M

are exactly the Einstein metrics, and the structure of the moduli space of Einstein
metrics has been extensively studigkhd89,BKN89,Nak88,Tia90]. In particular, with
certain geometric assumptions on non-collapsing, this moduli space can be compactified
by adding Einstein metrics with orbifold singularities.

The motivation for this paper is to prove a similar compactness theorem for various
classes of metrics in dimension four, where one does not assume a pointwise bound
on the Ricci curvature. We will consider the following cases:

(a) half-conformally flat metrics constant scalar curvature,
(b) metrics with harmonic curvature,
(c) Kahler metrics with constant scalar curvature.

Half conformally flat metrics are also known as self-dual or anti-self-dudVif = 0

or Wt = 0, respectively. These metrics are, in a certain sense, analogous to anti-
self-dual connections in Yang—Mills theory (sfeJ91,DK90]). The local structure of

the moduli space of anti-self-dual metrics, by examining the linearization of the anti-
self-dual equations, has been studied, for example, in [AHS78,IT98,KK92]. There has
been a considerable amount of research on the existence of anti-self-dual metrics on
compact manifolds. In the paper [Poo86], Poon constructed a one-parameter family

of anti-self-dual conformal classes @i #CP~. LeBrun [LeB91a] produced explicit

— .

examples omCP" for all n>2. We also mention the work of [FIo91,DF89] for other
methods and examples. See also [LeB95] for a nice survey and further references.
A very important contribution is Taubes’ stable existence theorem for anti-self-dual

metrics: for any compact, oriented, smooth four-manifafd the manifoIdM#n@2
carries an anti-self-dual metric for some(see [Tau92]). This shows that anti-self-dual
metrics exist in abundance, so one would like to understand the moduli space.

In [Bou81], it was proved that a compact four-dimensional Riemannian manifold with
harmonic curvature and non-zero signature must be Einstein. Therefore (b) is larger
than the class of Einstein metrics only in the case of zero signature. In particular, we
have locally conformally flat metrics with constant scalar curvature, which have been
studied in [SY88,5Y94,Sch91]. For more background about cases (a)—(c) above, see
[Bes87]. We also note that case (c) is an important class of extremal Kahler metrics
[Cal82,Cal85].

In the sequel, when we sayitical metric we will mean any of (a)—(c) above. For
M compact, we define the Sobolev constéRit as the best constaidis so that for all
f e c%Y(M) we have

I £lla<CsIV fll2 + Vol Y4 £l 2, (1.2)
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whereVol is the volume. Note thatl(2) is scale-invariant. FdM non-compactCs is
defined to be the best constant so that

I fllLa<CslIVfl2 (1.3)

for all f e C%Y(M) with compact support.

We define aRiemannian orbifold M, g) to be a topological space which is a smooth
manifold with a smooth Riemannian metric away from finitely many singular points. At
a singular poinip, M is locally diffeomorphic to a con€ on $3/T", whereI" c SO (4)
is a finite subgroup acting freely os®. Furthermore, at such a singular point, the
metric is locally the quotient of a smooff-invariant metric onB* under the orbifold
group I'. We note that the notions of smooth orbifold, orbifold diffeomorphism, and
orbifold Riemannian metric are well-defined, §&at56,Sat57,Thu97,Bor93,TY87] for
more background. A Riemannian orbifold?, g) is aKahler orbifoldif g is Kéhler, all
of the orbifold groupsl” are inU(2), and at each singular point, the metric is locally
the quotient of a smooth Kahler metric on a ball@3 under the orbifold group.

Consider the disjoint union

N
i =] M. (14)
i=1

where eachM; is a Riemannian orbifold. Then Riemannian multi-fold Ms a con-
nected space obtained frod by finitely many identifications of points. Note that
points from M; and M;, i # j can be identified, as well as several points from the
sameM;. For example, také/1 and M2 to be smooth manifolds, and identifyy € M3
with po € M2. Another example would be to take just one smooth manifdld and
identify p1 € My with po € M. The singular setof M is the set of points wher#
is not a smooth manifold—this will come from the non-trivial orbifold singular points
of eachM;, as well as new singular points from the identifications. These latter points
look like multiple cone points, thus the terminologyulti-fold. If there is more than
one orbifold in (.4) (N > 1), someM; is compact, and has only one point which gets
identified to the other orbifold$/;, i # j to form M, then we sayM splits off the
compact orbifoldM;. If there is only one cone at a singular pojptthenp is called
irreducible

A smooth Riemannian manifol@V, g) is called an asymptotically locally Euclidean
(ALE) end of ordert if there exists a finite subgroup ¢ SO(4) acting freely on
R*\ B(0, R) and aC* diffeomorphism¥ : M — (R*\ B(0, R))/I" such that under
this identification,

gij=0ij+00™ "), (1.5)
Mg =00 (1.6)

for any partial derivative of ordek asr — oco. We say an end is ALE of order O if
we can find a coordinate system as above with= J;; + o(1), and a‘k‘g,-j =o(r %)
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asr — oo. A complete, non-compact Riemannian multi-faldif, ¢) is called ALE if

M can be written as the disjoint union of a compact set and finitely many ALE ends.
We say that a sequence of Riemannian manifolds, ¢;) convergedo the Rieman-

nian multi-fold (M, go) if the following is satisfied. For > 0, considerM, ;. =

Mso\ S;, WhereS; is the e-neighborhood of5 andSis a finite set of points containing

all of the singular points of\/,. Then there exist domainQ;(e) C M;, and diffeo-

morphisms®; , : Mo, ; — Q;(¢), such tha@jyngj converges t@y, in C* asj — oo,

on compact subsets dil, .. Furthermore, there exist constadtsN depending upon

&, such that

max{Vol(M; \ Q;j(e)), diam(M; \ Q;(£))} < (1.7)

for j > N andé — 0 as¢ — 0, whereVol and diam denote the volume and diameter
with respect to the metrig;, respectively. A sequence of pointed Riemannian manifolds
(M;, gj, pj) converges to the pointed Riemannian multi-féld ., g, poo) if for all
R >0, B(p;, R) converges toB(p«, R) as above as pointed spaces.

We state our main convergence theorem:

Theorem 1.1. Let(M;, g;, p;) be a sequence of critical metrigs on smoothcomplete
pointed four-dimensional manifold¥; satisfying

/ |Rmg,|?dVy, <A, (1.9)
Vol(gi) > 2 >0, (1.10)
b1(M;) < B, (1.11)

where C1, A, A are constantsand b1(M;) denotes the first Betti number. Then there
exists a subsequendg} C {i}, a pointed connected critical Riemannian multi-fold
(Mo, g00» Po), @and a finite singular se ¢ M., such that

(1) (M;, gj, pj) converges tA Moo, goos Poc)-

(2) The limit space(M, g00> Poo) does not split off any compact orbifold.
(3) If M is non-compagctthen (M, g0o, Po) IS ALE of ordert for any t < 2.
(4) If ba(M;) =0, then (M, g0, Po) IS @ Riemannian orbifold.

(5) In the Kahler case(c), (Mso, g0, Poo) IS @ Kahler orbifold.

Remark. We note that the definition of convergence given here implies, in particular,
Gromov—Hausdorff convergence. Moreover, we will show in Secflothat the con-
vergence is even stronger, in the sense that suitable rescalings of the metrics near the
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singular points converge to ALE multi-folds. The singular Seis the singular set of
convergence, it necessarily contains the multi-fold singular sét gf but it is possible

for some points inS to be smooth points oM. This is in contrast to the Einstein
case, where the Bishop—Gromov volume comparison theorem implies that convergence
is smooth at any smooth point M.

Remark. A positive lower bound on the Yamabe invariafit(M;, [g;]) will imply

the Sobolev constant bound, and in certain geometric situations, this bound will be
automatically satisfied. The bound i1.9) will also follow automatically in certain
geometric situations. We will discuss these points in Section 3 below. Furthermore, the
main elements of our proof only requirel@cal Sobolev constant bound, see Theorem
7.3 below.

In conjunction with Theorem 1.1, we have the volume comparison theorem:

Theorem 1.2. Let (M, g) be a critical metric on a smoottcomplete four-dimensional
manifold M satisfying

/ |Rmg|?dVy <A, (1.13)
M
b1(M) < Bj, (1.14)

where C1, A, and B; are constants. Then there exists a constéint depending only
upon C1, A, and By, such thatVol(B(p,r))<Vi-r* forall p e M andr > 0.

Finally, we restate Theorerh.1 in the compact case:

Theorem 1.3. Let (M;, g;) be a sequence of critical metrics on smqotlosed four-
dimensional manifoldg/; satisfying

Cs<Cy, (1.15)
fllng,-lzdvg,.gA, (1.16)
Vol(M;, gi) =1, (1.17)
b1(M;) < Ba, (1.18)

whereC1, A, B1 are constants. Then the conclusion of Theotemholds. That isthe
limit space (M, goo) IS @ compact connected critical Riemannian multi-fold which
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does not split off any compact orbifold. In the Kéhler cdsg or if b1(M;) = 0, then
M, is an orbifold

Remark. All of our results hold in the more general Bach-flat case (see Se&ipn
with the exception that at a singular point, we can only show the mgti& locally
the quotient by the orbifold group of €° metric on a standard ball, smooth away
from the origin, and in the ALE case, the metric is ALE of order 0.

2. Critical metrics

In this section, we discuss the systems of equations satisfied in cases (a), (b), and
(c), and justify the terminologyritical metric.

2.1. Half-conformally flat metrics and metrics with harmonic curvature

These systems were discussed in [TV], so we just briefly review them here.
The Euler-Lagrange equations of the functional

W:gl—>/ |W,[2dV,, (2.1)
M
in dimension four, are
kol 1w
Bij = V'V Wi + ER Wikjr = 0. (2.2)

where W;;i; and Ry, are the components of the Weyl and Ricci tensors, respectively
(see[Bes87,Der83]). Since the Bach tensor arises in the Euler-Lagrange equations of
a Riemannian functional, it is symmetric, and since the functional (2.1) is conformally
invariant, it follows that the Bach-flat equation (2.2) is conformally invariant. The Bach
tensor arises as the Yang—Mills equation for a twistor connection [Mer84], see also
[BM87,LeB91b] for other occurrences of the Bach tensor.

We note that (see [ACGO03])

_ ovkylw+ kiyy+  _ ovkyly— kl vy —
Bij = 2VIV'WiL, + RYWL, = 2vEVIWL + RYW ), (2.3)

so that both self-dual and anti-self-dual metrics are Bach-flat.
Using the Bianchi identities, a computation shows that we may rewrite the Bach-flat
equation (in dimension four) as

(ARic)ij = 2(Rigjk — Rikji — Wikj1) (R — (R/6)gx1)- (2.4)
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Introducing a convenient shorthand, we write this as
ARic = Rm * Ric. (2.5)
The condition for harmonic curvature is that
ORm = —Rjji;i = 0. (2.6)

This condition was studied ifBou81,Der85,Bes87], and is the Riemannian analogue of
a Yang—Mills connection. An equivalent condition for harmonic curvature dfi#ét= 0

and R = constant. In particular, locally conformally flat metrics with constant scalar
curvature have harmonic curvature. A computation shows (2.5) is also satisfied, but in
this case we moreover have an equation on the full curvature tensor. We compute

(ARm)ijri = Rijkt;m:m
= (—Rijim;k — Rijmk;1);m
= —Rijim;mk — Rijmi;mi + Q(Rm)ijii = Q(Rm)jjpi.
where Q(Rm) denotes a quadratic expression in the curvature tensor. In the shorthand,
we write this as

ARm = Rm % Rm. (2.7)

2.2. Kahler metrics with constant scalar curvature

We assume thatM, g) is a Kahler manifold with Kahler metrig. In [Cal82] it
was shown that idR is a holomorphic vector field, theg is critical for the L2 norm
of the scalar curvature, restricted to a Kahler class. In particular Kéhler and constant
scalar curvature implies extremal.

The bisectional curvature tensor is given by

2
T8, 085 0gir
07107 07 Oz

Rijkf ==

in local coordinatesz, ..., z,) of M. Contracting with the inverse quﬁ}, we obtain
for the Ricci and scalar curvature ‘

2

Rﬁ:_

— (log det(g;;)).
2 0%

2

0
R = —24,log del(g;;) = _28 (log detg,7)).

2k 0Zk
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In particular these imply the following Bianchi identities

Riii:m = Rimiico
Rijz = Rir.j
R = Rigir-

It follows then that in local unitary frames

Ag(RiC)i7 = Rijnx
=R

k7;i;%
= RiGxi T RisR; — R Rz
1
= >R+ RisRj — RisRijz.
Therefore if the scalar curvature is constant, we have
Ag(RlC)lj = RiEij — RkERifxE
= (Risg; — Ris R;7,0) Rus. (2.8)
so in this case, we again have the equation
ARic = Rm * Ric. (2.9)

3. Geometric bounds

In this section, we will discuss some special cases for which various assumption
in Theorem1.1 will be automatically satisfied. We recall that the Yamabe invariant in
dimension four is defined by

Y. LoD = inf Vo) [ Reav,.
g€lgol M

We define the Sobolev constant as the best constant such that ipreaﬂ?’l(M),

Il s <CslIVll 2+ Vol V4|l 2.

Proposition 3.1. If g is a Yamabe minimizeand Y (M, [g]) > 0, thenCs(M, g) </6
Y(M, [g]) V2.



354 G. Tian, J. Viaclovsky/Advances in Mathematics 196 (2005) 346-372

Proof. From the definition of the Yamabe invariant, for amy= L%(M),

1/2

f(6|vgu|§+Rgu2)dvg>Y(M){/ u4dVg} ,
M M

where we usey as the background metric. Singehas constant scalar curvature, this

implies
RoVol(a)V/2 1/2
6 / Vul? + 2 Vol(g) Vol(g)fl/Z/ W2 {/ u4} .
Y(M) Jyu Y (M) M M

Sinceg is Yamabe, we havaRgVol(g)l/2 =Y (M), so we obtain

lull Lo <VBY (M) 2| Vull 2 + Vol(g) Y4 fll 2. O

In dimension four, the Gauss—Bonnet and signature formulas ardRes87])

1 1
8%y (M) = -/ R2——/ |Ric|2+/ W2, (3.1)
6 Ju 2 Ju M
127r21(M)=/ |W+|2—/ (W2, (3.2)
M M

In the anti-self-dual casé¥+ = 0, we have

8’y (M) = %/MRz_%/M|Ric|2+/M|W—|2, (3.3)
127%1(M) = —f W2, (3.4)
M

Since the anti-self-dual equation is conformally invariant, we can make a conformal
change to a Yamabe minimizer (s¢&ub82,Sch84,LP87]), and add these equations
together to obtain

R? 1
8%y (M) + 121°t(M) = 5 Vol(M) — 5/ |Ric|?. (3.5)
M

If R >0, and Z(M) + 3t(M) > 0 then we obtain the estimate

Y(M, [g]) = RVol(M)Y?>2v6m(2y + 31) > ¢ > 0. (3.6)
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Proposition 3.2. Let (M, g) be Yamabe witlR > 0, and anti-self-dual. ThefjRm||; 2

< C, where C depends only onM), ©(M). Furthermore if 2y(M)+ 3t(M) > 0, then
the Sobolev constant is uniformly bounded from above

27(Cs)? <6 (27 (M) + 3t(M)) L. (3.7)
Proof. For the first statement3(5) gives a bound offRic||, 2, sinceY (M, [g]) <Y (S")

(see [LP8T7]). Eq. (3.4) gives a bound ¢ | ;2. The second statement follows from
(3.6). O

We next consider the Kahler case. LatM) denote the first Chern class of. It
is known that for complex surfaces,

2(M) = 27(M) + 3t(M)
and therefore on a complex surface,

1 (c1(M) - wg)?
Q'(M. [g]) = (M) — éw (3.8)
Q)g

is a conformal invariant. It follows that whe@’(M, [g]) > O,

Y (M, [g)>3n%/Q'(M, [gD. (3.9)
This implies
Proposition 3.3. For (M, g) Kahler satisfying

3c2(M) > (c1(M) - [wg])?, (3.10)
the Sobolev constant is uniformly bounded from above.

3.1. On the Sobolev inequality

All of the results in this paper are still valid if the weaker Sobolev inequality is
assumed

16114 <Cs (IVll 2 + VoI 4] 2) (3.11)

with the exceptions being in (2) in Theorehil, M, might split off a compact orbifold,
and in (4) of Theorem 1.1, even #,(M;) = 0, the limit may be reducible, see the
proof of Proposition 7.2 below. Furthermore, as remarked in the introduction, the main
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elements of our proof only require lacal Sobolev constant bound, see Theor@B
below.

If we have a conformal class with positive Yamabe invariant, we have shown above
that the Sobolev constant of the Yamabe minimizer is bounded. However, if we instead
choose a non-minimizing constant scalar curvature metric, we will have a Sobolev
inequality of type (3.11).

4. Local regularity

In all the above cases, the equation take the form
(ARic)ij = Ajrji Ri, (4.1)

where A;j; is some linear expression in the curvature tensor. Using a convenient
shorthand, we write this as

ARic = Rm * Ric. 4.2)
Using the Bianchi identities, any Riemannian metric satisfies
ARm = L(V?Ric) + Rm % Rm, (4.3)

where L(V2Ric) denotes a linear expression in second derivatives of the Ricci
tensor.

Even though second derivatives of the Ricci occur 4n3), overall the principal
symbol of the system (4.2) and (4.3) in triangular form. The Egs. (4.2) and (4.3), when
viewed as an elliptic system, together with the bound on the Sobolev constant, yield
the following e-regularity theorem:

Theorem 4.1 (Tian and ViaclovskyTV, Theorem 3.1] Assume that4.2) is satisfied
chooser < diam(M)/2, and let B(p,r) be a geodesic ball around the point and
k>0. Then there exist constantg, C; (depending uporCs) so that if

1/2
IRml 2(g(p,ry) = {/ |Rm|2dVg} <éo,
B(p.r)

then

N

1/2
Cr Créeo
sup |VkRm|<m{/ |Rm|2dvg} <S5
B(p,r/2) r B(p.r) r
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Remark. We state the following slight variation of the above. L&§(r) denote the
Sobolev constant for compactly supported functionsBiip, r), that is,

||f||L4(B(p,r)) <CS(V)||Vf||L2(B(p,r)) (4.4)

for all f e C?’l(B(p, r)). Then there exists a universal constagtsuch that if

1/2
{Cs(r)4 . / |Rm|2dVg} <o, (4.5)
B(p.r)

then

c V2 g
sup |Rm|< — {cs(m“-f |Rm|2dvg} <=
B(p,r/2) r B(p.r) r

whereC is a universal constant, the proof being the same as that of Thebienit is

also interesting to bound's(r) in terms of the volume ofB(p, r). For the manifolds
being considered in this paper, it may be possible tht) - Vol (B(p, r))Y* < Cr,

for some uniform constant.

Theorem 4.1 may be applied to non-compact orbifolds to give a rate of curvature
decay at infinity. Assume thatM, g) is a complete, non-compact orbifold with finitely
many singular points, with a critical metric, bounded Sobolev constant (for functions
with compact support), and finité?2 norm of curvature. Fix a basepoip; and let
r(x) =d(p, x). Givene¢ < g from Theorem 4.1, there exists &large so that there
are no singular points o®(R/2) and

/ |IRm|?dV, < ¢ < e,
D(R)

where D(R) = M \ B(R). Choose anyx € M with d(x, p) = r(x) > 2R, then
B(x,r) C D(R). From Theorem4.1, we have

1/2
Ck 2 Ckg
sup |VERm|< —— {/ |Rm| dV} <=
B(x.r)2) = r2+k B(r.r) 8 =~ r2+k

which implies

CkS
k

Y% Rm|(x)<m-

As we takeR larger, we may choose smaller, and we see thdl has better-than-
quadratic curvature decay, along with decay of derivatives of curvature.
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5. Volume growth

One of the crucial aspects of this problem is to obtain control on volume growth
of metric balls from above. We legtM, d) be a length space with distance functidn
and basepoinp € M.

Definition 5.1. We say a componemo(r1, ) of an annulusA(r1,rp) = {g e M | r1 <
d(p,q) < r2}is badif S(r1) N Ao(r1, r2) has more than 1 component, whefé1) is
the sphere of radiug; centered ap.

As we remarked aftefTV, Theorem 4.1], the proof of our volume growth theorem
requires only that there are finitely many disjoint bad annuli, therefore we have

Theorem 5.2 (Tian and ViaclovskyTV, Theorem 4.1] Let (M, g) be a complete
noncompagtfour-dimensional Riemannian orbifol@vith finitely many singular poinjs
with base point pAssume that there exists a const&nit> 0 so that

Vol(B(q, s)) > C1s* (5.1)
for any g € M, and all s >0. Assume furthermore that as— oo,

sup |Rmyg| = o(r=2), (5.2)
S(r)

where S(r) denotes the sphere of radius r centered at p.(M, g) contains only
finitely many disjoint bad annylihen (M, g) has finitely many endsnd there exists
a constantC, so that

Vol(B(p,r)) <Car®, (5.3)

Furthermore each end is ALE of orded.

Proof. Since there are no orbifold singular points outside of a compact set, the proof
of [TV, Theorem 4.1] is valid in this case. To see this, from [Bor93, Proposition 15]
any minimizing geodesic segment cannot pass through the singular set unless it begins
or ends on the singular set, and the 3£t S is geodesically convex. Therefore, all of

the standard tools from Riemannian geometry used in the proof of [TV, Theorem 4.1]
apply in this setting. O

By taking instead sequences of dyadic anmui—/—1, s=/), 1 < s, around a singular
point, the proof of [TV, Theorem 4.1] can also be applied directly to components of
isolated singularities:
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Theorem 5.3. Let (X, d, x) be a completelocally compact length spagevith base-
point x. LetB(x, 1)\ {x} be aC* connected four-dimensional manifold with a metric
g of class(a), (b), or (¢) satisfying

f |Rmg|?dV, < oo, (5.4)

B(x,1)

||”||L4(B(x,1)\{x}) <Cs||vu||L2(B(x,1)\{x}), ue Co’l(B(X, DA {xD, (5.5)
b1(X) < oo, (5.6)

where Cs, V1 are positive constants. Then there exists a const@nt> 0 so that
Vol(B(x,r))<C1r*. The basepoint x is an orbifold pojnand the metric g extends
to B(x, 1) as aC%orbifold metric. That isfor some smalb > 0, the universal cover
of B(x, d) \ {x} is diffeomorphic to a punctured baB*\ {0} in R*, and the lift of g
after diffeomorphismextends to aC® metric g on B#, which is smooth away from the
origin.

Remark. This is valid for components oB(x, J) \ {x}, we will prove below that there
are finitely many components for the limit space arising in Theofietn To show

x is a C%-orbifold point, one uses a tangent cone analysis as in [TV, Theorem 4.1].
Furthermore, in Theorem 6.4 below, we will shapis a smoothorbifold metric.

6. Asymptotic curvature decay and removal of singularities with bounded energy

We first discuss curvature decay results from [TV, Section 6], and using the same
technique, we prove a singularity removal result.

Theorem 6.1. Let (M, g) be a complete non-compact four-dimensional irreducible
Riemannian orbifold with g of clas&), (b), or (¢), and finitely many singular points.
Assume that

/ |Rmg|?dV, < 00, Cs < 00, and by(M) < <. (6.1)
M
Then (M, g) has finitely many endsnd each end is ALE of order for any t < 2.

Remark. In case(M, g) is a manifold, from[Car99, Theorem 1], we have a bound

on the number of ends depending only upon the Sobolev constant anb?therm

of curvature (moreover, all of th&2-Betti numbers are bounded). In the K&hler case,
an argument as in [LT92] shows that there can be at most 1 non-parabolic end, we
remark that the analysis there is valid for irreducible orbifolds with finitely many
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singular points. Since any ALE end is non-parabolic, this implies there only one end.
The argument iffLT92, Theorem 4.1] is roughly, to construct a non-constant bounded
harmonic function with finite Dirichlet integral if there is more than 1 non-parabolic end.
This function must then be pluriharmonic, and under the curvature decay conditions, it
must therefore be constant.

Proof. Theorem 6.1 was proved in [TV, Theorem 1.3], the proof there is also valid
for orbifolds. We briefly outline the details.

Lemma 6.2. If (M, g) satisfies(a), (b), or (c¢), then
2 2 2
[VIEI"<ZIVEI%, (6.2)

at any point wherd E| # 0, where E denotes the traceless Ricci tensor.

This is due to Tom Branson, the proof follows from his general theory of Kato
constants developed iBra00], see [TV, Lemma 5.1] for the details of this case, the
proof being valid also in all cases (a), (b), and (c). We remark that the same constant
follows from the methods in [CGHO0O0]. The case considered in Lemma 6.2 is exactly
the case = s = 2 in the last line of the table on [CGHOO, p. 253], giving immediately
the best constant/2.

Using this improved Kato constant, we now have the equation

AE1Y2> — CIE|1Y?|Rm)|. (6.3)

Using a Moser iteration argument frofBKN89], and since the scalar curvature is
constant, this allows one to improve the Ricci curvature decayRie| = O(r—29)

for any 6 < 2, wherer(x) = d(p, x) is the distance to a basepoipt Next, using a
Yang—Mills argument (inspired by the proof of Uhlenbeck for Yang—Mills connections
[UhI82], also [Tia90, Section 4]) the following was proved in [TV, Lemma 6.5]

Lemma 6.3. Let D(r) = M \ B(p,r). For 6 < 2, and r sufficiently largewe have

C
sup ||Rm < ——. 6.4
SUP IR s < (6.4)

The result then follows by the construction of coordinates at infinity in
[BKN89]. O

Next we discuss a removable singularity result, this is an analogue of [BKN89,
Theorem 5.1], [Tia90, Lemma 4.5]. This theorem is crucial to obtain smoothness of
the limit orbifold.
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Theorem 6.4. Let (X, d, x) be a completelocally compact length spagcevith base-
point x. LetB(x, 1) \ {x} be connected”* four-dimensional manifold with a metric g
of class(a), (b), or (c) satisfying

/ |Rmg|?dV, < oo, (6.5)
B(x,1)
||M||L4(B(x,1) {xh <Cs||vu||L2(B(x,1) () UE Co’l(B(xa D\ {x}), (6.6)
\ \
Vol(B(x,r)) < V1r4, r>0, (6.7)

where Cs, V1 are positive constants. Then the metric g extend8¢o, 1) as a smooth
orbifold metric. That is for some smalld > 0, universal cover ofB(x, ) \ {x} is

diffeomorphic to a punctured baB*\ {0} in R4, and the lift of g after diffeomorphism
extends to a smooth critical metrig on B*.

Proof. The argument inTV, Lemma 6.5] for ALE spaces examined the behavior
at infinity, we now imitate the argument using balls around a singular point. From
Theorem 5.3 above, we know the singularity is orbifold of order O, and the tangent
cone at a singularity is a cone on a spherical space f§#", We lift by the ac-

tion of the orbifold group to obtain a critical metric iB(0, J) \ {0} with bounded
energy, bounded Sobolev constant, anadl(B(0,s)) < Cs*. From the Kato inequal-
iies in cases (a), (b), and (c), we obtain the estimde| = O(-~2%), wherer

now denotes distance to the origin, for afly< 2. The argument from [TV, Lemma
6.5] shows thatjRm| = O(r=2t%). As in [Tia90, Lemma 4.4], we can then find a
self-diffeomorphismys of B(0,d) so thatV(y*g) = 019, and y*g = 0@°).
Choosingé close to 2, the metrigj*g has aCl* extension across the origin. From
the results of [DK81], this is sufficient regularity to find a harmonic coordinate system
around the origin. We view the equation as coupled to the equatiog fiorharmonic
coordinates:

ARic = Rm * Ric, (6.8)
Ag = Ric+ Q(g, 0g). (6.9)

From (6.8), as in [BKN89, Lemma 5.8], it is not hard to conclude ti&it € L? for

any p < oo (this is because from assumption we have a Sobolev constant bound, and
we also have an upper volume growth bound). Sigés C1*, from elliptic regularity,

(6.9) implies thatg € W7, and thereforeRm e L? for any p. Equation (6.8) then
implies Ric € WP, and (6.9) giveg € W37, Bootstrapping in this manner, we find
thatg e C*. O
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7. Convergence

In this section, we complete the proofs of Theorein%, 1.2, and 1.3. We first
describe the construction of the limit space, we will be brief since this step is quite
standard (see for example [Aku94, Section 4], [And89, Section 5], [Nak88, Section 4],
[Tia90, Section 3]). From the Sobolev constant bound (1.8) and lower volume bound
(1.10), we obtain a lower growth estimate on volumes of geodesic balls. That is, there
exists a constant > 0 so thatVol(B(x, s)) > vs4, for all x € M; ands <so, for some
so > 0 [Heb96, Lemma 3.2]. FoR > 0 large, letM; g = M;NB(p;, R), and forr > 0
small, we take a maximally-separated set o¥f; g, that is, a collection of pointg; ; €
M; g so thatB(p; ;,r)NB(pi,j,r) =¥ fori #i’, and the collectiorB(p; ;, 2r) covers
M; r. From the assumed bound (1.9) on thé-norm of curvature, only a uniformly
finite number of the ball88(p; ;, r) may SatiSnyg(p,-j,r) |ngj|2dvj >e¢o, Wheregg is
the constant from Theorem 4.1. By passing to a subsequence, we may assume that the
number of these points is constant. Let us denote this collection of points; blet
S;(r) denoted the-neighborhood ofS;, and letQ;(r) = M; g\ S;(r). From Theorem
4.1, the curvature and all covariant derivatives are uniformly bounded on compact
subsets of;(r). Furthermore, the lower volume growth estimate implies an injectivity
radius estimate (see [CGT82]), so we may apply a version of the Cheeger-Gromov
convergence theorem (see [And89,Tia90]) to find a subsequence suditial, g;)
converges smoothly t)(r), goo) aSj — oo on compact subsets. That is, there exist
diffeomorphisms®; , : Q. (r) — Q;(r) such thatfl)jf’,gj converges tgo in C* on
compact subsets d(r). By choosing a sequence — 0, and by taking diagonal
subsequences, we obtain limit spaces with natural inclusfegsr;) C Qoo (rit1).
Letting i — oo, we obtain a limit spacé€M. g, go0). This is done for eactRr large,
and taking a sequenck; — oo, we obtain a pointed limit spac@~, goo, Poo)-

We will now show how the main part of Theorem 1.1 follows assuming Theorem
1.2, and then we will complete the proof of Theorem 1.2 below. In fact, we only
require the volume growth estimate from Theorem 1.2 to hold onlyrfgrg, where
ro is some fixed scale. That is, let us assume that

Vol(Bg, (p,r) <Vr? (7.1)

for all p € M;, and all r <rg. The volume growth estimate7.() implies that we
may add finitely many points td/,, to obtain a complete length space; this follows
since #5;| is uniformly bounded (see [And89, Section 5], [Tia90, Section 3]) for more
details). For notational simplicity, we will continue to denote the completionvy.

The estimate (7.1), together with a global lower volume bound, imply a lower di-
ameter bound diatd/;, g;) > A > 0, which implies thatM,, # S. From (7.1), it
follows also that we have local volume convergence, aht}, g;, p;) converges to
(M, g0o» Po) In the Gromov—Hausdorff distance, moreover, the convergence is of
length spaces.

To analyze the singular points &, for p € S we look atB(p, d)\{p} for 6 small.

The volume growth estimate (7.1) implies the number of componen®(pfd) \ {p}
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is finite (se€[Tia90, Lemma 3.4]). Restricting to each component, Theorem 6.4 implies
that the singularities are metric orbifold singularities, that is, the metric is locally a
guotient of asmoothmetric on each cone. Consequentlfy, is a Riemannian multi-
fold. Using what we have proved so far about limits (i.e., under the assumption (7.1)),
we next prove Theorem 1.2.

Proof of Theorem 1.2.By Theorem 4.1, ifg is critical, and

1/2
||Rm||L2(B(p,2)) = {/ |Rm|2dVg} < &0,
B(p.2)

then

1
sup |Rm|< = Ceo.
B(p,D) 4

By Bishop’s volume comparison theorem, we must h&ve(B(p, 1)) < Ag, where Ag
depends only on the Sobolev constant.
We also note the following fact, for any metric,

|im0 Vol(B(p, r)r™* = wa,
r—

where wy is the volume ratio of the Euclidean metric &f. Clearly, Ao > wa.
For any metric(M, g), define the maximal volume ratio as

Vol(B(x,r))

MV(g) = max -

(7.2)

xeM,reRt r
If the theorem is not true, then there exists a sequence of critical manifdlgss;),
with MV (g;) — oo, that is, there exist points; € M;, and; € R* so that

Vol(B(xi, 1;)) - t; * — oo, (7.3)

asi — oo. We choose a subsequence (which for simplicity we continue to denote by
the indexi) and radiir; so that

2- Ao = Vol(B(xi, 1)) -1 = max Vol (B(x;.r)) - r 4, (7.4)

rr;

We furthermore assume that is chosen so that; is minimal, that is, the smallest
radius for which there exists some e M; such thatVol(B,, (p, 1)) <2A0r?, for all
r<ri.

First let us assume that has a subsequence converging to zero. For this subsequence
(which we continue to index bi), we consider the rescaled metge= r,-_zg,-, so that
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Bg, (xi,ri) = Bg (x;,1). From the choice ofy; andr;, the metricsg; have bounded
volume ratio, in all balls of unit size.

From the argument above, some subsequence converges on compact subsets to a
complete length spac@, g0, Poo) With finitely many point singularities. The limit
could either be compact or non-compact. In either case, the arguments above imply
that the limit is a Riemannian multi-fold.

Claim 7.1. The limit (M, g0o» Pso) CONtains at mostB; disjoint bad annuli

Proof. We know that (M;, g;, x;) converges to(Ms, g0, Poo) @S pointed spaces.
Assume that(M«, goo, Poo) CONtains B1 + 1 disjoint bad annuliA;, 1<I/<B1 + 1.
Then there exists a radiuR so thatUA; C B(p«, R). Since the convergence is of
pointed spaces, given any> 0, there exist pointed, continuousalmost isometries
®; . : B (xi,2R) — B, (P, 2R + ¢) for i sufficiently large (se¢gBBIO1]). For ¢
sufficiently small, it is easy to see that for eabhl)ifsl(Al) will be ¢-close to a bad
annulus in(M;, g, x;). Applying the Mayer—Vietoris argument in [TV, Lemma 4.7]
to this collection, we conclude that the number must be boundedihya contra-
diction. [

If M is noncompact, the remarks at the end of Section 4 shows that assumption
(5.2) is satisfied. Also, from [TV, Lemma 6.1], the Sobolev constant bound implies a
lower volume growth bound (this is valid for orbifolds), so (5.1) is satisfied. Theorem
5.2 then implies thaM, has only finitely many ends, and that there exists a constant
A1>=2Ag so that

Vol (B, (poo, 1)) <Arr®, forall r>0. (7.5)

If M is compact, then clearly the estimafeX) is valid for some constant; >2A,
since the limit has finite diameter and volume, and the estimate holds<dr.
The inequality

/ |Rm; |2 dV; > e, (7.6)
B, (xi,ri)

must hold; otherwise, as remarked above, we would g B, (x;, r,-))ngri“, which
violates {.4).
If the r; are bounded away from zero then there exists a raidacs that

Vol(By, (p, r))<2Aor4, for all r<t,pe M. (7.7)

We repeat the argument from the first case, but without any rescaling. Since the maximal
volume ratio is bounded on small scales, we can extract an orbifold limit. The limit
can either be compact or non-compact, but the inequalify) (will also be satisfied for
some A1, Following the same argument, we find a sequence of balls satisfying (7.6).
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We next return to the (sub)sequenc#f;, g;) and extract another subsequence
so that

200- Ay = Vol(B(x[.r})) - ()~ = max Vol(B(x],r))-r*. (7.8)

rSri

Again, we assume that/ is chosen so that/ is minimal, that is, the smallest radius
for which there exists somg € M; such thatVol (B, (p, r)) < 2004174, for all r <r;.
Clearly, r; < r].

Arguing as above, if/ — 0 asi — oo, then we repeat the rescaled limit construction,
but now with scaled metrig; = (rl.’)*zg,-, and basepoint.. We find a limiting orbifold
(ML, gl PL.), and a constantiz >20041 so that

Vol(Bgéo(p’oo, ) <Ay for all r > 0.

For the same reason as above, we must have
2
/ |Rm | deZ.So.
’ /
Bg/.(xj,rj)

If »/ is bounded below, we argue similarly, but without any rescaling.
We claim that fori sufficiently large, the ball8(x;, r;) (from the first subsequence)
and B(x;, r{) (from the second) must be disjoint because of the choic@.8).(To see

this, if B(x;,r;)) N B(x],r]) # @, then B(x/, r}) C B(x;, 3r}). Then (7.5) and (7.8) yield

1’01 1’01

200A1(r)* = Vol(B(x], 1)) < Vol(B(x;, 3r))) <2A1(3r)* = 16241(r))*,
which is a contradiction (note the last inequality is true fosufficiently large since
(7.5) holds for the limit).

We repeat the above procedure. The process must terminate in finitely many steps
from the bound||Rm;| ;2 < A. This contradicts (7.3), which finishes the proot]

The convergence statement in Theorem 1.1 now follows from Theorem 1.2, since
(7.1) is satisfied. Statement (3) follows from Theorem 6.1, since the multi-fold is the
union of irreducible orbifolds. Note also that the volume bound in Theorem 1.2 gives
a uniform bound for the number of irreducible pieces, and the number of ends of the
limit multi-fold.

To finish the proof of Theorem 1.1 we need to verify statements (2), (4), and (5).
The next proposition gives a direct argument to bound the number of components of
B(p, 0) \ {p} for 6 small in terms of the Sobolev constant and first Betti humber.

Proposition 7.2. For p € My, and ¢ sufficiently small the number of components
of B(p,d) \ {p} can be estimated in terms of the first Betti number and the Sobolev
constant(defined as in1.2 or 1.3)). If b1(M;) = 0, then p is irreducible. Furthermore
My, does not split off any compact orbifold.
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If the weaker Sobolev inequalif3.11) is assumedthen the number of components
of B(p, 9)\ {p} can be still be estimated in terms of the Sobolev constant and the first
Betti number(but in this case it is possible that #(M;) = 0, a singular point could
be reducible and it is also possible thad, could split off a compact orbifo)d

Proof. Let p be a non-irreducible singular point. We have shown aropnd/, is a

finite union of orbifold cones, with the basepoints identified. For each orbifold, since
the convergence is smooth away from the singular points, we look before the limit, and
this gives us a portion of a cone &¥/I" in the original manifold, very small, which

we call N; ¢ M; and N; = (a;, 24;) x (S3/T"), which is close, in anyC”-topology, to

an annulusA(g;, 24;) in a cone on a spherical space fofts3/T"), and wherez; — 0

asi — oo.

If {a;} x $3/T" bounds a region inM;, equivalently, if N; separatesV; into two
components, then this decomposks into a disjoint unionA; U N; U B;. Since the
point p is non-irreducible and the convergence is smooth away from the singular points,
we must haveVol(A;) and Vol(B;) uniformly bounded away from zero. Without loss
of generality, assum&ol(A;) < Vol(B;).

We take a functionf; which is 1 onA;, 0 on B;, since the neckV; is C™-close to
the annulusA(a;, 24;) in a flat cone, we may takév f| = 1/a; on the neck portion
N;. We compute

1/4
I fill s = {/A 1dVy, +/N f,-dVgi} ~ Vol (Aj)Y4. (7.9)
Next,
2 1 1 4 4 3
IVfil;2= | —dVy ~—C((2a;))" — (a;)”) = Ca;, (7.10)
L N; Qi a;

since N; is C™-close toA(a;, 2a;). Using the Sobolev inequalityl (2), we obtain

Vol(ANM4 < CsC'a”? + Vol (M)~ Y4Vol (A)Y/2, (7.11)
Rearranging terms,
Vol(AnY4(L = Vol (M)~ Y*Vol(Aj)Y* < CsCla’?. (7.12)

We haveVol(M;)>2Vol(A;), therefore
Vol(A)Y4(1— 27 Y% < CsCla?. (7.13)

Since Vol(A;) is uniformly bounded away from zero, this is a contradiction for
large. Therefore none of the neckg around a non-irreducible singular point can
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bound regions inM;. Using the intersection pairing, any of these embedded space
forms will give a generator ob;(M;). At most two of these may give rise to the same
generator, so from the assumed boundM;), there may only be finitely many,
and if b1(M;) = 0, the singular poinp must be irreducible.

Note that in case of the Sobolev inequalit}.3), a similar argument works, and a
similar argument shows tha/,, does not split off any compact orbifold.

In the case (3.11) is satisfied, letbe non-irreducible singular point. Again, we have
shown arouncp, M is a finite union of orbifold cones, with the basepoints identified.
For each orbifold groupl’; at p, since the convergence is smooth away from the
singular points, we look before the limit, and this gives us a portions of cones on
$3/T; in the original manifold,N; ; C M;, very small,N; ; = (a;, 2a;) x (S3/T;),
which is close, in anyC™-topology to an annulugi(a;, 2a;) in a cone on a spherical
space formC(s3/T';), and wherez; — 0 asi — oo.

Take any collection ofQ > 16C§,1 irreducible orbifolds ap. Then we claim at least
one of the necksV; ; cannot bound a region iM;, i.e., N; ; cannot separaté/; into
2 components. If all of theV; ; bound, then this decompos@4 into a disjoint union
A;U(U;N; j)UB;, whereA; is taken to be on the side of the neck where convergence
is smooth, B; is the rest ofM;. Since we have a finite collection, and convergence
is smooth onA;, so Vol(A;) is uniformly bounded away from zero. Now; is the
union of Q regions, therefore, one of the regions, which we @&ll;, must satisfy
Vol(R; j) < GVol(Ap).

We take a functionf; which is 1 on the regiorR; ;, since the neckv; ; bounding
R; ; is C*°-close to the annulug(a;, 24;) in a flat cone, we may takgv f| = 1/a;
on the neck portionv;, with f; = 0 otherwise.

As in (7.12) above, but using the Sobolev inequality (3.11), we obtain

Vol(R; )"*(1— CsVol (M)~ Y*Vol(R; )Y*) < CsC'a’?. (7.14)
We haveVol(M;)> QVol(R; j), therefore

Vol(R; )41 — csQ Y < CsC'a’?, (7.15)

i

from the choice ofQ, we obtain

1
EVOZ(Ri,.,)l/‘lSCSC’aS/Z. (7.16)

i

SinceVol(R;, ;) is uniformly bounded away from zero, this is a contradictioniftarge.
Therefore, for any collection 0O > 16C§1 irreducible orbifolds afp, one of the neck
N; ; cannot bound a regions if;. Using the intersection pairing, the corresponding
embedded space for|$13/1“,-,j will give a generator ob1(M;).
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If there arek = Q orbifolds atp, then we findk generatorsh1(M;). At most 2 of
these may give rise to the same generator, so from the assumed boulnd D,
there may only be finitely many. O

We remark that we may characterize the singular set as follows: witlhs in
Theorem4.1, we have

S = {x € Ms|liminf |Rmg, % dvoly, >eo
J=0 JB(xj,r)

for any sequence{x;} with lim x; =x, and allr > 0}. (7.17)
j—o00

We next give a description of the convergence at the singular points, by rescaling
the sequence at a singular pointe S. Several bubbles may arise in the degeneration,
so we have to rescale properly, and possibly at several different scales. This was done
in [Ban90a] for the Einstein case, and with a few minor changes, the proof works
in our case. We outline the details here. Fo<Or1; < rp, we let D(r1, r2) denote
B(p,r2) \ B(p,r1). Given a singular pointt € S, we take a sequence € (M, g;)
such that lim_, - x; = x and B(x;, ) converges toB(x, J) for all 6 > 0. We choose
a radiusry, sufficiently small and the sequenge to satisfy

SUp |Rmg, |? = |Rg;|2(xi;) = 00 as j — oo, (7.18)
B(xj,ro0)

and
/ |Reno[2dV, <to/2 (7.19)
B(x,reo0)

We next chooseq(j) so that

/ IRy, 1?dVy, = eo, (7.20)
D(ro,re0)

where ¢y is as in Theoremd4.1l, and againD(r,,7.) = B(xi, 7o) \ B(xi,70). An
important note, which differs from the Einstein case, the anndlilgs), roo) may have
several components.

Since the curvature is concentrating »xatr,(j) — 0 asj — oco. From Theorem
1.1, the rescaled sequent¥, r,(j)~2gi, x;) has a subsequence which converges to a
complete, non-compact multi-fold with finitely many singular points, which we denote
by M;,, 1<ii <#{S}. Since

/ |Rm|?dV, < e, (7.21)
D(1,00)

there are no singular points outside B{x, 1).
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On the non-compact ends, from Theoré&n, the metric is ALE of order for any
T < 2. As in [Ban90a, Proposition 4], we conclude that the neck region (for lgrge
will be arbitrarily close to a portion of a flat core*/T", possibly several cones iff;,
has several ends. So the convergence at a singular poii¥ that the ALE multi-fold
M;, is bubbling off, or scaled down to a point in the limit.

To further analyze the degeneration at the singular points, we look at the multi-fold
M;, with singular setS;,. If S;; is empty, then we stop. We do the same process as
above for each singular point @f;,, and obtain ALE multi-foldsM;, ;,, 1<ip <#{Si;}.

If M;, i, has singularities, then we repeat the procedure. This process must terminate
in finite steps, since in this construction, each singularity takes at dgasft curvature.

As pointed out in [Ban90b], there could be some overlap if any singular point lies on
the boundary ofB(1) at some stage in the above construction. But there can only be
finitely many, and then there must also be a singular point in the interidd(f, so

we still take away at leasty of curvature at each step.

In the Kahler case, one can use the methods of [LT92] to show that boundary of
sufficiently small balls around the singular points Mf,, are connected. If a singular
point p € M, is non-irreducible, then using the above bubbling analysis, at some step
one must find an irreducible Kahler ALE orbifold with more than one end. From the
remark following Theorem 6.1, this is not possible, therefore in the Kéhler case (c),
the limit is irreducible. This completes the proof of Theorem 1.1.

7.1. Local Sobolev inequality
As we have noted throughout the paper, many of our results hold with a weaker

assumption on the Sobolev constant. We have the following notion of local Sobolev
constant. We defin€s(r) to be the best constant such that

Iflla<Cs(MIV fll2 (7.22)

for all f e C%! with compact support irB(p, r), and for allp € M.
The following is the analogue of Theorein3 with a local Sobolev constant bound
(the proof is identical):

Theorem 7.3. Let (M;, g;) be a sequence of critical metricg; on smooth four-
dimensional manifoldg/; satisfying

Cs(ro)<C1 (for some fixedg > 0), (7.23)
/ |Rmg,|?dVy, <A, (7.24)
Vol(gi) = 1, (7.25)

b1(M;) < Ba, (7.26)
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where C1, A, /2 are constantsand b1(M;) denotes the first Betti numheFhen there
exists a subsequencg} C {i}, a compact connected critical Riemannian multi-
fold (M, g), and a finite singular setf C My, such that(M;, g;) converges to

(Moo, 800)-

8. Further remarks

We conclude by listing here some interesting problems.

(1) We considered above the case of constant scalar curvature Kahler metrics. We
conjecture that these results extend to the more general extremal Kéhler case in di-
mension four[Cal82,Cal85].

(2) It is an interesting problem to generalize our results to higher dimensions. We
conjecture that the following is true for the higher dimensional extremal Kahler case.
Assuming fixed Kahler class, first and second Chern classes, the limit space has at most
a codimension four singular set, and the singular set is a holomorphic subvariety. Even
in the case of Bach-flat or harmonic curvature in higher dimensions, under the bound
IRm| ;2 < A, the limit space should have a most a codimension four singular set,
with top strata modeled on orbifold singularities. This was proved for Einstein metrics
in [CC97,CC00a,CCO00b,CCT02].

(3) It would be very interesting to remove the Sobolev constant assumption and
understand the collapsing case.

(4) In the general Bach-flat case in dimension four, one should be able to show that
the orbifold singularities aremoothmetric singularities, and that in the ALE case, one
can obtain a positive order of decay.
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