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a  b  s  t  r  a  c  t

Neutralizing  antibodies  play an  essential  part  in  antiviral  immunity  and are instrumental  in  preven-
ting  or  modulating  viral  diseases.  Polyclonal  antibody  preparations  are  increasingly  being  replaced  by
highly  potent  monoclonal  antibodies  (mAbs).  Cocktails  of  mAbs  and  bispecific  constructs  can  be  used  to
simultaneously  target  multiple  viral  epitopes  and  to  overcome  issues  of  neutralization  escape.  Advances
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in antibody  engineering  have  led  to a  large  array  of  novel  mAb  formats,  while  deeper  insight  into  the
biology  of  several  viruses  and increasing  knowledge  of  their  neutralizing  epitopes  has  extended  the list
of potential  targets.  In addition,  progress  in developing  inexpensive  production  platforms  will make
antiviral  mAbs  more  widely  available  and  affordable.

Crown Copyright © 2013 Published by Elsevier Ltd.  
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. Passive immunization with polyclonal sera an immune response, passive immunization can provide immedi-
ate protection and is theoretically independent of the recipient’s
Passive immunization is based on the administration of serum
rom convalescent/vaccinated human donors or animals to attempt
o prevent or control infection [1,2]. Whilst vaccines require time
o induce immunity and depend on the host’s ability to mount

∗ Corresponding author at: Animal Health and Veterinary Laboratories Agency
AHVLA), Wildlife Zoonoses and Vector-borne Diseases Research Group, Department
f Virology, Weybridge, Surrey KT15 3NB, UK. Tel.: +44 01932 357840;
ax: +44 01932 357239.

E-mail address: Tony.Fooks@ahvla.gsi.gov.uk (A.R. Fooks).

264-410X Crown Copyright © 2013 Published by Elsevier Ltd.  
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Open access under CC BY-NC
immune status. Following the development of anti-diphtheria
serum by von Behring and Kitasato in the early 1890s [3],  immune
sera from convalescent humans were used to prevent or treat a
range of viral diseases including measles, the 1918 pandemic flu,
varicella-zoster virus, Bolivian hemorrhagic fever, Argentine hem-
orrhagic fever as well as Ebola and Lassa hemorrhagic fevers [4].
Moreover, some of the earliest attempts to cure veterinary dis-

eases involved passive immunization with serum from recovered
animals as was  described in seminal attempts to ‘cure’ rinderpest
in the 1890s [5].  Today, several pooled antiviral immunoglob-
ulin products are still available on the US market including

-ND license.
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yperimmune immunoglobulin preparations against rabies virus,
ytomegalovirus, hepatitis B and C viruses, vaccinia virus, varicella-
oster virus, respiratory syncytial virus (RSV) and West Nile virus.

A common disadvantage of polyclonal preparations is that many
f their constituent virus-specific antibodies are non-neutralizing
4]. Moreover, polyclonal sera have to be screened and treated due
o risks related with the use of blood products. Problems associated
ith the use of polyclonal sera might also include batch-to-batch

ariation and difficulties in obtaining immune donors [1,6]. An
lternative to polyclonal antibody preparations is offered through
he development of monoclonal antibodies (mAbs).

. Development of monoclonal antibodies

In 1975, Köhler and Milstein developed hybridomas at the Medi-
al Research Council Laboratory of Molecular Biology in Cambridge,
K [7].  Since then, technologies for generating and engineering
Abs have greatly improved and the industrialization of mAb  pro-

uction has resulted in a large number of antiviral mAbs being
eveloped for preclinical and clinical studies. Fully human mAbs
Fig. 1A) with minimized immunogenicity can now be generated
sing methods such as phage display [8] and purified envelope
lycoproteins in either monomeric or oligomeric forms and viral
articles are two types of antigen that are commonly used as bait for
anning antibody libraries [4].  These antibody libraries are either
aïve for the viral antigen [9,10],  or can be obtained from conva-

escent or immunized patients or animals.
The first antiviral mAb  approved by the US Food and Drug

dministration (FDA) was palivizumab (Synagis/MedImmune), a
umanized IgG1 antibody that confers RSV prophylaxis in high
isk infants [11,12].  Prior to palivizumab, prophylaxis of RSV dis-
ase depended on a polyclonal serum preparation called RespiGam
or RSV-IGIV). This polyclonal preparation showed relatively low
pecific activity, and dosing required the application of relatively
arge volumes of antibody in low weight infants [13,14]. The greater
otency of palivizumab reduced the volume required to deliver a
herapeutic dose to an infant and has improved RSV treatment by
voiding the side effects of pooled serum [13,14].

. Antiviral immunity

Specific antibody titers have been identified as correlates of
rotection against various viral infections. Antibodies operate
hrough various mechanisms, mediated by either their variable
r constant regions. Highly selective binding to specific epitopes
n the target antigen is a functionally crucial property that is
ediated by the antibody variable domains [15]. The antibody

onstant domains include the Fc region and perform other impor-
ant functions including antibody-dependent cellular cytotoxicity
ADCC), antibody-dependent cellular phagocytosis (ADCP), and
omplement-dependent cytotoxicity (CDC) [15]. ADCC and ADCP
re mediated by Fc�  receptors while CDC is mediated by comple-
ent cascade proteins such as C1q and C5 [16]. Another function of

he Fc region is extension of antibody half-life (21 days for human
gG) through interaction with the neonatal Fc receptor (FcRn) [17].

Antibodies can interfere with virus entry into a cell by various
echanisms [4]. One mechanism is inhibition of virus attachment

o cell surface receptors. This can be achieved through antibody
inding to viral spikes, thereby interfering with their ability to
ind to cellular receptors [18]. The same effect is achieved by
ntibodies targeting receptors or co-receptors, thereby making

he binding sites for viruses unavailable [19]. Another mecha-
ism is post-binding/pre-fusion neutralization and interference
ith required conformational changes at the cell membrane or

ndosomal membrane by antibodies that target non-receptor
(2013) 1553– 1559

binding regions [20]. Additional mechanisms of virus neutraliza-
tion include antibody-mediated crosslinking of virions [21,22],
resulting in their immobilization and agglutination, or inhibition
of the release of progeny virus, observed e.g. for antibodies against
influenza virus [23].

In general, virus neutralization is considered to occur when a
sufficient number of epitopes on the viral surface are occupied by
antibody. This ‘occupancy’ model, sometimes referred to as the
‘multi-hit model’, proposes that obtaining a sufficient antibody
density on a virion is the most critical factor for neutralization,
leading to inhibition of attachment to cellular receptors or inter-
ference with endosomal or plasma membrane fusion processes
[24,25]. An alternative model of neutralization is the ‘critical bind-
ing site’ model which is compatible with both a single-or multi-hit
theory of neutralization [4].  According to this model, neutralization
depends on targeting essential binding sites and is less dependent
on obtaining high antibody densities on the viral surface [4,26].

In addition to their ability to directly interfere with virus entry
into a cell, antibodies can counteract viral infection by means of
their Fc effector functions [27,28]. The extent to which effector
functions contribute to protection appears to be specific for differ-
ent viruses. For HIV-1, it has been demonstrated that a neutralizing
mAb engineered not to activate complement is as protective as
the wildtype antibody [29]. However, when both complement and
the FcRn (neonatal Fc receptor) were abolished, the same antibody
showed reduced in vivo protective capacity [29]. While these obser-
vations point to an important role of ADCC in HIV neutralization,
Fc effector functions do not seem to be required for neutralization
of several other viruses, e.g. the antibody Fc region and its associ-
ated effector functions are not necessary for neutralization of rabies
virus [1].  Equine sera for rabies post-exposure-prophylaxis (PEP) in
humans routinely consists of F[ab’]2 fragments which are prepared
by pepsin digestion and are devoid of the Fc region [30].

In some cases, antibodies may  also act as immunomodulators
and certain antiviral mAbs have been shown to have a ‘vaccine-
like effect’ [31,32]: mice infected with a murine retrovirus and
subjected to a short immunotherapy with a neutralizing mAb  of
the IgG2a isotype remained healthy and mounted a long-lasting
protective antiviral immunity with strong humoral and cellular
immune responses. The endogenous antiviral antibodies gener-
ated in mAb-treated mice allowed containment of viral propagation
and enhancement of memory cellular responses after disappear-
ance of the injected mAb. The administration of the mAb  permitted
the development of a long-lasting endogenous antiviral immunity,
pointing to an important role for infected-cell/antibody immune
complexes for long-term protection mediated by short passive
immunotherapy [31,32].

4. Viral escape mutants

For an effective immunoprophylaxis, the antigenic variability
of circulating viral strains and the potential for emergence of viral
escape mutants need to be considered. These considerations are of
special importance in the case of influenza A viruses where both
antigenic drift and antigenic shift occur naturally and in the case of
HIV where formation of different quasispecies with many different
virus variants drives immune evasion. RNA viruses possess RNA
polymerases devoid of proofreading and repair capabilities which
may result in the emergence of resistant mutants under selective
pressure, such as mAb  administration. Escape mutants can be
generated in vitro under selective pressure of antibodies [33,34], as

observed e.g. with mAbs against chikungunya virus. Intriguingly,
high-throughput sequencing also detected the mutated residues
associated with the chikungunya viral escapes in sequences
derived from virus treated with a non-specific antibody although
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Fig. 1. Antiviral mAb  formats. A: Murine (left panel), humanized (middle) and fully human mAbs (right). The humanized mAb  (e.g. palivizumab) contains both murine
(blue)  and human (yellow) sequences. B: Scheme of bispecific immunoadhesins. Immunoadhesins were generated using the Knob-into-hole technology which involves the
introduction of certain ‘knob’ and ‘hole’ mutations in the CH3 domain of the Fc region to fuse two scFv-Fc molecules with different specificities. The mutated Fc regions
favor  HC heterodimerization over homodimerization, thereby minimizing the pairing of identical halves. C: Scheme of Morrison-type bispecific mAbs. Full-size mAbs and
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vice versa [50,51]. Crucell’s mAb  cocktail is undergoing clinical
trials [52] and exemplifies how issues of viral heterogeneity and

Table 1
Examples for antiviral mAb  cocktails under investigation.

Target No. of mAbs included Reference

Rabies virus 2 or 3 mAbs [6,38,40]
HIV 2, 3 or 4 mAbs [39,54–56]
cFvs  were fused to each other and issues of antibody stability were addressed by de
cheme  of multimeric mAb-fusion molecule. This transgenic plant-derived molecu
rotein cyanovirin.

heir proportion was extremely low (0.05–0.20% of the total
ucleotides at each position), suggesting that minor pre-existing
iral quasi-species were amplified under selective pressure [34].
n addition to isolating viral escape mutants in vitro, they can also
e isolated in vivo, e.g. influenza H5N1 escape mutants have been

solated from the lungs of mice receiving anti-H5N1 mAbs [35].
oreover, resistant RSV variants could be isolated from patients

eceiving palivizumab [36]: nucleotide sequence analysis of RSV
solates collected directly from infants who received palivizumab
nd still developed acute lower tract respiratory infection revealed
pecific mutations in the RSV fusion protein, allowing the virus to
scape neutralization [36]. A second generation, affinity-matured
ariant of palivizumab, termed motavizumab, has recently been
eveloped and investigated in a large comparative phase 3 clinical
tudy of the two preparations. Similar to palivizumab treatment,
esistant RSV variants containing certain sequence changes in the
SV envelope protein were generated either in vitro or collected

rom RSV breakthrough patients receiving motavizumab [36].
The emergence of viral escapes can be accompanied by alter-

tions in viral fitness which can affect virus growth both in vitro
nd in the infected host. Mutations may  render the viral escape
utant resistant to a specific mAb, but alterations in growth and

nfectivity may  render the virus attenuated so that it can be cleared
y the host’s immune system [37].

. Cocktails of mAbs

Broad coverage of different strains as well as prevention of
iral escape mutants are important considerations in the develop-

ent of passive immunotherapies. As such, various combinations

f mAbs have been developed and assessed (Table 1) [38–40].  The
Abs are selected for inclusion in a cocktail based on specificity and

unctionality, such that they complement each other with regards
ptimization, including disulfide stabilization of scFvs and various linker designs. D:
bines the functional activities of the anti-HIV mAb b12 and the small microbicidal

to breadth and specificities and do not compete for antigen binding
[41–43].

Cocktails of mAbs might be required if the target epitope of a
single mAb  is not conserved on all strains of a virus, especially
in the case of human infections that emerge from heterogeneous
pools circulating in various animal reservoirs. For example, the
genus Lyssavirus comprises numerous different closely related
virus strains which circulate in a range of different hosts of the
orders Carnivora (dogs, wildlife) and Chiroptera (bats) [44,45].
Following a severe exposure to a rabid animal, the prompt admin-
istration of rabies PEP including the administration of human or
equine rabies immunoglobulins (HRIG and ERIG, respectively) can
prevent development of rabies and death in previously unvac-
cinated victims [46,47]. Crucell/Sanofi are developing CL184, a
cocktail of two  potent mAbs to replace HRIG and ERIG in PEP
[48,49]. This cocktail was designed by applying two  main criteria
[50,51]. First, the mAbs should cover a wide range of viral variants,
targeting distinct, non-overlapping epitopes and preferably should
not compete for antigen binding. Secondly, in vitro-generated mAb-
resistant escape mutants selected using one antibody should be
neutralized by the other nonselecting mAb  in the cocktail and
SARS-CoV 2 or 3 mAbs [9,53]
Hepatitis B virus 3 mAbs [41]
Ebola virus 2 or 3 mAbs [42,43]
Influenza virus 2 mAbs [35]
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Table 2
Small antibody fragments, developed for rabies post-exposure-prophylaxis in
humans.

Antibody format Derivation Reference

scFv Ribosome display [76]
dsFv Human mAb 57 [77]
scFv-Fc scFv library [78]
Fab  Fab library [79]
Fab  on nanoparticles Fab library [80]
Nanobody Camelid antibody library [21]
556 L. Both et al. / Vacci

mergence of resistant virus variants can be overcome with a com-
ination of two  mAbs.

In addition to these anti-rabies mAbs, combinations of mAbs
ave been developed against several other viral diseases includ-

ng influenza. In this instance two mAbs that target the influenza A
5N1 hemagglutinin molecule were developed [35]. These mAbs
ere shown to target different epitopes and demonstrated recip-

ocal coverage of escape mutants. In combination, the two mAbs
howed broad coverage of different clades and no escape vari-
nts were detected after therapy [35]. Similarly, a combination
f two non-competing human mAbs against SARS-coronavirus
SARS-CoV) has been developed [53]. This combination potentially
ontrols immune escape, extends the breadth of protection and
ay  allow for a lower total antibody dose to be administered for

assive immune prophylaxis of SARS-CoV infection. Synergism of
eutralizing mAbs has not only been reported for SARS-CoV, but
as also been observed e.g. for combinations of two, three, or four
Abs directed against different epitopes on the HIV-1 envelope

lycoprotein, leading to a 2–10-fold increase of neutralization titers
54–56].

. Multivalent and multispecific mAbs

When considering the biological requirements for an antivi-
al mAb, antibody valency is an important factor, as observed
or varicella-zoster virus, HIV and rabies virus [21,57,58].  Bivalent
ntibody binding can mediate the cross-linking of virions, result-
ng in their immobilization or agglutination. It has been shown
hat certain epitopes, e.g. on Herpes simplex virus (HSV), can be
fficiently targeted only with bivalent antibody formats (full-size
Ab, F[ab’]2) while the use of monovalent antibody formats (scFv,

[ab]) severely diminished neutralization [22]. HSV neutralization
y F[ab] fragments could be restored by cross-linkage of F[ab]s,
sing IgGs reacting with murine F[ab] fragments. These observa-
ions demonstrated that neutralization by this mAb  is dependent
n cross-linkage of glycoprotein B (gB) trimers and that immobi-
ization of gB trimers inhibits activation of the fusogenic signal.
onsequently only bivalent mAb  derivatives exhibited adequate

n vitro neutralizing activity [22].
In nature, multivalency is achieved through dimerisation or

ultimerisation of immunoglobulin sub-units, resulting in poly-
eric or secretory IgA or IgM antibodies. Whilst IgM antibodies

re generally considered to have low binding affinity and to be
mportant in primary immune responses, secretory IgA (SIgA) is
he predominant protective antibody in all mucosal secretions. Its
omewhat complicated assembly requirements, which naturally
equires a plasma cell to produce dimeric IgA and an epithelial
ells that contributes the secretory component, has resulted in
low progress in the development of these mAbs. Although expres-
ion is possible in mammalian cell expression systems [59], this
pproach is difficult to scale-up. However, recombinant secretory
ntibody production has also been described in plant systems [60]
nd offers hope for SIgA based prophylaxis of mucosal infections
or the future.

Generally, bivalent antibody binding contributes to neutraliza-
ion of viruses that express high densities of surface spikes, such as
SV and influenza virus [61,62]. In contrast, HIV has only a limited
umber of surface spikes and it has been proposed that this low
ensity of gp160 trimers renders mAbs less efficient for viral neu-
ralization by interfering with their bivalent binding to the virus
63,64]. Mature HIV particles express 10–15 randomly distributed

iral spikes, which would be spaced too far apart for a bivalent
ntibody to bridge [58,63,64].  However, multivalent binding could
heoretically still be achieved by altered antibody geometry, e.g. a
imeric form of mAb  2G12 demonstrated substantially increased
scFv, single chain variable fragment; dsFv, disulfide-stabilized single chain variable
fragment; scFv-Fc, single chain variable fragments fused to antibody Fc region; Fab,
antigen-binding fragment.

neutralization potency [65–67].  Other examples for multivalent
mAbs with increased potency (compared to original IgGs) include
polymeric IgA and IgM versions of the anti-HIV mAbs 2F5 and 2G12
[68].

An alternative to homotypic bivalent binding is heterotypic
bivalent (=bispecific) binding, e.g. by designing scFv-Fc molecules
(‘immunoadhesins’) that can bind bivalently by virtue of one scFv
arm targeting gp120 and a second arm targeting the gp41 subunit
of gp160 (Fig. 1B) [69]. The special geometry of the immunoad-
hesins was shown to overcome the lack of bivalent binding to
HIV surface spikes [69]. Another study investigated several novel
tetravalent, bispecific antibody derivatives for simultaneous tar-
geting of two  different epitopes on the HIV coreceptor CCR5 [70].
These molecules were based on Morrison-type bispecific antibod-
ies which are whole IgGs connected to scFvs via flexible linkers
(Fig. 1C). The bispecific mAbs maintained their binding activ-
ity toward both individual epitopes, were able to simultaneously
block two  docking sites of CCR5-tropic HIV strains, and showed
18–57-fold increased antiviral activities compared to the parent
monospecific antibodies. Interestingly, one prototypic tetravalent
CCR5 antibody had antiviral activity against virus strains resistant
to the single parental antibodies. In summary, the increased valency
and bispecificity translated into enhanced antiviral potency and
increased threshold for antiviral resistance [70].

Multispecific antibodies have also been generated by fusing
small molecules and antibodies, e.g. by constructing a single multi-
meric recombinant protein that combines the functional activities
of the anti-HIV mAb  b12 and the small microbicidal protein
Cyanovirin (Fig. 1D) [71]. Importantly, these two  molecules do
not compete with each other for antigen binding as b12 recog-
nizes a conformational amino acid epitope on HIV gp120 whereas
Cyanovirin binds a glycan epitope [71]. Strategies similar to the bis-
pecific b12-Cyanovirin construct have also been applied to other
molecules, e.g. bifunctional HIV fusion inhibitor (BFFI) molecules
were generated by linking either an anti-CCR5 or anti-CD4 anti-
body to a small fusion inhibitor [72–74] and multimeric molecules
targeting murine cytomegalovirus-infected cells were constructed
by linking cytomegalovirus-specific antibodies to a cellular toxin
(deglycosylated ricin A chain) [75].

7. Antibody engineering

The antibody variable domains can be engineered into small
fragments (Table 2), including scFvs and F[ab] molecules [76–78]
which do not require production in costly eukaryotic expression
systems. Several of these small antibody fragments have been
investigated regarding their antiviral activities [79,80],  including
camelid VHH domains. The serum of camels, dromedaries and lla-

mas  contains a unique type of antibodies devoid of antibody light
chains [21]. These camelid heavy-chain antibodies have attracted
interest because they can recognize antigens via a single VHH
domain that can be expressed with inexpensive bacterial or yeast
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xpression systems [21]. VHH have been developed against sev-
ral infectious diseases, e.g. as potent HIV-1 entry inhibitors [81]. In
ddition to the heavy chain immunoglobulins of the Camelidae fam-
ly, single domain antibodies have been discovered in cartilaginous
sh (sharks and possibly rays) [82]. Shark antibodies, also called

g new antigen receptors (IgNAR), have been developed against
epatitis B virus [82] and Zaire Ebolavirus [83].

Engineering efforts have also been aimed at modifying
he antibody variable or constant domains, e.g. the identifi-
ation of palivizumab (Synagis; MedImmune/Abbott) has been
ollowed by the development of the second-generation ver-
ion motavizumab (MEDI-524; MedImmune) which has affinity
atured complementary-determining regions (CDRs) [84]. More-

ver, mAb  MEDI-557 (MedImmune), a third-generation version of
otavizumab currently investigated in clinical trials, contains engi-

eered Fc domains for a longer half-life [85].
The optimization of Fc effector functions has been a focus

f antibody engineering and two main approaches, site-specific
utagenesis and deglycosylation, have been applied to engineer

ntiviral antibodies with greatly enhanced binding to FcRIIIa and/or
cRIIa. For example, a panel of eleven variants of the anti-HIV mAb
12 with a broad range of affinities for FcRIIa and FcRIIIa has been

nvestigated [86]. All variants with increased affinity for either
f the main activating receptors (FcRIIa and FcRIIIa) also demon-
trated an increase in viral inhibition compared to the original b12
ntibody.

In certain viral disease applications, specific modifications that
educe or eliminate specific Fc effector functions may  be desirable,
.g. altering the Fc region has been explored as a way to reduce or
liminate antibody-dependent enhancement (ADE) of infection [4].
DE is a well-recognized phenomenon observed in various infec-

ions including numerous flavivirus infections, e.g. West Nile virus
nd dengue virus. Both active immunization and passive trans-
er of antibody have been shown to mediate this phenomenon,
esulting from increased uptake of virus in the presence of neutral-
zing antibody [87,88]. Virus-specific antibodies enhance viral entry
nto, and in some cases, replication in monocytes/macrophages and
ranulocytic cells through interaction with Fc�  and/or complement
eceptors.

ADE is the proposed mechanism responsible for dengue hem-
rrhagic fever and dengue shock syndrome, two clinical conditions
hat are frequently seen in patients infected with a second
eterotropic infection and infants with maternally transferred anti-
engue antibodies. For dengue virus, four serotypes exist and the
eneration of antibodies following exposure to one serotype may
ffect the response to repeat exposure with the same or an alter-
ative serotype [89,90]. Experimental passive transfer of a high
ose of serotype-specific antibodies enable elimination of viremia,
ut lower doses of such antibodies or cross-reactive polyclonal
r monoclonal antibodies may  all cause enhanced disease in vivo
88–90]. In contrast, genetically engineered mAb  variants (e.g. E60-
297Q) that cannot bind Fc�  receptors exhibited prophylactic and

herapeutic efficacy against ADE-induced lethal challenge [90].

. Recent developments

The recent identification of human mAbs that broadly neutralize
ifferent HIV strains may  allow the reverse engineering of potent
accines. The human serologic response to HIV-1 infection targets
oth internal and viral surface proteins, but only antibodies target-

ng the HIV envelope spike gp160 achieve viral neutralization [91].

he conformational flexibility is considered to be the main obstacle
o the development of an HIV-1 vaccine, besides the sequence vari-
bility and the glycan shield [92]. However, the observation that
Abs targeting certain epitopes can be protective suggests that
(2013) 1553– 1559 1557

a vaccine that elicits such antibodies could have a similar effect.
These broadly neutralizing mAbs are directed either against gp120
or gp41 [92]. Efforts are focused on designing epitope mimics, in
order to direct humoral responses toward these neutralizing epi-
topes after vaccination. Similar strategies might also be applied to
develop more potent vaccines against influenza virus, following
the recent identification of broadly neutralizing human mAbs with
VH1-69 germline heavy chains [93,94]. These mAbs were shown
to broadly neutralize many influenza A group 1 viruses and crystal
structures of a mAb  in complex with H1 and H5 hemagglutinins
(HAs) revealed a highly conserved epitope in the HA stalk [93].
Subsequent studies have identified human mAbs that show broad
neutralizing activity against group 2 viruses and that target con-
served epitope in the HA stalk distinct from the epitope recognized
by the VH1-69 group 1 antibodies [95]. The mAbs targeting groups
1 and 2 viruses are potentially complementary and may  hence open
up the prospect of developing a universal influenza vaccine, as
opposed to current vaccines which are restricted to the circulating
seasonal strains [93–95].

Applications for antiviral mAbs may  also include infections of
the central nervous system (CNS) and several mAbs have shown
promise in clearing established neurological diseases, including
West Nile virus and Hendra virus infections [10,96].  However, the
use of antibodies for neurological infections may  frequently be
limited due to the presence of the blood–brain-barrier (BBB), espe-
cially in infections like rabies during which the BBB remains largely
intact [97]. Patients with clinical rabies do not respond to PEP and
so advances in delivering therapeutic mAbs specifically to the CNS
[98] should be further explored.

9. Outlook

Polyclonal antibodies are increasingly being replaced by
mAbs, e.g. hepatitis B immunoglobulin (HBIG), varicella-zoster
immunoglobulin (VZIG) and rabies immunoglobulin (RIG) [1]. RIG
is part of the WHO  Essential Medicines List for both adults and
children, and the use of mAbs could help to overcome the cur-
rent insufficient supply of antiserum across the developing world,
thereby contributing to meet the vision of the United Nations
Millennium Declaration. Importantly though, the costs of mAb  pro-
duction and the choice of expression system need to be carefully
considered to make any candidate preparations widely available
and affordable. The relatively high expenses and the usually short-
lived protection of mAbs (due to their limited half-life) may  impede
their widespread application for diseases for which small molecule
drugs and vaccines are available. The costs of 5 monthly doses of
palivizumab for RSV prevention are up to 6000 British pounds per
patient [99], indicating that the high expenses for mAb  develop-
ment, production and storage can be prohibitive. Access to antiviral
mAbs may  be restricted, especially in low-income countries, so
efforts are being made to develop inexpensive production plat-
forms that are amenable for transfer to the developing world. In
particular, the use of transgenic plants has raised hopes that several
mAb  preparations may  become more widely available [60,71,100].
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