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1. Introduction

In the last years, both experimental and theoretical studies on
heavy mesons have received considerable attention. With growing
datasets collected by the collaborations such as CDF, DO, CLEO,
and the forthcoming SuperB and LHC, investigations of the spec-
troscopy and decay of heavy flavor become more exciting [1–4].
Therefore, the reliable determination of various characteristics,
such as form factors and coupling constants are needed.

Suppression of heavy quarkonium has been considered for a
long time as one of the most striking signatures for the quark–
gluon plasma (QGP) formation [5]. It results from Debye screening
of color force in the QGP. In this picture, due to larger abundances
of color charges screening the interaction between the c and c̄
quarks, the attractive cc̄ potential responsible for the J/ψ binding
gets screened as the temperature of the medium increases in the
QGP. (For a detailed review see Refs. [4,6] and references therein.)
Extensive experimental efforts have been devoted to study this
phenomenon at the Super Proton Synchrotron (SPS) at CERN and
Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National
Laboratory. As the case of charmonium states in the QGP which
are sensitive to the color screening effect, the study of bottomo-
nium suppression in high energy heavy ion collisions can be used
as a signature for the QGP as well [7]. In contrast to charmonium
states, bottomonium states should be a cleaner probe of QGP due
to its low cross section where the competing effects, which either
reduce the yield [8] or enhance it [9], are negligible. We expect the
effects of the QGP on the absorption of Υ in ultra-relativistic heavy
ion collisions at the LHC, which can provide an answer to this open
question. On the other hand, other more conventional mechanisms
based on J/ψ (Υ ) absorption by comoving hadrons have also been
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proposed as a possible explanation [10–12]. In this way, one needs
to understand the effects of Υ absorption in hadronic matter. It is
known that π and ρ are the dominant hadrons in ultra-relativistic
heavy ion collisions. Since it is still difficult to study strong in-
teraction phenomena at non-perturbative regime using the QCD,
the study of quarkonium absorption is generally performed in the
framework of effective Lagrangian with meson exchange [12]. In
the process, Υ and ρ produce the final states B∗ and B∗ by ex-
changing a B∗ meson. The calculation of Υ absorption cross sec-
tions needs information of the B∗B∗ρ interactions. To describe the
strong interactions of the negative-parity heavy mesons with ρ
meson, we employ an effective Lagrangian, which is constructed
based on the chiral symmetry and described by the following [13]:

L = igB Bρ Tr
[(

B†↔
∂μB

)
Pμ

]
− 2 f B∗ Bρεμναβ Tr

[(
B†↔

∂μB∗
ν − B∗†

ν

↔
∂μB

)
∂α Pβ

]
+ igB∗ B∗ρ Tr

[(
B̄∗†

μ

↔
∂ν B∗μ)

Pν
]

+ 4i f B∗ B∗ρmB∗ Tr
[(

B∗†
μ B∗

ν

)(
∂μ Pν − ∂ν Pμ

)]
, (1)

where B and B∗ represent isospin doublets, P is the isospin triplet
of the ρ meson. The B∗B∗ρ interactions are characterized by two
independent coupling constants gB∗ B∗ρ and f B∗ B∗ρ . It is neces-
sary to know values of coupling constants with some precision.
The choice of a lower or higher value may change the final cross
section to some extent.

Theoretically, the knowledge of the heavy–heavy–light mesons
coupling constants in hadronic vertices are very important in es-
timating strength of hadron interactions when hadronic degrees
of freedom are used. They are fundamental objects of low energy
QCD. They may also play an important role in the formation of
these possible molecular candidates composed of two B mesons.
However, such low-energy hadron interaction lie in a region which
is very far away from the perturbative regime, precluding us to use
the perturbative approach with the fundamental QCD Lagrangian.
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Therefore, we need some non-perturbative approaches, such as
QCD sum rules(QCDSR) [14–16], to calculate the form factors. Be-
sides, QCDSR at finite temperature illustrates mass shifts and width
broadening [17,18]. Thus, it is expected that the form factor of
B∗B∗ρ vertex may be sensitive to high temperatures and it is
maybe another interesting task.

In Ref. [13], the coupling constants gB∗ B∗ρ and f B∗ B∗ρ are es-
timated using QCD light cone sum rule (LCSR) method. In this
Letter, the form factors and the coupling constants of the B∗B∗ρ
vertex is calculated in the framework of the three-point QCDSR.
We notice that in the case of D∗D∗ρ vertex, the form factor
and coupling constant have been studied with three-point QCDSR
using the effective Lagrangian based on SU(4) flavor symme-
try [23]. Different from above situations, we consider the effective
Lagrangian, which is constructed based on the chiral symmetry.
Herein, we use the same technique developed in the previous work
for the evaluation of the couplings in the vertices D∗Dπ [19,20],
D Dρ [21], D∗D∗π [22], D∗D∗ρ [23], D Dω [24], D∗

s D K ∗(892) [25],
Ds D K ∗

0 [26] and B∗
s1 B∗K [27].

This Letter is organized as follows. In Section 2, we give the de-
tails of QCDSR for the B∗B∗ρ vertex when both B∗ and ρ mesons
are off-shell. Section 3 is devoted to the numerical analysis and
discussion. Additionally, Appendix A presents the formula of form
factors.

2. The sum rule for the B∗ B∗ρ vertex

In this section, we give QCDSR for the form factors of the
B∗B∗ρ vertex. The three-point function associated with the B∗B∗ρ
vertex, for an off-shell B∗ meson, is given by

Γ B̄∗0

μνα

(
p, p′)

=
∫

d4x d4 y eip′·xe−iq·y〈0|T {
jρ

−
μ (x) j B̄∗0

ν (y) jB∗†

α (0)
}|0〉, (2)

where the interpolating currents are jρ
−

μ (x) = ū(x)γμ d(x),

j B̄∗0

ν (x) = d̄(x)γνb(x), and jB∗
α (x) = ū(x)γαb(x). The correlation

function for an off-shell ρ meson is

Γ
ρ
μνα

(
p, p′)

=
∫

d4x d4 y eip′·xe−iq·y〈0|T {
j B̄∗0

μ (x) jρ
−

ν (y) jB∗†
α (0)

}|0〉. (3)

In the expressions, q = p′ − p is the transferred momentum. There
are fourteen independent Lorentz structures in the general expres-
sion for the vertices (2) and (3). We can write Γμνα in terms of
the invariant amplitudes associated with each one of these tensor
structures in the following form:

Γ B∗
μνα

(
p, p′)

= Γ1
(

p2, p′2,q2)gμν pα + Γ2
(

p2, p′2,q2)gμα pν

+ Γ3
(

p2, p′2,q2)gνα pμ + Γ4
(

p2, p′2,q2)gμν p′
α

+ Γ5
(

p2, p′2,q2)gμα p′
ν + Γ6

(
p2, p′2,q2)gνα p′

μ

+ Γ7
(

p2, p′2,q2)pμpν pα + Γ8
(

p2, p′2,q2)p′
μpν pα

+ Γ9
(

p2, p′2,q2)pμp′
ν pα + Γ10

(
p2, p′2,q2)pμpν p′

α

+ Γ11
(

p2, p′2,q2)p′
μp′

ν pα + Γ12
(

p2, p′2,q2)p′
μpν p′

α

+ Γ13
(

p2, p′2,q2)pμp′
ν p′

α + Γ14
(

p2, p′2,q2)p′
μp′

ν p′
α. (4)

Due to jρ
−

μ is a conserved current, five constraints among these
fourteen independent Lorentz structures are introduced. There-
fore, only nine of them are independent. However, in the sense
of calculating coupling constant, we can work with any one of
the fourteen structures. There are some points that one must fol-
low: (i) The chosen structure must appear in the phenomenological
side. (ii) The chosen structure should exhibit good OPE (operator
product expansion) convergence. (iii) The chosen structure should
have a stability that guarantees a good match between the two
sides of the sum rule. After the calculations, the structures that
obey these points are gμν p′

α in the case ρ off-shell and gμν pα

in the case B∗ off-shell for f B∗ B∗ρ . Whereas, the structures are
gαν p′

μ in the case B∗ off-shell, and gαμp′
ν in the case ρ off-shell

for gB∗ B∗ρ .
In order to get the sum rules, the correlation functions need

to be calculated in two different ways: In phenomenological side,
they are presented at the hadron level introducing hadronic pa-
rameters; in theoretical side, they are calculated in terms of quark
and gluon degrees of freedom by performing Wilson’s OPE. The
sum rules for the form factors are obtained with both represen-
tations being matched via quark–hadron duality and equating the
coefficient of a sufficient structure from both sides of the same cor-
relation functions. In order to improve the matching between the
two side of the sum rules, double Borel transformation with re-
spect to the variables, P 2 = −p2 → M2 and P ′2 = −p′2 → M ′2, is
performed.

The phenomenological part of the first correlation function (2)
is obtained by saturating the complete set of appropriate B∗ and
ρ states. The matrix elements associated with the B∗B∗ρ momen-
tum dependent vertices can be deduced from Eq. (1), which can
be written in terms of the form factors:〈
B̄∗0(p, η)ρ−(q, ε)

∣∣B∗−(p + q, ξ)
〉

= −2
√

2gB∗ B∗ρ
(
q2)(η∗ · ξ)(

p · ε∗)
− 4

√
2 f B∗ B∗ρ

(
q2)mB∗

[(
η∗ · ε∗)(ξ · q) − (

ξ · ε∗)(η∗ · q
)]

.

(5)

The meson decay constants f B∗ and fρ are defined by the follow-
ing matrix elements:

〈0| jB∗
ν

∣∣B∗(p)
〉 = mB∗ f B∗εν

B∗(p),

〈0| jρμ
∣∣ρ(p)

〉 = mρ fρε
μ
ρ (p). (6)

Saturating Eq. (2) with B∗ and ρ states, and using Eqs. (5) and (6),
then summing over polarization vectors via

ε
μ
ρ (p)εν

ρ
∗
(p) = −gμν + pν pμ

m2
ρ

,

ε
μ
B∗(p)εν

B∗ ∗
(p) = −gμν + pμpν

m2
B∗

, (7)

the physical side of the correlation function for B∗ off-shell is ob-
tained as

Γ
(B∗)phen
μνα

(
p, p′)

= mρ fρ f 2
B∗m2

B∗

(P 2 + m2
B∗)(Q 2 + m2

B∗)(P ′2 + m2
ρ)

[
−2

√
2g B∗

B∗ B∗ρ
(
q2)

×
(

−gνβ + qνqβ

m2
B∗

)(
−gαβ + pα pβ

m2
B∗

)(
−gμγ + p′

μp′
γ

m2
ρ

)
qγ

− 4
√

2 f B∗
B∗ B∗ρ

(
q2)mB∗

(
−gνβ + qνqβ

m2
B∗

)(
−gαγ + pα pγ

m2
B∗

)

×
(

−gμβ + p′
μp′

β

m2

)
p′
γ + 4

√
2 f B∗

B∗ B∗ρ
(
q2)
ρ
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Fig. 1. (a) and (b): Bare loop diagram for the B∗ and ρ off-shell, respectively; (c) and (e): Diagrams corresponding to quark condensate for the B∗ off-shell; (d) and (f):
Diagrams corresponding to quark condensate for the ρ off-shell.
× mB∗
(

−gνγ + qνqγ

m2
B∗

)(
−gαβ + pα pβ

m2
B∗

)

×
(

−gμβ + p′
μp′

β

m2
ρ

)
p′
γ

]
+ · · · . (8)

In a similar way, we obtain the final expression of the physical
side of the correlation function for an off-shell ρ meson as:

Γ
(ρ)phen
μνα

(
p, p′)

= mρ fρ f 2
B∗m2

B∗

(P 2 + m2
B∗)(Q 2 + m2

ρ)(P ′2 + m2
B∗)

[
−2

√
2gρ

B∗ B∗ρ
(
q2)

×
(

−gμβ + p′
μp′

β

m2
B∗

)(
−gαβ + pα pβ

m2
B∗

)(
−gνγ + qνqγ

m2
ρ

)
p′
γ

− 4
√

2 f ρ
B∗ B∗ρ

(
q2)mB∗

(
−gμβ + p′

μp′
β

m2
B∗

)(
−gαγ + pα pγ

m2
B∗

)

×
(

−gνβ + qνqβ

m2
ρ

)
qγ + 4

√
2 f ρ

B∗ B∗ρ
(
q2)

× mB∗
(

−gμγ + qμqγ

m2
B∗

)(
−gαβ + pα pβ

m2
B∗

)

×
(

−gνβ + qνqβ

m2
ρ

)
qγ

]
+ · · · , (9)

where “· · ·” represents the contribution of the higher states and
continuum.

In the following, we concentrate our attention to the QCD side
of the correlation functions in the deep Euclidean space. The co-
efficients Γi above can be written in terms of perturbative and
condensate terms

Γi = Γ
per + Γ

(3) + Γ
(4) + Γ

(5) + Γ
(6) + · · · (10)
i i i i i
where Γ
per

i is the perturbative contribution, and Γ
(3)

i , . . . ,Γ
(5)

i are
contributions of condensates of dimension 3,4,5, . . . operators in
the OPE. The perturbative contribution and gluon condensate con-
tribution can be written in the form of dispersion integration,

Γ
per

i = − 1

4π2

∞∫
smin

ds

∞∫
umin

du
ρ

per
i (s, u, Q 2)

(s − p2)(u − p′2)
,

Γ
(4)

i = − 1

4π2

∞∫
smin

ds

∞∫
umin

du
ρ

(4)
i (s, u, Q 2)

(s − p2)(u − p′2)
, i = 1, . . . ,14,

where ρi(s, u, Q 2) is the spectral density. The spectral density is
obtained by calculating the bare loop diagrams (a) and (b) in Fig. 1
for B∗ and ρ off-shell, respectively. In the calculation, Cutkosky
rules are adopted to deal with the usual Feynman integral of these
diagrams, i.e., by replacing the quark propagators with Dirac delta
function 1

q2−m2 → (−2π i)δ(q2 − m2)θ(q0). The integration region

for the perturbative contribution in Eq. (11) is determined from
the facts that arguments of the three δ functions must vanish si-
multaneously. The physical regions of s and u are determined by
the following inequalities:

−1 � F B∗
(s, u) = 2su + (s + u − t)(m2

b − s)

λ1/2(m2
b, s,m2

u)λ1/2(s, u, t)
� +1,

−1 � F ρ(s, u) = (s + u − t)(m2
b + s) − 2s(u + m2

b)

|s − m2
b |λ1/2(s, u, t)

� +1, (11)

where λ(a,b, c) = a2 +b2 + c2 −2ac −2bc −2ab and t = q2 = −Q 2.
The quark condensate contribution in the QCD side is deter-

mined from the quark condensate diagrams (c), (d), (e) and (f)
of Fig. 1. As what has been shown in Refs. [16,19], heavy quark
condensate contribution is negligible in comparison with the per-
turbative one. Thus, only light quark condensates contribute to the
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Fig. 2. Diagrams for contributions of bi-gluon operator in the case B∗ off-shell.

Fig. 3. Diagrams for mixed quark–gluon operators in the case B∗ off-shell.

Table 1
Parameters used in the calculation.

mb (GeV) mB∗ (GeV) mρ (GeV) f B∗ (GeV) fρ (GeV) 〈ūu〉 (GeV)3

4.7 ± 0.1 5.325 0.775 0.16 ± 0.01 0.16 ± 0.005 (−0.23)3
calculation. It is noticed that contributions of diagrams (d), (e) and
(f) are zero after the double Borel transformation with respect to
the both variables P 2 and P ′2. Hence, we calculate the diagram (c)
for the off-shell B∗ meson and obtain

Π
B∗(3)
μνα = −mb〈ūu〉(−gμν p′

α + gαν p′
μ + gαμp′

ν)

(p2 − m2
b)(p′2)

. (12)

The diagrams for the contribution of the gluon condensate in the
case B∗ off-shell are depicted in Fig. 2. We follow the method em-
ployed in Refs. [28,29], namely, directly calculate the imaginary
part of the integrals in terms of the Cutkosky’s rule. The dia-
grams for the contribution of the quark–gluon mixing condensate
in the case B∗ off-shell are depicted in Fig. 3. The results of the
related Borel transformed coefficient B̂Γi in Eq. (10) are given in
Appendix A.

The quark–hadron duality assumption is adopted to subtract the
contributions of the higher states and continuum, i.e., it is assumed
that
ρhigher states(s, u) = ρOPE(s, u, t)θ(s − s0)θ(u − u0), (13)

where s0 and u0 are the continuum thresholds.
To improve the matching between the sides of the sum rules,

the double Borel transformation are applied with respect to the
P 2 = −p2 → M2 and P ′2 = −p′2 → M ′2. In this work we use the
following relations between the Borel masses M2 and M ′2 which

are M2

M′2 = m2
ρ

m2
B∗

for a B∗ off-shell and M2

M′2 = 1 for a ρ off-shell.

3. Numerical analysis

In the numerical analysis of the sum rules, input parameters
are shown in Table 1. We first determine the three auxiliary pa-
rameters, namely the Borel mass parameter M2 and the contin-
uum thresholds, s0 and u0. The continuum thresholds, s0 and u0,
are not completely arbitrary as they are correlated to the energy
of the first excited states with the same quantum numbers as
the states we concern. They are given by s0 = (mB∗ + �s)

2 and
u0 = (m+�u)2, where m is the ρ meson mass for the case that B∗
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Fig. 4. (a) The OPE convergence of the form factor gB∗
B∗ B∗ρ(Q 2 = 1.0 GeV2) on Borel mass parameters M2 for �s = �u = 0.5 GeV. The notations α, β , γ , λ and ρ correspond

to total, perturbative, quark condensate, four-quark condensate and mixed condensate contribution respectively and (b) pole-continuum contributions.
Fig. 5. gB∗
B∗ B∗ρ(Q 2) (circles) QCDSR form factors as a function of Q 2. The solid line

correspond to the monopolar parametrization of the QCDSR data.

is off-shell and the B∗ meson mass for that ρ is off-shell. �u and
�s are usually around 0.5 GeV. The threshold s0, u0 and Borel pa-
rameter M2 are varied to find the optimal stability window where
pole dominance and OPE convergence of the sum rule are satis-
fied.

3.1. QCD sum rules for gB∗ B∗ρ(Q 2)

Using �s = �u = 0.5 GeV for the continuum thresholds and fix-
ing Q 2 = 1 GeV2, we show the different contributions to the form
factor g B∗

B∗ B∗ρ as a function of the Borel variable, as can be seen in
Fig. 4(a). We find an good OPE convergence and a good stability
of g B∗

B∗ B∗ρ for M2 � 35 GeV2. Fig. 4(b) demonstrates the contri-
butions from the pole term and continuum term with variation
of the Borel parameter M2. We see that the pole contribution is
larger than continuum contribution for M2 � 47 GeV2. We choose
M2 = 40 GeV2 as a reference point.

Now, we would like to discuss the behavior of the form fac-
tors in terms of Q 2, which is plotted in Fig. 5. In this figure, the
circles correspond to the form factor g B∗

∗ ∗ (Q 2) in the interval
B B ρ
where the sum rule is valid. Our result is better extrapolated by
the mono-polar parametrization:

g B∗
B∗ B∗ρ

(
Q 2) = 99.4 GeV2

Q 2 + 75.5 GeV2
. (14)

Coupling constant is defined as the value of the form factor at
Q 2 = −m2, where m is the mass of the off-shell meson. Us-
ing Q 2 = −m2

B∗ in Eq. (14), the coupling constant is obtained as
g B∗

B∗ B∗ρ = 2.09.
In the case ρ off-shell, Fig. 6(a) demonstrates a good stability

and OPE convergence of gρ
B∗ B∗ρ(Q 2 = 1.0 GeV2) with respect to

the variations of Borel mass parameters for M2 � 4 GeV2. We see
that the pole contribution is bigger than the continuum one in
the Borel window M2 � 7 GeV2 from Fig. 6(b). We choose M2 =
6.5 GeV2. Our numerical results can be fitted by the exponential
parametrization

gρ
B∗ B∗ρ

(
Q 2) = 0.66 Exp

[ −Q 2

0.82 GeV2

]
, (15)

shown by the solid line in Fig. 7. Also, gρ
B∗ B∗ρ = 1.37 is obtained at

Q 2 = −m2
ρ in Eq. (15). Taking the average of the two results, we

get

gB∗ B∗ρ = 1.73 ± 0.25. (16)

Following the procedure of error estimate in Refs. [30,31], with
all parameters kept fixed, except one which is changed according
to its intrinsic error, we calculate a new coupling constant and its
deviation. Then we obtain percentage deviation related with each
parameter and how sensitive this value is with respect to each pa-
rameter. Table 2 shows the percentage deviation for the two cases.

Considering the uncertainties presented in the tables, the cou-
pling constant is:

gB∗ B∗ρ = 1.79 ± 0.59. (17)

3.2. QCD sum rules for f B∗ B∗ρ(Q 2)

For f B∗
B∗ B∗ρ(Q 2 = 1.0 GeV2), OPE convergence of the sum rule

with the Borel mass and pole dominance are shown in Fig. 8. As
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Fig. 6. (a) The OPE convergence of the form factor gρ
B∗ B∗ρ(Q 2 = 1.0 GeV2) on Borel mass parameters M2 for �s = �u = 0.5 GeV. The notations α, β and γ correspond to

total, perturbative and four-quark condensate contributions respectively and (b) pole-continuum contributions.
Fig. 7. gρ
B∗ B∗ρ(Q 2) (circles) QCDSR form factors as a function of Q 2. The solid line

correspond to the exponential parametrization of the QCDSR data.

Table 2
Percentage deviation related with each parameter for gB∗ B∗ρ .

Parameters Deviation %

B∗ off-shell ρ off-shell

f B∗ = 160 ± 10 (MeV) 14.1 15.2
fρ = 160 ± 5 (MeV) 3.2 7.3
mb = 4.70 ± 0.1 (GeV) 15.1 27.8
M2 ± 10% (GeV) 1.8 1.7
�s ± 0.1e�u ± 0.1 (GeV) 18.4 23.5

the same procedure in the last subsection, the Borel mass is de-
termined to be 25 GeV2. With the thresholds �s = 0.5 GeV and
�u = 0.5 GeV, our numerical calculations of f B∗

B∗ B∗ρ(Q 2) can be
well fitted by the mono-polar parametrization shown in Fig. 9:

f B∗
B∗ B∗ρ

(
Q 2) = 13.5 GeV

Q 2 + 41.6 GeV2
. (18)

Setting Q 2 = −m2
B∗ in Eq. (18), the coupling constant is obtained

as f B∗
∗ ∗ = 1.01 GeV−1.
B B ρ
Table 3
Percentage deviation related with each parameter for f B∗ B∗ρ .

Parameters Deviation %

B∗ off-shell ρ off-shell

f B∗ = 160 ± 10 (MeV) 15.5 12.4
fρ = 160 ± 5 (MeV) 4.5 3.7
mb = 4.70 ± 0.1 (GeV) 9.2 23.4
M2 ± 10% (GeV) 2.8 1.5
�s ± 0.1e�u ± 0.1 (GeV) 14.4 17.9

Table 4
Theoretical estimations of the strong coupling constants from different models.

Coupling constant This work [13]

gB∗ B∗ρ 1.79 ± 0.59 1.88
f B∗ B∗ρ (GeV−1) 0.94 ± 0.24 0.82

Fig. 10 is plotted to show the OPE convergence, stability
and pole dominance of the sum rule with the Borel mass for
f ρ

B∗ B∗ρ(Q 2 = 1.0 GeV2). With the thresholds �s = 0.5 GeV and

�u = 0.5 GeV, and a Borel mass of 9 GeV2, our numerical cal-
culations of f ρ

B∗ B∗ρ(Q 2) can be well fitted by the exponential
parametrization in Fig. 11:

f ρ
B∗ B∗ρ

(
Q 2) = 0.72 Exp

[ −Q 2

3.44 GeV2

]
GeV−1, (19)

Using Q 2 = −m2
ρ in Eq. (19), the coupling constant is obtained as

f ρ
B∗ B∗ρ = 0.86 GeV−1. Taking the average of the two results, we get

f B∗ B∗ρ = (0.94 ± 0.08) GeV−1. (20)

Making the same procedure of error estimate as last subsection,
Tables 3 shows the percentage deviation for the coupling constant
f B∗ B∗ρ .

Considering the uncertainties presented in the tables, the cou-
pling constant is:

f B∗ B∗ρ = (0.94 ± 0.24) GeV−1. (21)

It is noticed that the form factors obtained are different if the
B∗ or the ρ meson is off-shell but both give the compatible cou-
pling constant. As commented in Ref. [16], the two sets of points
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Fig. 8. (a) The OPE convergence of the form factor f B∗
B∗ B∗ρ(Q 2 = 1.0 GeV2) on Borel mass parameters M2 for �s = �u = 0.5 GeV. The notations α, β and γ correspond to

total, perturbative and four-quark condensate contributions respectively and (b) pole-continuum contributions.
Fig. 9. f B∗
B∗ B∗ρ(Q 2) (circles) QCDSR form factors as a function of Q 2. The solid line

correspond to the monopolar parametrization of the QCDSR data.

(B∗ or ρ off shell) can be fitted by different empirical formulas.
However, the condition must be satisfied that when extrapolated
to Q 2 = −m2, where m is the mass of the off-shell meson, each
fit should go to the compatible value of the coupling constant.
Together with the predictions from LCSR [13], the numerical re-
sults of the coupling constant are presented in Table 4. Comparison
shows that our result gB∗ B∗ρ and f B∗ B∗ρ are in good agreement
with their estimate. However, it is noticed that the authors only
give the central values of gB∗ B∗ρ and f B∗ B∗ρ , our results are com-
patible with their estimates in case that the uncertainties are con-
sidered in their work.

In summary, the form factors gB∗ B∗ρ(Q 2) and f B∗ B∗ρ(Q 2) pa-
rameterizing the B∗B∗ρ vertex have been calculated in the frame-
work of three-point QCDSR. Both cases that B∗ is off-shell and ρ
is off-shell have been considered. As a side product of the form
factors, the coupling constants gB∗ B∗ρ and f B∗ B∗ρ are estimated,
which are compatible with the results from the LCSR method [13].
Due to the potential ability in analyzing absorption cross sections
of Υ in experiments, the related events are expected to be ob-
served in the LHC in the near future.
Acknowledgements
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Appendix A

The appendix is devoted to analytical results of the form factors.
Two cases are considered, one is for g B∗

B∗ B∗ρ(Q 2) and gρ
B∗ B∗ρ(Q 2),

the other for f B∗
B∗ B∗ρ(Q 2) and f ρ

B∗ B∗ρ(Q 2).

(1) For g B∗
B∗ B∗ρ(Q 2), the form factor is

g B∗
B∗ B∗ρ

(
Q 2) = −mρ(Q 2 + m2

B∗)

f 2
B∗ fρm2

B∗
√

2(m2
B∗ + m2

ρ + Q 2)
e

m2
B∗

M2 e
m2

ρ

M′2 B̂Γ,

(22)

where

B̂Γ = B̂Γ pert + B̂Γ (3) + B̂Γ (4) + B̂Γ (5). (23)

The perturbative contribution is

B̂Γ pert = −1

4π2

s0∫
m2

b

ds

u0∫
0

du ρ
B∗(pert)
g (s, u, t)

× θ
[
1 − F B∗

(s, u)2]e
−s
M2 e

−u
M′2 , (24)

where

ρ
B∗(pert)
g (s, u, t)

= 3

[λ(s, u, t)]5/2
(s − t + u)

(
m4

b − m2
b(s + t − u) + st

)
× (

u
(
2m2

b + s + t
) − (s − t)2). (25)

The condensate contributions are

B̂Γ (3) = mb〈ūu〉e− m2
b

M2 , (26)
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Fig. 10. (a) The OPE convergence of the form factor f ρ
B∗ B∗ρ(Q 2 = 1.0 GeV2) on Borel mass parameters M2 for �s = �u = 0.5 GeV. The notations α, β and γ correspond to

total, perturbative and four-quark condensate contributions respectively and (b) pole-continuum contributions.
Fig. 11. f ρ
B∗ B∗ρ(Q 2) (circles) QCDSR form factors as a function of Q 2. The solid line

correspond to the exponential parametrization of the QCDSR data.

B̂Γ (4) = −1

4π2

s0∫
m2

b

ds

u0∫
0

du ρ
B∗(4)
g (s, u, t)

× θ
[
1 − F B∗

(s, u)2]e
−s
M2 e

−u
M′2 , (27)

in which

ρ
B∗(4)
g (s, t, u)

= 〈g2G2〉
2[λ(s, u, t)]5/2

(
s3 + 7s(t − u)2 − 11s2(t + u)

+ 3(t − u)2(t + u) − 4m2
b

(−2s2 + s(t − 2u)

+ (t − u)(t + 2u)
))

, (28)

and

B̂Γ (5) = mb〈gq̄σ · Gq〉
4M ′2 e

− m2
b

M2 . (29)
For gρ
B∗ B∗ρ(Q 2), the form factor is

gρ
B∗ B∗ρ

(
Q 2) = mρ(Q 2 + mρ

2)

f 2
B∗ fρm2

B∗(2
√

2m2
ρ + √

2Q 2)
e

m2
B∗

M2 e
m2

B∗
M′2 B̂Γ, (30)

where

B̂Γ = B̂Γ per + B̂Γ (3) + B̂Γ (4) + B̂Γ (5). (31)

The perturbative contribution is

B̂Γ per = −1

4π2

s0∫
m2

b

ds

u0∫
m2

b

du ρ
ρ(per)
g (s, u, t)

× θ
[
1 − F ρ(s, u)2]e

−s
M2 e

−u
M′2 , (32)

where

ρ
ρ(per)
g (s, u, t)

= 3

[λ(s, u, t)]5/2
(s + t − u)

(
m4

b − m2
b(s − t + u) + su

)
× (−2m2

bt + s2 − s(t + 2u) + u(u − t)
)
. (33)

The condensate contributions are

B̂Γ (3) = 0, (34)

B̂Γ (4) = −1

4π2

s0∫
m2

b

ds

u0∫
0

du ρ
ρ(4)
g (s, u, t)θ

[
1 − F ρ(s, u)2]e

−s
M2 e

−u
M′2 ,

(35)

in which

ρ
ρ(4)
g (s, t, u)

= 〈g2G2〉
2[λ(s, u, t)]5/2

(−7s3 + (t − u)2(t + 5u) + s2(3t + 7u)

+ s
(
3t2 + 2tu − 5u2) + m2

b

(
8s2 + 8st + 8t2 − 4su

− 4tu − 4u2)), (36)
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and

B̂Γ (5) = 0. (37)

(2) For f B∗
B∗ B∗ρ(Q 2), the form factor is

f B∗
B∗ B∗ρ

(
Q 2) = −(Q 2 + m2

B∗)

f 2
B∗ fρmB∗mρ

√
2(m2

B∗ + m2
ρ + Q 2)

e
m2

B∗
M2 e

m2
ρ

M′2 B̂Γ

(38)

where

B̂Γ = B̂Γ per + B̂Γ (3) + B̂Γ (4) + B̂Γ (5). (39)

The perturbative contribution is

B̂Γ per =
[

−1

4π2

s0∫
m2

b

ds

u0∫
0

du ρ
B∗(per)
f (s, u, t)

× θ
[
1 − F B∗

(s, u)2]e
−s
M2 e

−u
M′2

]
, (40)

where

ρ
B∗(per)
f (s, t, u)

= 3u

[λ(s, u, t)]5/2

(
4m6

bu + m4
b

(−s2 + 2st − 4su − t2

− 4tu + 5u2) + m2
b

(
2s2t + 2s2u − 4st2 + 4stu − 4su2

+ 2t3 − 2t2u − 2tu2 + 2u3) − s2t2 − s2tu + 2st3

− 2st2u − t4 + 3t3u − 3t2u2 + tu3). (41)

The condensate contributions are

B̂Γ (3) = 0, (42)

B̂Γ (4) = −1

4π2

s0∫
m2

b

ds

u0∫
0

du ρ
B∗(4)

f (s, u, t)

× θ
[
1 − F B∗

(s, u)2]e
−s
M2 e

−u
M′2 , (43)

in which

ρ
B∗(4)

f (s, t, u)

= 〈g2G2〉
2[λ(s, u, t)]5/2

(−3s3 − 3t3 + s2(3t − 7u) − 7t2u

+ 11tu2 − u3 + s
(
3t2 + 14tu + 11u2) + 4m2

b

(
s2 + t2

+ tu + 4u2 + s(−2t + u)
))

, (44)

and

B̂Γ (5) = 0. (45)

For f ρ
B∗ B∗ρ(Q 2), the form factor is

f ρ
B∗ B∗ρ

(
Q 2) = −(Q 2 + mρ

2)

4
√

2 f 2
B∗ fρm3

B∗mρ

e
m2

B∗
M2 e

m2
B∗

M′2 B̂Γ, (46)

where

B̂Γ = B̂Γ per + B̂Γ (3) + B̂Γ (4) + B̂Γ (5). (47)
The perturbative contribution is

B̂Γ per = −1

4π2

s0∫
m2

b

ds

u0∫
m2

b

du ρ
ρ(per)
f (s, u, t)

× θ
[
1 − F ρ(s, u)2]e

−s
M2 e

−u
M′2 , (48)

where

ρ
ρ(per)
f (s, t, u)

= 3

[λ(s, u, t)]5/2

(
t
(−2m6

b(s + t − u) + m4
b

(
4s2 − 2s(t + u)

− 2(t − u)2) − m2
b(s + t − u)

(
(s − t)2 + 4su − 2tu + u2)

+ 2su
(
s(t + u) − (t − u)2))). (49)

The condensate contributions are

B̂Γ (3) = 0, (50)

B̂Γ (4) = −1

4π2

s0∫
m2

b

ds

s0∫
m2

b

du ρ
ρ(4)

f (s, u, t)

× θ
[
1 − F ρ(s, u)2]e

−s
M2 e

−u
M′2 , (51)

in which

ρ
ρ(4)

f (s, t, u)

= 〈g2G2〉
2[λ(s, u, t)]5/2

(−9s3 + (t − u)2(5t − u) + s2(11t + 5u)

+ M2
b

(
8s2 + 8st + 8t2 − 4su − 4tu − 4u2)

+ s
(−7t2 + 10tu + 5u2)), (52)

and

B̂Γ (5) = 0. (53)
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