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SUMMARY

Being sessile organisms, plants need rapid and finely
tuned signaling pathways to adapt their growth and
survival over their immediate and often adverse envi-
ronment. Abscisic acid (ABA) is a plant hormone
crucial for both biotic and abiotic stress responses.
In this study, we highlight a function of six Arabidop-
sisMATH-BTB proteins in ABA signaling. MATH-BTB
proteins act as substrate-binding adaptors for the
Cullin3-based ubiquitin E3 ligase. Our genetic and
biochemical experiments demonstrate that the
MATH-BTB proteins directly interact with and target
for proteasomal degradation the class I homeobox-
leucine zipper (HD-ZIP) transcription factor ATHB6,
which was previously identified as a negative regu-
lator of ABA responses. Reducing CUL3BPM function
leads to higher ATHB6 protein accumulation, re-
ducing plant growth and fertility, and affects sto-
matal behavior and responses to ABA. We further
demonstrate that ABA negatively regulates ATHB6
protein turnover, a situation reminiscent to ABI5,
another transcription factor involved in ABA
signaling.

INTRODUCTION

Regulation of protein stability by the ubiquitin/proteasome sys-

tem participates in a broad range of physiologically and develop-

mentally controlled processes in all eukaryotes (Ciechanover

et al., 2000; Smalle and Vierstra, 2004). In this pathway, a critical

step involves ubiquitin ligases (E3s), which facilitate the transfer

of ubiquitin moieties to substrate proteins, as a preparative step

for their degradation by the 26S proteasome. Several hundred

different E3s have been identified in metazoan and plant

genomes, based on specific, commonly shared structural

motifs. Among them, Cullin-RING E3 ubiquitin Ligases (CRLs)
1116 Developmental Cell 21, 1116–1128, December 13, 2011 ª2011
are the most prevalent class of E3s (Petroski and Deshaies,

2005; Hua and Vierstra, 2011). CRLs are multimeric E3s in which

one distinct CULLIN protein serves as a molecular scaffold to

bring together a catalytic module composed of a RING finger

domain protein and an ubiquitin conjugating enzyme (E2) and

a specific substrate-recognition module, which physically inter-

acts with the target substrate(s).

CUL3 is a highly conserved CULLIN family member identified

in the genome of all eukaryotes. In Caenorhabditis elegans,

CUL3 loss-of-function leads to a defect of cytokinesis in

single-cell embryos (Kurz et al., 2002) while the deletion of this

gene in mouse produces an arrest during early embryogenesis

(Singer et al., 1999). In the model plant Arabidopsis thaliana,

the disruption of the two related CUL3 genes, called CUL3A

and CUL3B also caused embryo lethality (Figueroa et al., 2005;

Gingerich et al., 2005; Thomann et al., 2005).

At the structural level, CUL3 interacts with ‘‘Bric a brac, Tram-

track and Broad Complex/Pox virus and Zinc finger’’ (BTB/POZ,

called hereafter BTB) domain proteins that function as substrate-

specific adaptors (Pintard et al., 2004; Vierstra, 2009). BTB

domain proteins bind CUL3, via the BTB domain and usually

direct substrate specificity through an independent protein-

protein interaction domain. One such domain is MATH (Meprin

and TRAF homology), which serves as a recognition site for

substrates of the CRL3MATH subfamily of E3s (Zhuang et al.,

2009). Although MATH-BTB proteins are evolutionarily con-

served, their substrates are rather functionally diverse. For

example, the Drosophila MATH-BTB protein, SPOP, recruits

substrates such as the Jun Kinase phosphatase Puckered and

the transcription factor Ci/Gli (Liu et al., 2009; Zhang et al.,

2006), or in mammals, the chromatin component MacroH2A

(Hernández-Muñoz et al., 2005). Another well-characterized

MATH-BTB protein is MEL-26 from nematode (Furukawa et al.,

2003; Pintard et al., 2003; Xu et al., 2003). MEL-26 recruits

MEI-1, a protein with microtubule-severing activity that is re-

quired for meiotic spindle formation, but must be quickly

degraded prior mitosis.

A striking feature of the MATH-BTB class of adaptors is that

they largely expanded and diversified during evolution in some

worm and plant species (Stogios et al., 2005; Thomas, 2006;
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Figure 1. BPM3 Interacts with ATHB6 and Addi-

tional Members of Class I HD ZIP Transcription

Factor Family

(A) Phylogenetic tree (left panel) of Arabidopsis HD-ZIP

class I domain proteins. Clustal X 1.83 (Thompson et al.,

1997) was used to align Arabidopsis HD-ZIP class I

proteins and to compute the unrooted tree by the neighbor

joining method. Complete protein sequences were used

to construct the tree, gaps were taken into account for the

computation and no correction was applied for multiple

substitutions. The tree was then drawn using the Phylo-

dendron 0.8d web service (http://iubio.bio.indiana.edu/

soft/molbio/java/apps/trees/).

Yeast two hybrid interactions (right panel): Full-length

BPM3, the MATH domain of BPM3 or B9A were tested

pairwise with several Arabidopsis HD-ZIP class I proteins,

including ATHB1, ATHB5, ATHB6, and ATHB16. Growth

on selective plates lacking leucine, tryptophan and

adenine (-L-W-A) and on control plates lacking only

leucine and tryptophan (-L-W) is shown. Picture of the

plates were taken after 4 days at 28�C.
(B) A schematic representation (left panel) of different

ATHB6 deletion constructs (homedomain [HD], leucine

zipper [LZ], or C terminus [Ct]) that were tested pair wise

by yeast two hybrid (right panel) with the full-length BPM3,

theMATHdomain of BPM3 or BTB9A.Growth on selective

plates lacking leucine, tryptophan, and adenine (-L-W-A)

and on control plates lacking only leucine and tryptophan

(-L-W) is shown. Picture of the plates were taken after

4 days at 28�C.
See also Figure S1.
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Gingerich et al., 2007). For instance, while the Arabidopsis

genome encodes six MATH-BTB proteins (hereafter called

BPM1-6; Weber et al., 2005), this family has significantly

expanded to 74 members in rice during evolution (Gingerich

et al., 2007). This possible positive selection during evolution

of MATH-BTBs has been compared to pathogen proteins that

are themselves under strong positive selection (Thomas, 2006;

Gingerich et al., 2007).

At present, substrates of plant MATH-BTB proteins are

unknown. Here, we show that all six Arabidopsis BPMs physi-

cally interact with a specific subclade of class I homeodomain

leucine zipper (HD-ZIP) transcription factors, including ATHB6

revealed to be involved in phytohormone abscisic acid (ABA)

responses (Himmelbach et al., 2002). ABA regulates many

aspects of plant growth and development including seed dor-

mancy and germination, reproduction and is also a key compo-

nent of plant responses to biotic and abiotic stress, in particular

cold, salinity and drought (Yamaguchi-Shinozaki and Shinozaki,

2006; Ton et al., 2009; Cutler et al., 2010; Hubbard et al., 2010;

Raghavendra et al., 2010).

ATHB6 appears to negatively regulate a subset of ABA

responses, such as sensitivity toward ABA during seed germina-

tion and stomatal closure. Here, we report that a strong reduc-

tion of BPM transcript accumulation, using an artificial microRNA

strategy, leads to increased ATHB6 protein content. Conversely,

overexpression of BPM3 decreases the abundance of the

ATHB6 protein and also suppresses phenotypic alterations,

such as leaf serration and reduced growth, caused by ATHB6

ectopic expression. Moreover, we show that knockdown of

BPMs as well as the overexpression of ATHB6 alters stomatal

behavior under stress and non-stress conditions. Overall, our
Developmenta
data highlight a function of CRL3MATH-BTB ubiquitin E3 ligases

in ABA responses.

RESULTS

BPMs Interact with Members of Class I HD-ZIP Family
of Transcription Factors
To identify proteins that are potentially regulated by BPMs, we

conducted a yeast two-hybrid screen. The full-length coding

sequence of BPM3 fused to the binding domain of GAL4 was

used toscreenacDNA libraryprepared fromArabidopsis inflores-

cences. From over a twomillion clones screened, 125 were iden-

tifiedaspotential interactors.Among them,80weresubsequently

confirmed by retransformation into yeast. A large class of them

(approximately one-third) corresponded to BPM3 itself indicating

that this protein homodimerizes, which has been previously re-

ported (Weber et al., 2005). Interestingly, among the BPM3 inter-

actors we also identified 13 and 2 clones corresponding to the

homeobox-leucine zipper (HD-ZIP) transcription factors ATHB6

(At2g22430) and ATHB5 (At5g65310), respectively. In Arabidop-

sisHD-ZIP proteins have been grouped into four different classes

(Ariel et al., 2007), ATHB6 and ATHB5 belonging to class I. More-

over, we found that BPM3 also interacts with ATHB16, but not

with ATHB1, suggesting that this interaction is specific to only

a subclade of class I HD-ZIP proteins (Figure 1A).

We then tested whether ATHB6 only interacts with BPM3 or

whether it also interacts with additional members of the BPM

family (Weber et al., 2005). Thus, all six full-length BPM coding

sequences were tested for interaction with ATHB6 in yeast two

hybrid assays. ATHB6 interacts with all members of the Arabi-

dopsis BPM protein family (see Figure S1A available online),
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Figure 2. BPM Proteins Interact with ATHB6 in the

Nuclear Compartment of the Cells

(A) Confocal images showing the subcellular distribution of

YFP-tagged BPM1, BPM2, BPM3 fusion proteins in tran-

siently transformed BY2 cells. Scale bars represent 10 mm.

(B) Confocal images showing the subcellular localization

of GFP-ATHB6 and RFP-BPM6 proteins in transiently

transformed tobacco cells. Nicotiana benthamiana plants

were infiltrated with Agrobacteria harboring the different

plasmids. The two fusion proteins colocalize in the

nucleus. Scale bars represent 10 mm.

(C) FRET analysis showing that GFP-ATHB6 interacts with

RFP-BPM6 in the nuclei of N. benthamiana cells agro-in-

filtrated leaves. Bars represent mean fluorescence lifetime

(t, in ps ± SE) of GFP-ATHB6 alone or together with RFP-

BPM6 or RFP-B9A. Mean FRET value (percentage) is

indicated above the bars.
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but not with B9A (At2g46260), a more distant member of this

BTB protein family (Dieterle et al., 2005). To further confirm these

interactions, we performed in vitro pull down assays. For this

purpose, we generated GST protein-fusions with all six BPMs

that were expressed in Escherichia coli and subsequently puri-

fied. The ATHB6 protein labeled with [35S] methionine was

produced in wheat germ extract. These assays showed that

ATHB6 was pulled down with all BPMs, but not with GST alone

nor with the unrelated B9A BTB protein (Figure S1B). It is note-

worthy that the in vitro binding efficiencies were not equal, with

BPM6 showing the strongest binding to ATHB6, whereas in

yeast cells the strongest interactions were observed with

BPM1 and BPM3. From these experiments, we conclude that

ATHB6 interacts with all six members of the BPM family.

When we transiently expressed in tobacco BY2 cells BPM

proteins fused at their N terminus to YFP, we observed a clear

nuclear enrichment of all proteins as illustrated for BPM1-3

(Figure 2A). We also found the occasional appearance of these

proteins in nuclear speckles. To confirm the interactions

between BPMs and ATHB6 in planta, we used fluorescence

resonance energy transfer (FRET) assays in Nicotiana ben-

thamiana leaves. These assays revealed a direct interaction in

the nuclei between BPM6 and ATHB6, which was not the case

for B9A and ATHB6 (Figure 2B). Thus, CRL3MATH-BTB E3 ligases

may directly ubiquitylate ATHB6 in the nucleus prior its degrada-

tion by the proteasome.

Next, we narrowed down the domain in ATHB6 that interacts

with BPMs. We created a series of deletion constructs in

ATHB6 that were tested for yeast two-hybrid interactions with

the full-length BPM3 or the MATH domains alone (Figure 1B).

These assays revealed that the MATH domain of BPM3 interacts

with the leucine zipper domain of ATHB6, but not with its home-

odomain (HD). Thus, the interaction between BPMs and ATHB6

may interfere with the dimerization of ATHB6 with other HD-Zip

proteins, but not or only indirectly with its binding to DNA that

is assumed by the HD.
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BPM Genes Exhibit a Similar Pattern
of Expression in a Broad Variety
of Plant Tissues
We examined BPM1-6 relative expression

levels and tissue specificities by quantitative
real-time RT-PCR (q-RT-PCR) and promoter-GUS fusion

studies. All six BPMs are expressed at various levels in plant

organs (Figure S2A). Moreover, these genes exhibit similar

organ-specific expression patterns. In particular, BPMs are ex-

pressed significantly higher in floral buds and open flowers.

This apparent coregulation of BPM genes was also apparent at

the tissue specific level (Figure S2B). We cloned upstream of

the GUS (b-glucuronidase) gene a 1–1.8 kb promoter sequence

of each BPM, and at least ten independent transgenic lines for

each construct were selected. GUS staining was detected in

cotyledons, leaves, the vasculature of stems and roots, flower

organs including sepals, petals, filaments, and stigma of T3

transgenic lines. A strong GUS expression was also detected

in mature pollen with BPM1, 2, and 3 and to a lesser extent

with BPM6. Overall, BPM genes are expressed in all organs

with similar tissue-specific expression patterns. Our analysis is

also consistent with available microarray data (Hruz et al.,

2008) and other recently reported studies (Weber and Hellmann,

2009). Since all BPMs interact with ATHB6 and are coexpressed

in most plant tissues, we anticipated functional redundancy

among this gene family.

BPM Silencing by Artificial microRNAs and ATHB6
Overexpression Affect Plant Development
in a Similar Way
To get insights into the function of Arabidopsis BPMs, we first

examined all corresponding T-DNA insertion mutant lines from

public collections. Homozygous mutants for each insertion line

were produced and analyzed for BPM transcripts accumulation.

Thus, four T-DNA mutant lines (BPM3: SALK072848; BPM5:

SALK002733 and SALK038417; BPM6: SALK118960) led to a

significant reduction in BPM3, BPM5, and BPM6 expression.

However, none of them exhibited an abnormal phenotype

when grown under our conditions. To overcome the lack of

multiple knockoutmutants, we used a strategy based on artificial

microRNAs (Parizotto et al., 2004). BPM nucleotide sequences



Figure 3. Downregulation of BPM Expression and ATHB6 Overexpression Affect Plant Growth and Development

(A) Nucleotide sequence alignment between the sequence of the selected artificial microRNA and all six different BPM genes. BPM1, BPM4, and BPM6 show

a perfect sequence match with the sequence of the artificial MicroRNA. Nucleotides with mismatch are underlined.

(B) Analysis of the relative expression levels ofBPM1,BPM2,BPM3,BPM4,BPM5, andBPM6 gene transcripts determined by quantitative RT-PCR in 14-day-old

wild-type (Col-0, white bars) and amiR-bpm line (gray bars). Data shown are means ± SD of three replicates. Similar results were obtained in three independent

experiments.

(C) Phenotype of 5-week-old (upper panel) and 8-week-old (lower panel) wild-type, amiR-bpm, oeGFP-HB6, and amiR-bpm/oeGFP-HB6 plants. Pictures of two

leaves corresponding to F9 and F10 from 5-week-old light grown wild-type, amiR-bpm, oeGFP-HB6, and amiR-bpm/oeGFP-HB6 plants (middle panel).

(D) Pictures of 2-week-old in vitro light grown wild-type, amiR-bpm, oeGFP-HB6 and amiR-bpm/oeGFP-HB6 seedlings (upper panel). Leaf surface measure-

ments made on leaves F2 and F3 of 10-day-old light grown seedlings of wild-type, amiR-bpm, oeGFP-HB6, and amiR-bpm/oeGFP-HB6 plant (lower panel). Data

shown are means ± SD (n = 30). It is noteworthy that the reduction in leaf size of oeGFP-HB6 plants became only apparent after 2 weeks of plant development.

(E) Pictures of flowers, siliques, and inflorescences of wild-type, oeGFP-HB6, and amiR-bpm plants.

(F) Analysis of pollen viability by transmitted light microscopy after Alexander staining on mature flowers. Two hundred to 300 pollen grains coming from four

different plants of each genotype have been analyzed. Scale bars represent 10 mm.

See also Figure S2.
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were aligned and we determined a 21 nucleotide-long sequence

(Figure 3A), which shows a perfect match for BPM1, 4 and 6. This

21-mer was confirmed to be a good candidate sequence using

Web MicroRNA designer (http://rna.tbi.univie.ac.at/cgi-bin/

RNAfold.cgi). We used the miRNA171 precursor as a backbone
Developmenta
for amiR-bpm expression under the control of the CaMV 35S

promoter. Transformed plants were selected and 7 out of 20

lines showed growth and developmental alterations (Figure 3).

These transgenic lines were further characterized for BPM

expression and all amiR-bpm lines, as illustrated for one of
l Cell 21, 1116–1128, December 13, 2011 ª2011 Elsevier Inc. 1119
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Figure 4. BPMs Trigger Proteasomal-Dependent Degradation of ATHB6 In Planta

(A) The proteasome inhibitor MG132 stabilizes ATHB6. Fourteen-day-old wild-type or oeGFP-HB6 seedlings were treated or not during 3 hr with 100 mMMG132.

Total protein extracts were subjected to immunoblot assays using anti-GFP and antitubulin (as loading control) antibodies.

(B) The GFP-ATHB6 protein is stabilized in root cell nuclei treated 3 hr with 50 mMMG132, but also in nontreated amiR-bpm root cell nuclei. Fluorescence images

were obtained by confocal microscopy performed on roots of 5-day-old seedlings. Scale bars represent 50 mm.

(C) UbiQapture-Qmatrix was used to pull-down all ubiquitylated proteins present in a total protein sample extracted fromCol-0 or from oeGFP-HB6 or from amiR-

bpm/oeGFP-HB6 trangenic plants. Twice as much total protein extract of oeGFP-HB6 compared with total amiR-bpm/oeGFP-HB6 protein extract has been

loaded on the UbiQapture matrix in order to perform this assays with a similar amount of ATHB6 protein in input samples. Western blot analysis using anti-GFP

antibody was used to monitor the GFP-ATHB6 protein and its ubiquitylated form, which is clearly enriched in the ubiquitin-bounded fraction. When ATHB6 is

expressed in the amiR-bpm background, the level of ubiquitylated ATHB6 present in the ubiquitin-bound fraction was significantly reduced.

(D) The GFP-ATHB6 protein accumulates at higher levels in different amiR-bpm lines. The relative expression levels of GFP-ATHB6 transcripts in the amiR-bpm

and three independent amiR-bpm/oeGFP-HB6 lines (indicated 17, 19, and 20) were determined by quantitative RT-PCR (upper panel). Data shown are means ±

SD of three replicates. Total protein extracts from the same lines were subjected to immunoblot assays using anti-GFP antibody (lower panel). Coomassie blue

staining is shown as loading control.

(E) The proteasome inhibitor MG132 stabilizes BPM3. 14-day-old seedlings expressing MYC-BPM3 were treated or not during 3 hr with 100 mM MG132. Total

protein extracts were subjected to immunoblot assays using anti-MYC and anti-TSN (as loading control) antibodies.

(F) Overexpression of MYC-BPM3 promotes ATHB6 protein degradation. Relative expression levels of GFP-ATHB6 transcripts in the different genetic back-

grounds (as indicated) were determined by quantitative RT-PCR (upper panel). Data shown are means ± SD of three replicates. Total protein extracts from the
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them (Figure 3B), exhibited a strong reduction in transcript accu-

mulation of BPM1, 4, 5, and 6, respectively.

The phenotypic analysis of amiR-bpm plants revealed that

BPMs are required for normal plant development (Figures 3C–

3E). Thus, both leaf shape and leaf size were affected in these

lines. The leaf blade area was reduced about 30% as compared

with wild-type and mature leaves were typically serrated (Fig-

ure 3C and 3D). Moreover, the overall stature of amiR-bpm

plants was reduced and appeared bushy, indicating that both

stem elongation and branching were altered. The most severe

phenotype was observed at the time of plant reproduction, as

amiR-bpm plants exhibited alteration in flower development

(Figure 3E), such as shorter pedicels, exaggerated opening of

flowers, shorter stamens, protruding gynoecium, and predomi-

nantly short siliques. The reduced fertility was most likely the

consequence of reduced pollen viability (Figure 3F) and stamen

elongation.

We speculated that ATHB6 and eventually other class I HD-

ZIP proteins are targets of CUL3BPM E3 ubiquitin ligases. No anti-

body against ATHB6 is currently available and our attempts to

produce such an antibody failed, thus we fused the GFP to the

N terminus of ATHB6 and expressed the chimeric protein in

Arabidopsis under the control of the constitutive 35S promoter.

Twenty independent 35S:GFP-ATHB6 Arabidopsis transform-

ants (called oeGFP-HB6) were selected and further character-

ized. Interestingly a high proportion of these plants (�30%)

showed a phenotype reminiscent to the amiR-bpm lines. In

particular, oeGFP-HB6 lines showed growth retardation, pres-

ence of serrated leaves, reduced fertility and pollen viability

(Figures 3C–3F). This suggests that at least some of the develop-

mental defects observed in the amiR-bpm lines may actually

result from a higher ATHB6 protein accumulation.

Ubiquitylation and Subsequent Degradation
of ATHB6 Requires the Function of CRL3BPM

The ubiquitin proteasome system (UPS) is involved in the rapid

degradation of many short-lived proteins especially transcription

regulators (Vierstra, 2009). To test whether ATHB6 is a UPS

target, we first treated Arabidopsis oeGFP-HB6 lines with the

proteasome inhibitor MG132. Immunoblot analysis of untreated

plants revealed that ATHB6 protein shows at least two protein

bands with different electrophoretic mobility (Figure 4A). After

180 min of MG132 treatment, the level of ATHB6 protein mark-

edly increased supporting that its degradation is proteasome

dependent. Consistently, when oeGFP-HB6 transgenic plants

were treated with MG132, the drug promoted a strong nuclear

accumulation of the protein in root tip cells (Figure 4B). To inves-

tigate whether ATHB6 is ubiquitylated, we used a specific

ubiquitin-binding affinity matrix (UbiQapture), which allows puri-

fication of ubiquitylated proteins with high affinity. Ubiquitylated

ATHB6 protein forms were indeed captured by the matrix as

revealed by anti-GFP antibodies (Figure 4C). In addition to the

polyubiquitin forms detected, we also noticed that the ubiqui-

tin-binding affinity matrix allowed the purification of a lower
same lines were subjected to immunoblot assays using the following antibodies:

loading control (lower panel). The arrow indicates the MYC-BPM3 protein band.

(G) Picture of 5-week-old light grown wild-type, oeGFP-HB6, oeMYC-BPM3, an

See also Figure S3.
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molecular form of modified ATHB6. Whether this form corre-

sponds to ATHB6monoubiquitylation remains to be established.

Moreover after immunoprecipitation, ATHB6 polyubiquitin and

eventually monoubiquitin modifications were detected using an

anti-UBI antibody (Figure S3).

Next, to examine whether BPM knockdown in the amiR-bpm

lines affects ATHB6 protein accumulation, we used the

oeGFP-HB6 line 126 to cross to three different amiR-bpm lines.

After the selection of plants containing both transgenes, we

measured and compared the level of ATHB6 protein in the

different genetic backgrounds. As shown in Figures 4B and

4D, the GFP-ATHB6 protein levels were higher in the amiR-

bpm lines than in wild-type, while the transcript levels of the

transgene were similar. Consistently with a reduced turnover of

the ATHB6 protein in the amiR-bpm line, we also observed a

significant decrease of its ubiquitylation (Figure 4C). Strikingly,

the developmental defects due to GFP-ATHB6 overexpression

were dramatically enhanced when the transgene was expressed

in the amiR-bpm lines (Figures 3C–3F), indicating an ATHB6

dosage dependency of the phenotype. Thus, plants expressing

both transgenes showed a more pronounced inhibition of

growth, a more severe reduction in fertility and pollen viability.

These data indicate that reduced BPM activity leads to

increased ATHB6 protein content, and thereby causing the

enhanced phenotypes.

Overexpression of BPM Proteins Promotes ATHB6
Protein Degradation
To further demonstrate the role of BPMs in ATHB6 protein turn-

over, we produced Arabidopsis transgenic plants expressing

myc-epitope-tagged BPM3 (called oeMYC-BPM3) under the

control of the CaMV 35S promoter. Most transgenic oeMYC-

BPM3 lines appeared similar to wild-type plants, though we

observed also some slightly smaller plants in several transgenic

lines with a subtle leaf serration phenotype. Despite a 3-fold

increase in the level of the transgene mRNA in comparison to

the endogenous mRNA, the detection of the MYC-BPM3 protein

was always difficult (Figure 4E), suggesting that the protein is

very unstable. However, after MG132 treatment we observed a

stronger accumulation of the MYC-BPM3 protein, indicating

that this CRL3 adaptor is itself a target of the proteasome (Fig-

ure 4E). Next, we introduced the GFP-ATHB6 construct into

different independent oeMYC-BPM3 lines. After the selection

of plants containing both transgenes, we monitored the levels

of ATHB6 and BPM3 proteins by immunodetection. Interest-

ingly, when the epitope-tagged BPM3 protein was detected,

the GFP-ATHB6 protein was undetectable despite the presence

of its transcript (Figure 4F), indicating that BPM overexpression

stimulates ATHB6 protein degradation. Consistently, BPM3

overexpression not only promoted ATHB6 degradation, but

also suppressed the phenotypic alterations caused by ATHB6

overexpression (Figure 4G). Taken together, these results reveal

that ATHB6 is regulated by BPMs at the posttranslational level by

mediating its proteasome-dependent degradation.
anti-MYC for BPM3 detection, anti-GFP for ATHB6 detection, and anti-TSN as

d oeMYC-BPM3/oeGFP-HB6 plants.
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BPM Function Is Necessary for ABA Responses
ATHB6 is a transcription factor that negatively regulates ABA

signaling (Himmelbach et al., 2002). Therefore, we aimed to

characterize the function of BPMs in plant responses to this

phytohormone. We first examined the inhibition of germination

by ABA in our different transgenic lines. As previously reported,

ATHB6 overexpression leads to ABA insensitivity, though to a

lesser extent than in abi1-1 (Himmelbach et al., 2002; Figure 5A).

In agreement with BPMs negatively regulating ATHB6, the

knockdown of BPMs enhanced the ABA insensitive phenotype

of the oeGFP-HB6 lines. However, the amiR-bpm construct

in a wild-type genetic background had no significant effects

on seed germination in presence of ABA. This result suggests

that endogenous ATHB6 may have only a minor role in this

process, though other explanations are equally possible (see

Discussion).

Next, we investigated the water loss of excised rosettes from

both GFP-HB6 overexpressor and amiR-bpm lines. Interest-

ingly, the rate of water loss was similarly increased when either

ATHB6was ectopically expressed or BPMswere downregulated

(Figure 5B). Transpiration was also monitored using infrared

thermography. Already at t = 0 (corresponding to the time

when plant rosettes were excised), all three genotypes were

colder than wild-type (Figure 5C) indicating that they lose more

water in the absence of stress. Hence, ATHB6 overexpressor

and amiR-bpm leaves were, respectively, 1.9�C and 1.4�C
colder than those of the wild-type. This difference in leaf temper-

ature is similar to the mutation of the ABA-activated kinase

OST1/SnRK2.6 (Mustilli et al., 2002). Five minutes after dehydra-

tion stress induction, while the temperature of Col-0 increases as

a consequence of stomatal closure, this was not observed in the

transgenic lines, suggesting that ATHB6 regulation by BPMs is

important for stomatal functions.

To investigate whether BPMs are expressed in stomata, we

took advantage of the previously established microarray expres-

sion profiles of isolated guard cells (Leonhardt et al., 2004). All

BPMs were found expressed in guard cells and several of

them even at a higher level than in mesophyll cells (Figure S4A).

An ABA treatment had, however, only aminor effect on their tran-

script accumulation. A strong expression of BPMs in guard cells

was further confirmed by histochemical analyses of the estab-

lished BPM promoter:GUS lines (Figure S4B). It is also known

that ATHB6 is strongly expressed in stomata (Söderman et al.,

1999; Figure S4A).

Both stomatal density (number of stomata per mm2) and

stomatal index (ratio of stomata to epidermal cells) measured

on the abaxial leaf surfaces were reduced in ATHB6 overexpres-

sor and in the double oeGFP-HB6/amiR-bpm lines (Figures S4C

and S4D). This indicates that the increased transpiration in these

two genotypes was not due to larger number of stomatal

complex, neither in absolute numbers nor at the expense of other

epidermal cell types. As a next step, we therefore examined

stomatal behavior of our different transgenic lines on epidermal

peels collected at the end of the night. While stomata appeared

normal in shape and size, we noticed that theyweremore open in

all different transgenic lines in comparison to wild-type (Fig-

ure 5D). In darkness, both ATHB6 overexpressor and amiR-

bpm lines exhibited larger stomatal aperture (Figure 5E). This

phenotype was exacerbated when ATHB6 was expressed in
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the amiR-bpm genetic background. After illumination, all trans-

genic lines were able to open their stomata, though stomatal

aperture remained larger than in wild-type. Similarly, ATHB6

overexpressor and amiR-bpm lines responded to 10 mM ABA,

though to a lesser extent than wild-type. Interestingly the double

oeGFP-HB6/amiR-bpm line was insensitive to ABA treatment.

Overall, our findings support an important function of CRL3BPMs

E3s and their target ATHB6 in guard cell regulation under stress

and nonstress conditions.

The Expression of Several ABA-Responsive Genes
Is Altered in oeGFP-HB6 and amiR-bpm Lines
Several lines of evidence indicate that ATHB6 acts as a transcrip-

tional regulator of ABA responses (Himmelbach et al., 2002).

Thus, we investigated by quantitative real-time PCR the expres-

sion of three ABA-inducible HD-ZIP genes, ATHB6 itself, ATHB7

andATHB12 (Olsson et al., 2004), as well asRD29B,RAB18, and

RD22, three well-established salt-, drought-, and ABA-respon-

sive genes (Lång and Palva, 1992; Yamaguchi-Shinozaki and

Shinozaki, 1993; Abe et al., 2003). As expected, ATHB6,

ATHB7, ATHB12 induction of gene expression by ABA was

lost in abi1-1 (not shown). However, in all transgenic lines, the

endogenous ATHB6, ATHB7, and ATHB12 transcripts are

induced by ABA, although their basal level of expression is

generally higher before ABA treatment when compared with

wild-type plants (Figure 6A). Conversely, in the absence of

ABA the basal level of expression of RAB18, RD29B, and

RD22 was significantly lower in all three transgenic lines com-

pared with that of the wild-type, although ABA-dependent

induction of gene expression could still be observed (Figure 6A).

It is noteworthy that after 3 hr of ABA treatment, the level of

RAB18 expression in amiR-bpm and amiR-bpm/oeGFP-HB6

lines is still lower than its basic expression level in nontreated

Col-0 plants. Thus, in line with the drought-sensitive perfor-

mance of amiR-bpm, oeGFP-HB6 and amiR-bpm/oeGFP-HB6

lines, the expression of RAB18, RD29B, and RD22 genes was

attenuated in these lines.

While ABA induces ATHB6 mRNA accumulation, we investi-

gated whether it also affects ATHB6 protein stability. Thus, we

examined ATHB6 protein half-life using the protein synthesis

inhibitor cycloheximide (CHX) in the absence or in presence of

10 mM ABA. As shown in Figure 6B, ABA stabilizes ATHB6.

DISCUSSION

Role of ATHB6 and BPMs in ABA Signaling
An important breakthrough was the recent identification of the

PYR/RCAR ABA receptors, which together with the clade A

PROTEIN PHOSPHATASE 2Cs (PP2Cs) and the class III SNF1-

RELATED PROTEIN KINASE 2 s (SnRK2s) form the primary

module for early ABA signaling. Directly downstream of this

signaling module are different classes of proteins including tran-

scription factors (for review, see Cutler et al., 2010). Several bZIP

transcription factors are directly phosphorylated by SnRK2s,

affecting both their activity and stability (Furihata et al., 2006;

Sirichandra et al., 2010). Interestingly, ATHB6, a member of the

class I HD-Zip family of transcription factors, physically interacts

with the PP2C phosphatase ABI1, suggesting that it is also an

upstream component in ABA signaling (Himmelbach et al.,
Elsevier Inc.



Figure 5. Downregulation of BPM Expression and ATHB6 Overexpression Affect ABA Responses

(A) Constitutive expression of ATHB6 results in ABA insensitivity in germination assays. Germination rates of Col-0, oeGFP-HB6, amiR-bpm, amiR-bpm/oeGFP-

HB6, and abi1.1 seeds exposed to 0, 0.3, 0.5, and 1 mM ABA after 5 days. Four independent experiments, with more then 150 seeds per genotype each, have

been performed and gave similar results.

(B) Transpirational water loss in wild-type, oeGFP-HB6, and amiR-bpm lines at the indicated time points after detachment. Water loss is expressed as the

percentage of initial fresh weight (FW). Values are means ± SD of at least three samples.

(C) False-color infrared images of Col-0, oeGFP-HB6, amiR-bpm, and amiR-bpm/oeGFP-HB6 plantlets representing leaves temperature. T = 0 denotes freshly

cut rosettes and T = 5, five minutes after excision of the rosettes. Temperature of the leaf was quantified by infrared thermal imaging. Data are means ± SD (n = 5

plants for each lines, data are from �1,000 measurements of square pixels from multiple leaves of each plant).

(D) Microscopic observation of the abaxial epidermis of Col-0, oeGFP-HB6, amiR-bpm, and amiR-bpm/oeGFP-HB6 leaves harvested in darkness at the end of

the night.

(E) Col-0, oeGFP-HB6, amiR-bpm, and amiR-bpm/oeGFP-HB6 show impairment in ABA promotion of stomatal closure (n = 3 independent experiments).

Error bars represent standard errors to the mean (SEM) with a confidence interval of 95%.

See also Figure S4.
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2002). In addition, we found that ATHB6 also interacts with the

CRL3 receptors BPM1-6 via its leucine zipper domain. Since

the leucine zipper domain is also involved in the homo- and het-
Developmenta
erodimerization of the HD-ZIP proteins (Harris et al., 2011), it is

possible that the binding of BPMs may interfere with their

dimerization.
l Cell 21, 1116–1128, December 13, 2011 ª2011 Elsevier Inc. 1123



Figure 6. ATHB6 Attenuates the Expression of Several ABA-Responsive Genes and Is More Stable in Presence of ABA

(A) Relative expression levels of ABA- and drought-responsive genes (ABI3, ATHB6, ATHB7, ATHB12, RAB18, RD29B, and RD22) in wild-type and different

transgenic lines as indicated were determined by quantitative RT-PCR. For these assays, 14-day-old seedlings were treated with 10 mM ABA for 0, 1, and 3 hr

respectively. Data shown are means ± SD of three replicates.

(B) ATHB6 protein turnover decreases in the presence of ABA. Fourteen-day-old GFP-ATHB6 seedlings were transferred in liquid MS medium containing the

protein synthesis inhibitor cycloheximide (100 mM) supplementedwith or without 10 mMABA. At various times (indicated inminutes), the seedlings were harvested

and protein extracts were analyzed by immunoblotting using an anti-GFPmonoclonal antibody (left panel). An arrow indicates the faster migrating form of ATHB6.

Both bands corresponding to the higher and the lower molecular weight isoforms of ATHB6 were quantified separately using ImageJ software during cyclo-

heximide treatment in the presence or not of ABA (right panel). All signals were normalized to the corresponding loading control bands. Characteristics of each

linear regression are notified below the chart.
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Here, we showed that the knockdownof BPMsand the ectopic

expression of ATHB6 result in defects in stomatal closure. Fur-

thermore, the expression of all BPMs and ATHB6 in guard cells

further supports their function in stomata behavior. The regulation

of ATHB6 byBPMs is, however, not restricted to stomata as plant

growth, in particular, leaf growth, pedicel length, and also pollen
1124 Developmental Cell 21, 1116–1128, December 13, 2011 ª2011
maturation were affected in amiR-bpm and oeGFP-HB6 lines in

a similar way. These developmental alterations were even more

pronounced when both transgenes were combined, most likely

as a consequence of a higher ATHB6 protein accumulation.

Because ATHB6 overexpression reduces ABA sensitivity both

in seed germination and stomatal behavior (Himmelbach et al.,
Elsevier Inc.
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2002 and Figure 5), ATHB6 can thus be considered as a negative

regulator of the ABA signaling pathway. Consistent with this is

that ATHB6 overexpression attenuated the ABA-dependent

induction of RAB18, RD22, and RD29B. This effect was even

stronger in the amiR-bpm lines, which could be explained by

the stabilization of not only ATHB6, but also additional HD-ZIP

transcription factor members with similar activity. In this sense,

ATHB6 would be analogous to other transcriptional factors,

which act as negative regulators of guard cell signaling, including

the ETHYLENE RESPONSE FACTOR 7 (ERF7; Song et al., 2005)

and NUCLEAR PROTEIN X1 (NPX1; Kim et al., 2009). In partic-

ular, ERF7 is believed to function as a transcriptional repressor,

whose activity may be required to attenuate at least some ABA

responses (Song et al., 2005). Note, however, ATHB6 is known

to also act as a transcriptional activator, by directly binding to

a defined cis-element to activate its own transcription and the

transcription of other genes (Himmelbach et al., 2002). Neverthe-

less, ATHB6 overexpression had very little effect on its own

expression in presence of ABA. This was also observed for two

other HD-ZIP transcription factors tested. Therefore, as previ-

ously suggested (Himmelbach et al., 2002), ATHB6 protein per

se is not sufficient to trigger transcriptional activity, but depends

on other regulatory mechanisms. Together, our data indicate

that ATHB6may act during an ABA response as a transcriptional

(co)activator of some genes (especially on HD-ZIP factors), while

it would negatively regulate others, such as RAB18, RD22, and

RD29B.

It is noteworthy that not all ABA functions seem to implicate

ATHB6 or its regulation by the CRL3BPM E3s. For instance, the

inhibition of root growth by applied ABA was not affected in

the oeGFP-HB6 or amiR-bpm lines (Himmelbach et al., 2002

and data not shown). Curiously for seed germination, we noticed

no difference in ABA sensitivity between the control and amiR-

bpm lines, while as previously reported (Himmelbach et al.,

2002 and Figure 5A), ATHB6 overexpression resulted in ABA

insensitivity. To explain this difference, we consider at least

two possible scenarios. One possibility is that the effect on

germination in oeGFP-HB6 lines is due to its ectopic expression,

but that ATHB6 may have no physiological function in this

process. An alternative scenario could be that during seed

germination, BPM depletion in the amiR-bpm lines would result

in the stabilization of ATHB5 (Johannesson et al., 2003), which

also interacts with BPMs. ATHB5 was described as a positive

regulator of ABA responsiveness (Johannesson et al., 2003)

and since ATHB5 can heterodimerize with ATHB6, at least

in vitro (Johannesson et al., 2001), ATHB5 overaccumulation

could eventually counteract the effect of ATHB6 on seed

germination.

CRL3BPM Corresponds to a Class of E3s Involved ABA
Signaling
The UPS plays a major role in all hormone-signaling pathways

to fine-tune several key transcription factors (Vierstra, 2009;

Santner and Estelle, 2010). ABA signaling does not escape this

rule and in particular the posttranslational regulation of ABI5

attracted much attention. It was previously shown that the ABA

or stress-dependent increase of ABI5 is the consequence of

reduced proteolysis (Lopez-Molina et al., 2001). ABI5 protein

level is also selectively stabilized in rpn10-1, a mutation affecting
Developmenta
the RPN10 subunit of the 26S proteasome (Smalle et al., 2003).

Subsequently an ABI5-binding protein called AFP was found to

promote ABI5 degradation in nuclear bodies (Lopez-Molina

et al., 2003). However, it is only recently that UPS components

involved in ABI5 degradation were identified. Hence, a key player

is KEEP ON GOING (KEG), an E3 containing a RING domain,

which triggers ABI5 degradation to maintain its level low in the

absence of stress (Stone et al., 2006). Moreover, two CRL4

substrate receptors, called DWA1 and DWA2, also physically

interact with ABI5 and promote its degradation (Lee et al.,

2010). Thus, ABI5 protein is fine-tuned by different classes of

E3s, though their respective roles in ABA signaling remain still

unclear.

Beside the fact that both ATHB6 and ABI5 interact with com-

ponents of the primary module for ABA signaling (see above),

these transcription factors share also a similar negative regula-

tion by E3s at the posttranslational level. Hence, several lines

of evidence indicate that CRL3BPM direct the turnover ATHB6

and eventually other members of this class of transcription

factors. First, all six BPM proteins are bona fide CRL3 receptors

(Weber et al., 2005) and they do directly interact with ATHB6

in vitro and in vivo. Second, ATHB6 protein accumulates in

plants with reduced CRL3BPM activity. Third, overexpression of

BPMs suppresses ATHB6 protein accumulation and at least

some ABA associated phenotypes. Based on these findings

we propose that CRL3BPM E3s trigger ATHB6 destruction in

the absence of stress, when growth conditions are favorable.

This is in agreement with the constitutive expression of BPMs

in several adult plant tissues and especially with their higher

expression in guard cells. However, upon stress, ATHB6 protein

could accumulate as a consequence of increased transcript

accumulation and protein stability to trigger the expression and

repression of downstream genes, which at least some are

involved in ABA desensitization.

However, how ATHB6 can accumulate under such conditions

is unknown. It was recently shown that KEG protein abundance

is negatively regulated by ABA providing a possible explanation

on how ABI5 could accumulate (Liu and Stone, 2010). However,

we did not observe a negative regulation of BPMs at the tran-

script (all BPMs) or protein (BPM3 and BPM6) levels (not shown),

suggesting that ATHB6 protein accumulation depends on

another mode of regulation. One possibility is that this regulation

implies ATHB6 phosphorylation. This would be consistent with

the detection of at least two different ATHB6 protein forms on

SDS-PAGE and the fact that ATHB6 was previously found to

physically associate with the PP2C phosphatase ABI1, suggest-

ing that it could be one of its substrate. Though ATHB6 has no

predicted SnRK2 phosphorylation target sequence R-X-X-(S/T)

(Furihata et al., 2006), we cannot rule out that ATHB6 is not a

direct substrate of SnRK2 kinases as several of these substrates,

such as the channel proteins SLAC1 and KAT1 and the NADPH

oxidase AtrbohF, are phosphorylated at nonconsensus sites

(Geiger et al., 2009; Sato et al., 2009; Sirichandra et al., 2009).

It is, however, noteworthy that calf intestinal phosphatase had

no effect on any of the ATHB6 protein forms on SDS PAGE

(data not shown), a situation reminiscent of ABI5 (Liu and Stone,

2010).

Beside phosphorylation, sumoylation is another posttransla-

tional modification (PTM) known to modulate ABA signaling.
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Early studies have proposed a positive role for sumoylation in the

induction of ABA-responsive genes (Lois et al., 2003). However,

SUMO targets in ABA signaling were only recently identified. In

particular, it was shown that ABI5 is sumoylated and that this

PTMprotects the inactive form of ABI5 fromproteolytic degrada-

tion (Miura et al., 2009). ABI5 sumoylation depends on the SUMO

E3 ligase SIZ1, which acts thus as a negative regulator of ABA

signaling at least during seed germination. Interestingly,

ATHB6 was also recently identified as a possible sumoylated

protein in an elegant proteomic analysis (Miller et al., 2010).

Future research will reveal whether sumoylation affects ATHB6

activity and/or stability in ABA signaling.

Are BPMs Only Involved in ABA Signaling?
ABI1 is a component of the core ABA signaling module. It has

been previously shown that nuclear localization of ABI1 is an

important prerequisite for a range of its regulatory function in

ABA signaling, and surprisingly, even for quick responses such

as stomatal closure (Moes et al., 2008). The association of

ATHB6 with ABI1, and the ABA-dependent turnover rate of

ATHB6 by CRL3BPMs could thus constitute a nucleus located

signaling module poised to reconfigure a subset of the stress

adaptive responses. Although the phenotype of plants overex-

pressing ATHB6 nicely mimics BPM knockdown, it is likely that

ATHB6 is not the only substrate of CRL3BPMs. In particular, it is

probable that other members of class I HD-ZIP proteins are also

targeted by these E3 ubiquitin ligases as two of them, ATHB5

andATHB16, interactwithBPMs,at least in yeast cells.Moreover,

another yeast two-hybrid screen performed with a root specific

cDNA library using BPM1 and BPM3 as baits revealed RAP2.4,

a member of the ERF/AP2 transcription factor family (Weber

andHellmann, 2009). Interestingly,RAP2.4waspreviously shown

to mediate multiple stress responses (Lin et al., 2008). However,

whether RAP2.4 represents also an in vivo target of CRL3BPM

E3s remains to be demonstrated. Finally, since BPM proteins

homo- and heterodimerize, it is possible that the complexity of

this family of E3 ubiquitin ligases and the repertoire of their

substrates are much broader than we had initially anticipated.

EXPERIMENTAL PROCEDURES

Standard procedures, such as plasmids constructs, yeast two-hybrid assays,

GST pull-down assays, transient expression in BY2 cells, histology and

microscopy analyses, FLIM, quantitative RT-PCR, protein extraction, immuno-

precipitation assays, and immunoblotting are described in Supplemental

Information.

Plant Material and Growth Conditions

For in vitro culture, seeds were surface sterilized using the ethanol method,

plated on Germination Medium (MS salts (Duchefa, The Netherlands), 1%

sucrose, 0.8% agar [pH 5.8]) in the presence or absence of a selection agent,

stored 2–3 days at 4�C in the dark, and then transferred to a plant growth

chamber under a 16 hr/8 hr photoperiod (22�C/20�C).
ABA germination assays were performed on GM medium without sugar

supplemented with 0.3, 0.5, or 1 mM ABA). Seeds of Col-0, amiR-bpm,

oeGFP-HB6, amiR-bpm/oeGFP-ATHB6, and abi1.1mutant were sterilized and

kept for 3 days at 4�C in the dark. Germination rate was measured 5 days after

transfer to a plant growth chamber under a 16 hr/8 hr photoperiod (22�C/20�C).
For soil-cultured plants, seeds were sown (20/pot) and put at 4�C in the dark

during 3 days. Two weeks later, single plants were transferred to pots in the

greenhouse and kept under a regimen of 16 hr/8 hr photoperiod (20�C/16�C;
70% humidity).
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Stomatal Aperture Measurements

To study the promotion of stomatal closure by ABA, leaves from 4- to 5-week-

old plants (grown in 8 hr of light at 22�C and 16 hr of darkness at 20�C; 70%
Relative Humidity) were harvested in darkness at the end of the night. Parad-

ermal sections of abaxial epidermis obtained were incubated in 30 mM KCl,

10 mMMES-Tris (pH 6.0), at 20�C and exposed to light for 2 hr. Subsequently,

10 mM ABA was added to the solution to assay for stomatal closing. After

treatment for 3 hr, stomatal apertures were measured with an optical micro-

scope (Nikon, Optiphot-2) fitted with a camera lucida and a digitizing table

(TG 1017; Houston Instrument) linked to a personal computer. The apertures

of usually 60–80 stomata were measured in each independent experiment.

All experiments were repeated at least three times.

Infrared Thermography

Plants used for measurements of foliar temperature were grown in standard

gardening soil purchased from local suppliers. Plants were maintained

in controlled chambers at 24�C, 40% humidity, 16 hr light-dark cycle

(150 mE/m2/s). Plants were watered every second day. Infrared thermographic

images of cut rosettes were acquired as described by Merlot et al. (2002).

Water Loss Measurement

For water loss measurement, rosette leaves of wild-type, oeGFP-HB6, and

amiR-bpm lines were detached from their seedlings, placed in weighting

dishes, and incubated on the laboratory bench. Losses in fresh weight was

monitored at the indicated times. Water loss is expressed as the percentage

of initial fresh weight.

UbiQapture (Enzo Life Science)

Two-week-old Columbia or oeGFP-ATHB6 or amiR-bpm/oeGFP-ATHB6

seedlings were treated for 3 hr with 20 mM of the DUB inhibitor PR-619 (Life

Sensors) andwith 100 mMof proteasome inhibitor MG132 (PolyPeptide Group)

prior to grinding in liquid nitrogen and extraction of total proteins. UbiQapture

experiments were performed following manufacturer’s specifications using

300 mg of grinded plant tissue resuspended in 500 ml of lysis buffer (20 mM

Sodium Phosphate buffer [pH 7.2], 1% NP-40, protease inhibitor tablets

[Roche], 20 mM PR-619). The UbiQapture-Q matrix has very high ubiquitin

binding characteristics (for mono-ubiquitin and polyubiquitin chains). UbiQap-

ture-Q bound fraction was separated on SDS–PAGE gels and blotted onto

Immobilon-P membrane (Millipore). GFP-ATHB6 protein was detected by

using anti-GFP-HRP (Miltenyi) diluted 1:3,000 (v/v).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at

doi:10.1016/j.devcel.2011.10.018.
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