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� Biomass depots are necessary to scale-up the biorefinery industry.
� There are two distinct depot concepts: addressing feedstock stability and quality.
� Within these concepts, several technical configurations are possible.
� Biomass depots can entail conventional pelleting up to sophisticated pretreatment.
� Depot processing costs range from �US$30 to US$63 per dry metric tonne.
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a b s t r a c t

Decentralized biomass processing facilities, known as biomass depots, may be necessary to achieve
feedstock cost, quantity, and quality required to grow the future U.S. bioeconomy. In this paper, we assess
three distinct depot configurations for technical difference and economic performance. The depot designs
were chosen to compare and contrast a suite of capabilities that a depot could perform ranging from
conventional pelleting to sophisticated pretreatment technologies. Our economic analyses indicate that
depot processing costs are likely to range from �US$30 to US$63 per dry metric tonne (Mg), depending
upon the specific technology implemented and the energy consumption for processing equipment such
as grinders and dryers. We conclude that the benefits of integrating depots into the overall biomass
feedstock supply chain will outweigh depot processing costs and that incorporation of this technology
should be aggressively pursued.

� 2015 Published by Elsevier Ltd.
1. Introduction

Currently, the U.S. cellulosic biofuel industry relies on a conven-
tional biomass supply system, hereinafter referred to as the
conventional system, where corn stover, pulpwood, energy crops
or other herbaceous and woody residues are procured through
contracts with local growers, harvested, stored locally, and deliv-
ered in bale or low density bulk format to the conversion facility.
The conventional system has been demonstrated to work in a local
supply context within high yield regions (Bonner et al., 2014), e.g.,
the U.S. Corn Belt or southeast forests, but scaling up the biorefin-
ery industry will require increasing biomass volumes at decreasing
costs. The U.S. Department of Energy’s (DOE) Bioenergy
Technologies Office (BETO) has a logistics cost target to the throat
of the conversion facility (including grower payment and logistics)
of US$80 per dry short ton, equivalent to US$88 per metric tonne
(Mg), to reach a fuel target of US$3 per gallon of gasoline equiva-
lent (GGE) (or US$0.79 per liter of gasoline equivalent) by 2022
(DOE, 2013).

Multiple analyses (Argo et al., 2013; Hess et al., 2009; Muth
et al., 2014) have shown that the conventional system may not
be able to reach this target outside of highly productive regions
and will even struggle in some years within high yield areas due
to inclement weather during production and harvest seasons or
extreme events such as floods or droughts. These supply uncertain-
ties tend to classify the biorefining industry as a high risk invest-
ment and limit the concept from being broadly implemented
(Hansen et al., in press). Financial institutions translate high risk
ventures into higher interest rates, which have a profound impact
on the overall costs to a biorefinery over its operational life span.
Lamers et al., in press calculated up to US$96 million in savings
of interest paid over a 10 year loan period for a mature biochemical
biorefinery (total capital investment of $458 million) when annual
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interest rates were to drop by 5% (within a range of 8–30% annual
interest). This translates to cost savings of US$0.04 liter�1

(US$0.15 gal�1) of fuel produced.
The advanced system described by Hess et al. (2009) and Searcy

and Hess (2010) provides a method to reduce feedstock quantity,
price, and quality uncertainties. It is based on a network of dis-
tributed biomass processing centers (Eranki et al., 2011),
so-called depots, that use one or several biomass types to generate
uniform feedstock ‘commodities’. These ‘commodities’ are inter-
mediates with consistent physical and chemical characteristics
that meet conversion quality targets and at the same time leverage
the spatial variability in supply quantities and costs by improving
flowability, transportability (bulk density), and stability/storability
(dry matter loss reduction).

This paper presents a techno-economic evaluation of the depot
concept, in addressing the following questions:

� What are the main technical and cost configuration options of a
depot?
� What are the operational details (e.g., regarding material flow)

of a depot?
� What are the economic impacts of these different depot

concepts?

This evaluation is limited to a subset of potential depot designs
and does not include upstream or downstream supply chain
influences as a result of the depot. For a holistic comparison of
depot costs and benefits across the entire biorefinery supply chain
we refer to Lamers et al. (in press) who quantify cost reductions
that can be achieved across the value chain by applying the depot
concept.

This analysis is also directly related to project work undertaken
by Oak Ridge National Laboratory (ORNL) that is studying optimal
depot locations based on biomass availability and logistic networks
(Webb et al., 2014). This paper investigates internal depot aspects
and complements the ORNL analysis by providing feedback on
changes in feedstock characteristics (i.e., changes in moisture
content, flowability, bulk density, etc.), that affect the optimization
runs for both a depot and biorefinery location.

2. Methods

2.1. Model framework

The Biomass Logistics Model (BLM) framework (see Cafferty
et al., 2013 for a detailed description) was used to conduct the eco-
nomic analysis of each depot design. The BLM is part of a versatile
analysis toolset developed by the Idaho National Laboratory (INL)
to estimate delivered feedstock cost, energy consumption and
greenhouse gas (GHG) emissions for the entire biomass supply sys-
tem design from harvest and collection to delivery to the throat of
the conversion facility. This analysis was focused only on the depot
aspect of the supply system and did not account for the other oper-
ations. The BLM simulates a broad set of parameters and allows the
user to investigate important sensitivities and uncertainties of
equipment lineups, efficiencies and flow rates that are currently
a primary source of feedstock risk for the biorefinery industry.
The BLM model structure is shown in Fig. 1.

The BLM incorporates information from a collection of data-
bases that provide (1) engineering performance data for hundreds
of equipment systems, (2) spatially explicit labor cost datasets, and
(3) local tax and regulation data. The BLM is designed to work with
various thermochemical and biochemical conversion platforms
and accommodates numerous biomass varieties (i.e., herbaceous
residues, short-rotation woody and herbaceous energy crops,
woody residues, algae, etc.), resulting in a robust and flexible
systems model. The BLM simulates the flow of biomass through
the entire supply chain, tracking changes in feedstock characteris-
tics (i.e., moisture content, dry matter, ash content, and dry bulk
density) as influenced by the various operations in the supply
chain. By accounting for all of the equipment that comes into con-
tact with biomass from the point of harvest to the throat of the
conversion facility and the change in characteristics, the BLM
enables highly detailed economic cost, energy consumption and
environmental impact analyses. As a result of these highly detailed
analyses, areas for improvement (i.e., equipment efficiencies, oper-
ational parameters, environmental conditions, etc.) can be identi-
fied through sensitivity analyses that can be used to enhance the
design and performance of these systems. Finally, the BLM can
be coupled to additional models as it is part of a greater modeling
toolset used to assess sustainability, environmental impacts (GHG
emissions), and feedstock quality specifications. The process infor-
mation data per depot configuration was based on currently avail-
able equipment from INL’s Process Demonstration Unit (PDU) and
laboratory experiments. Data for the ammonia fiber expansion
(AFEX™) process was provided by the Michigan Biotechnology
Institute (MBI). Vendor information was used where experimental
data was not available.

2.2. Scope and indicators

This techno-economic analysis is limited to depot internal pro-
cesses, i.e., all flows from the depot entrance to the exit gate. To
fully appreciate the advantages uniform-format feedstock has in
a large-scale bioeconomy, a wider supply system comparison
would be necessary, but goes beyond the scope of this analysis.

The economic calculations cover the operations of a depot only,
i.e., all within-gate costs. It does not include the assessment of
varying feedstock prices (due to different grower payments or
transportation systems, etc.). The primary indicators are output
cost in dry metric tonnes (Mg). Secondary indicators include
energy use, preprocessing times, effective throughput rates, and
moisture levels (see Supplementary Material for details).

The depot operations are focused on biochemical conversion
routes using herbaceous residues as a feedstock. Herbaceous resi-
dues and energy crops currently face a limited market demand
and their feedstock characteristics match up well with biochemical
conversion technologies. Depots, if designed properly, can support
more than fuel markets, such as biopower, animal feed, and bio-
plastics, which should help facilitate additional and constant
demand. Furthermore, logistical advancements are needed within
the biochemical conversion supply chain to make herbaceous
material cost efficient. Also, herbaceous residues are not widely
used in the heat and power market due to combustion issues
(e.g., slacking and fouling). Woody biomass is expected to also have
a role in biochemical conversion (via blending) but more so in ther-
mochemical conversion processes. At the same time, wood (pulp-
wood and residues) pelleting operations have already proven to
be economical and the evolution of a depot concept could benefit
significantly from current operations in the wood sector. Any
new operations in a depot operation defined under the herbaceous
design would transfer into a woody depot system after the initial
grinding operations.

2.3. Depot concepts

Currently, biorefineries located in high yield areas are designed
to handle single feedstock of similar format such as corn stover or
wheat straw bales (INL, 2013). These vertically integrated systems
limit potential biorefinery locations and do not consider other
business issues (e.g., labor, taxes, proximity to distribution centers,
or end-use markets). More recent insights indicate that with the



Fig. 1. The structure of the Biomass Logistics Model (Cafferty et al., 2013).

Table 1
Comparison of depot concepts and their main characteristics.

Standard Depot Quality Depot

Primary function Improve feedstock stability, storability,
flowability, bulk density by creating physically
(and chemically) homogeneous feedstock

In addition to the standard function: Create on-spec
feedstock by actively addressing feedstock quality

Secondary function In addition to the standard function: Create intermediates
that meet specific biorefinery needs and reduce processing
intensity downstream

Location Driven by feedstock supply, logistical infrastructure, community support, social capital, potential link to existing industry
(e.g., agriculture or wood processing), low energy prices

Feedstock quality control Only passive via blending Active control
Technologies applied Mechanical and thermal processing (grinding,

drying, pelleting)
Mechanical and thermal processing plus chemical/
thermochemical preconversion

Status/timeline for adoption Already applied in woody biomass industry,
pilot scale for herbaceous biomass

Pilot scale (expected)

Other Moisture control (quality aspect) is done to
prevent dry matter loss and reach primary
goals

Active management of feedstock specifics allows advanced
depots to target different end-use markets (fodder, energy,
plastics, etc.)

P. Lamers et al. / Bioresource Technology 194 (2015) 205–213 207
support of depots, biorefineries could be built almost anywhere,
including lower yield areas (Argo et al., 2013), where a network
of biomass depots would supply biorefineries with sufficient feed-
stock, possibly from different biomass sources in a variety of forms
(e.g., square and/or round bales, chopped, bundled, raw, etc.). As a
result, a depot could take on many forms. For example, a Standard
Depot could include particle size reduction, moisture mitigation,
and densification to achieve the supply system benefits discussed
in earlier studies (Eranki et al., 2011; Hess et al., 2009; Kenney
et al., 2013). More severe feedstock quality issues and intolerant
specification at the biorefinery could provoke depots to include
additional processing steps (e.g., leaching, chemical treatment, or
washing). These two distinct set-ups characterize the potential
structure of a depot (Table 1).
2.3.1. Standard Depot
In our analysis, the primary function of the Standard Depot is to

improve feedstock stability (for storage), increase bulk density (for
transport), improve flowability (for stable in-feed rates), and
reduce material loss. Any improvement to feedstock quality is a
result of these activities rather than a primary target of the opera-
tion. Indirect quality activities, for example, drying, are done to
prevent degradation and material loss. Consistent moisture levels,
however, also benefit conversion efficiency in thermochemical
conversion pathways (Muth et al., 2014) and improve in-feed.
Additionally, densification is done to improve material handling
and transportability as well as provide a stable, reliable resource
inventory reducing feedstock volatility influence to the supply
chain which is key in de-risking the feedstock supply system
(Hansen et al., in press). Passive quality management is optionally
possible via feedstock blending.

2.3.2. Quality Depot
A Quality Depot actively addresses feedstock quality aspects

specific to the end-use market it targets, e.g., cellulosic biorefiner-
ies, animal feed, or the heat and power sector. It produces
enhanced feedstock (with lower contamination levels) or even pro-
cess intermediates and thus reduces the pretreatment require-
ments at the client facility. To match its final markets, various
kinds of pretreatment steps are possible within an advanced depot.
Thermal pretreatment technologies (e.g., torrefaction) create feed-
stock with structural homogeneity and superior handling, milling,
and co-firing properties. Chemical pretreatment changes the com-
position and structure of the biomass. This reduces the energy
required to grind or densify the feedstock, improves flowability
and storage stability, and removes contaminants detrimental to
downstream biorefinery processes.

2.4. Assumptions and formula applied

In our analysis we assume a maximum depot capacity of
9 Mg h�1 (equivalent to 10 short tons h�1) where 10 depots sup-
port a biorefinery demand of 725,600 Mg year�1 (equivalent to
800,000 short tons year�1), a scale that resembles a mature
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biorefining industry (Dutta et al., 2011; Humbird et al., 2011). We
assume depots are modular, and can be incrementally scaled in a
stepwise fashion of 9 Mg h�1. We did not assume any cost savings
for larger depot sizes via economies of scale, because operations
are limited by finite equipment capacities, which are commercially
available (i.e., grinders, dryers, pellet mills). Corn stover is used as a
representative herbaceous residue feedstock, assumed at 30%
moisture content (MC) (wet basis) when received at the depot.

2.4.1. Cost year indices
The cost-year of 2011 was chosen for consistency across all

DOE-BETO platforms, where similar analyses were performed with
respect to the designs and cost targets mentioned. Capital costs
provided for other years were adjusted using the Plant Cost
Index from Chemical Engineering Magazine (CEM, 2011) to the com-
mon basis year of 2011. The general formula for year-dollar
back-casting is shown in Eq. (1):

2011 Cost ¼ ðBase CostÞ 2011 Cost Index
Base Year Index

� �
ð1Þ
2.4.2. Total capital investment
The list of equipment can be determined by performing a

detailed study of everything required to make the depot opera-
tional. A complete list of the equipment is provided in
Supplementary Material, along with equipment purchased and
installed costs. The equipment prices used in this analysis are
obtained from local dealers. The Agricultural & Applied
Economics Association (AAEA) indicates that the difference
between purchase price and list price may be up to 15% (AAEA,
2000). While this quoted price may be the list price, no adjustment
of this price per AAEA guidance was applied.

Once the total fixed capital equipment cost has been deter-
mined in the year of interest, we add several additional equipment
options (e.g., electrical installation, instrumentation and control),
other direct (e.g., yard improvements, land, buildings, etc.) and
indirect costs (e.g., engineering and supervision, construction
expenses, contractor’s fee, contingency, etc.) to determine the total
capital investment. These costs are estimated based on Peters et al.
(1968), and are considered part of the fixed capital investment.

2.4.3. Ownership costs
Ownership costs are made up of two cost blocks: interest and

depreciation (I&D), plus insurance, housing, and taxes (IH&T).

2.4.3.1. Interest and depreciation (I&D). I&D can be calculated sepa-
rately or combined, based on the value to be depreciated plus the
interest on the salvage value (ASABE, 2006). The AAEA uses the sec-
ond method, shown in Eq. (2). The salvage value (i.e., the remaining
value) must be known or estimated to determine I&D. The method
by the American Society of Agricultural and Biological Engineers
(ASABE) was used to determine the salvage value (ASABE, 2006).
We apply an annual interest rate of 6%:

I&D ¼ ðP � SÞ ðiÞð1þ iÞn

fð1þ iÞng � 1

� �
þ S� i ð2Þ

where I&D = Interest and depreciation, P = purchase price of equip-
ment, i = annual interest rate, n = life of the equipment in years,
S = salvage value (salvage value % � list price).

2.4.3.2. Insurance, housing, and taxes (IH&T). Insurance, housing
(cost of shelter for equipment), and taxes (IH&T) refer to the fixed
costs related to the equipment, and these costs are estimated as
percentages of the purchase price (Eq. (3)). Where actual data is
not available, the ASABE suggests using the following percentages:
taxes 1.00%, housing 0.75%, and insurance 0.25%, for a total of
2.00%:

IH&T¼ ðIPercentageþHPercentage þ TPercentageÞ� averageðPercentage price; salvageÞ
Work hours per year� efficiency factor

¼ $

hr
ð3Þ
2.4.4. Operating costs
Operating costs consist of repair and maintenance (R&M), as

well as fuel and labor cost. Expenditures are necessary to keep a
machine operable due to wear, part failure, accidents, and natural
deterioration. Machine repair costs are highly variable and depend
on handling and management of the respective equipment. R&M
costs in this study are calculated via Eq. (4):

R&M ¼ list price� repairs and maintenance percentage
lifetimeðhrÞ ¼ $

hr
ð4Þ

The R&M percentage is estimated based on ASABE, 2006. Fuel
consumption cost is calculated based on data obtained either via
machinery specifications or from actual estimates and/or measure-
ments obtained from INL’s PDU. Labor rates were obtained from
the Idaho Bureau of Labor Statistics, and labor hours were assumed
on shift schedules. The assumed labor rate for the horizontal bale
grinder, hammer mill, dryer, pellet mill, and chemical pretreat-
ment are US$15.88 h�1, US$19.88 h�1, US$15.51 h�1,
US$15.51 h�1, and US$19.88 h�1, respectively. We assume that
one person is able to manage two machines (see Supplementary
Material for details). Further, we account for 3 shifts per day,
40 h per week and worker, and 50 weeks per year.
3. Results and discussion

3.1. Technical comparison

Standard Depots are meant to address feedstock stability, bulk
density, and flowability issues. The process flow includes particle
size reduction, moisture mitigation and densification. The most
basic Standard Depot configuration is a conventional pelleting pro-
cess (CPP) involving two stage size reduction (grinding), drying,
and pelleting. Additional modifications within a Standard Depot
could be made to make the process more efficient, e.g., a high
moisture pelleting process (HMPP). A HMPP varies in process
sequence, dryer type and size from the CPP.

3.1.1. Standard Depot: conventional pelleting process (CPP)
Conventional biomass pellet production includes initial size

reduction to a less than 50 mm particle size, followed by drying
to 10–12% MC using a rotary dryer. The dried biomass is then
passed through a second stage grinding process to reduce the par-
ticle size to less than 5 mm (typically to 2 mm), steam conditioned,
and pelletized (Fig. 2). The steam conditioning prior to pelleting
increases moisture content, which helps to gelatinize the starch,
denature protein, and change the glass transition temperature of
lignin (Tumuluru et al., 2014). The two sequential size-reduction
steps are necessary to arrive at the final particle-size specification
(INL, 2013). The first stage of the size reduction process takes the
as-received biomass and converts it through grinding or chipping
into a product that can be further processed. The configuration of
the first-stage grinding/chipping process uses a 51–76 mm (2–
3 in.) screen for coarse size reduction. This size and type of screen
provides enough size reduction for subsequent drying and final
grinding. The role of the second-stage grinder is to reduce the



Fig. 2. Two technical configurations of the Standard Depot as analyzed. Legend: MC: moisture content.
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particle size further in order to meet particle size distribution
requirements for pelleting. A typical second-stage size reduction
process will use a 19–25 mm (0.75–1 in.) screen to produce a mean
particle size of 2.5–3.8 mm (0.1–0.15 in.). Material that flows
through a screen is smaller than the actual screen size.

Drying is the major energy consumption unit operation in this
process, accounting for about 70% of the total pelleting energy.
Pelleting takes the material and compresses it to pellets ranging
in density from 480 to 640 kg m�3 (30–40 lbs ft�3). The pellets
are hydrophobically stable and are high quality to sustain
transportation with minimum losses.

In the case of woody feedstock, first stage grinding would be
done during the harvesting and collection process or at the landing
site. Thus, the CPP depot configuration for woody biomass would
start with drying, followed by second stage grinding, etc.
1 AFEX material for animal feed operations is typically not pelleted (Bals and Dale,
2012).
3.1.2. Standard Depot: high-moisture pelleting process (HMPP)
In the HMPP depot configuration, high-moisture (30–35% MC)

biomass is preheated and pelletized instead of dried prior to pellet-
ing as in the CPP. The final pellets are then dried in a (vertical) grain
dryer to reduce the moisture and stabilize the pellets. This option
offers cost reductions as it eliminates the energy intensive, expen-
sive, horizontal (i.e., larger footprint) rotary drying process prior to
pelleting. The high-temperature (typically 160–180 �C) drying step
is replaced with a low-temperature (approximately 80 �C), short
duration (typically several minutes) preheating step. The combina-
tion of preheating with the additional frictional heat generated in
the pellet die and further cooling results in a reduction of feedstock
moisture content by about 5–10% to produce partially dried pellets.
These partially dried pellets still have a high MC and require fur-
ther drying to under 9% MC for safe storage and transportation
(Tumuluru et al., 2014). This reduction in moisture in the partially
dried pellets can be achieved using low-cost and energy-efficient
grain or belt dryers. Fig. 2 indicates the various unit operations
and energy consumption associated with each step. HMPP does
not include the addition of a binder.
3.1.3. Quality Depot: ammonia fiber expansion (AFEX)
Quality Depots may include processing steps (e.g., leaching,

chemical treatment, or washing) designed to enhance the quality
aspects of the biomass. We demonstrate a Quality Depot using
the AFEX process which is a promising pretreatment that involves
an ammonia-based process resulting in physical and chemical
alterations to lignocellulosic biomass that improves their suscepti-
bility to enzymatic attack (Bals et al., 2011) (Fig. 3). AFEX pretreat-
ment has increased glucan and xylan conversion and ethanol yields
for a variety of feedstocks, including corn stover and switchgrass
(Balan et al., 2009; Campbell et al., 2013; Teymouri et al., 2005).

Similar to the Standard Depot, AFEX material needs to be pel-
leted prior to transport/distribution to biorefineries.1 Campbell
et al. (2013) indicate that high-quality pellets (in terms of density
and durability) can be produced after the AFEX process. While out-
side the scope of this analysis, Hoover et al. (2014) and Bals et al.
(2014) suggest that AFEX pelleting could have additional advantages
beyond improved logistical handling of biomass.

The grinding, milling, drying, and pelleting steps in the AFEX
pretreatment are aligned with those of the CPP. We did not apply
a HMPP to the AFEX process due to a lack of data. At the same time,
these combinations may prove beneficial to the overall process



Fig. 3. Ammonia fiber expansion (AFEX) process flow diagram.
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performance and AFEX pellet quality, and should be investigated
further.

3.1.4. Quality Depot: dilute-acid pretreatment
A second example of the Quality Depot could include

dilute-acid pretreatment, which is a pretreatment step currently
applied in the biological conversion route of sugars to hydrocar-
bons (and the prior enzymatic deconstruction of biomass to
sugars) (Davis et al., 2013). However, investment costs for this
pretreatment step are substantial. In a biorefinery, dilute-acid pre-
treatment costs up to US$51,400,000 installed plus a waste water
treatment (WWT) facility to manage effluents from both steps for
an additional US$60,100,000 (installed) (Davis et al., 2013).
Despite the significant difference in size to a depot, the
requirement of a WWT facility will not prove cost efficient for a
single-depot. Unless effluents can be recycled within the process,
much like the AFEX pretreatment step, several depots are com-
bined, or directly connected to an existing WWT (e.g., at a biorefin-
ery), the inclusion of this pretreatment step in decentralized
depots appears unreasonable and therefore was not included for
further analysis. For an economic and environmental comparison
of different pretreatment options, we refer to Tao et al. (2014).

3.2. Economic comparison

The economic analyses of all the depot configurations reveals
medium (Standard Depot) to high (Quality Depot) initial invest-
ment costs and highly variable production costs with the HMPP
being the lowest (US$30.80 Mg�1), and CPP and AFEX representing
the middle and higher cost ranges (US$47.80 and US$62.50 Mg�1,
respectively) (Fig. 4). Each configuration is shown to be heavily
dependent on electricity prices, due to the energy consumption
levels for grinders and dryers, particularly in the CPP and AFEX
configurations.

Table 2 summarizes the economics of each depot configuration
for total investment costs. Fig. 4 details the specific cost blocks per
unit output. As these overviews show, cost savings of 35% can be
achieved by moving from the conventional (CPP) to the
high-moisture (HMPP) depot configurations in cost per unit
output. The cost reductions are achieved by several improvements.
First, the transition from a rotary dryer in CPP to a cross flow pellet
dryer in HMPP. Secondly, by increasing the effective machine
throughput, reducing the number of equipment operations
necessary to process material, consequently lowering capital costs.
Note that the capacity of the first stage grinder for CPP is
1.8 Mg h�1 and 4.5 Mg h�1 for the HMPP (see Supplementary
Material for details).

The chemical pretreatment in the AFEX configuration drives
total fixed investment costs to about US$6 million which is then
also reflected in the higher direct and indirect costs (Table 2).
Compared to the Standard Depot configurations, the AFEX pre-
treatment option requires more process steps, and thus more
equipment, which increases the total investment costs. The even-
tual costs per Mg output, however, are relatively competitive to
the CPP due to higher throughput rates and lower repair and
maintenance costs per Mg output.
3.3. Sensitivity analysis

A sensitivity analysis was performed for depot size, electricity
price, and energy consumption as these indicators potentially
influence depot ownership and operating costs. We assumed trian-
gular distributions for each variable for simplification. For this
exploratory analysis, it generates sufficient randomness to identify
sensitive parameters. A triangular distribution requires the median
(most likely), minimum and maximum expected values.

Of the parameters chosen for the sensitivity analysis, the
electricity price had the greatest influence on total and operation
costs across all configurations (Supplementary Material). Changing
the electricity price from US$0.04 kWh�1 to US$0.14 kWh�1, the
depot fixed and operation costs increase from US$40 Mg�1 to
US$88 Mg�1 for CPP, from US$27 Mg�1 to US$49 Mg�1 for HMPP,



Fig. 4. Total cost comparison between the depot configurations. Legend: CPP: conventional pelleting process; HMPP: high moisture pelleting process; AFEX: ammonia fiber
expansion.

Table 2
Total fixed capital costs and total capital investment (US$) for a depot sized at 200 Mg day�1 capacity.

Conventional pelleting process
(CPP)

High moisture pelleting process
(HMPP)

Ammonia fiber expansion
(AFEX)

Grinder [I] 324,000a [I] 324,000a,b [I] 324,000a

Chemical pretreatment [II] 2,564,800
Dryer [II] 1,579,200 [IV] 64,000c [III] 1,579,200
Hammer mill [III] 206,400 [II] 515,200d [IV] 206,400
Pellet mill [IV] 630,400 [III] 630,400 [V] 630,400
Conveyor equipment 268,800 268,800 268,800
Dust collection equipment 286,400 286,400 286,400
Surge bin 96,800 96,800 96,800
Miscellaneous equipmente 84,000 84,000 84,000
Total fixed capital costs (US$) 3,476,000 2,269,600 6,040,800
Total other direct cost (21% of total fixed capital

cost)
729,960 476,616 1,268,568

Total indirect cost (15% total fixed capital cost) 521,400 340,440 906,120
Total capital investment (US$) 4,727,360 3,086,656 8,215,488

[I–V] the roman letters indicate the process flow sequence.
a The AFEX process is based on the CPP machinery set (see Supplementary Material for details).
b Reduction in cost due to increased machine throughput reducing the number of equipment necessary to process material consequently lowering capital costs (Note that

the throughput rate of the first stage grind for CPP and HMPP are 1.8 Mg h�1 and 4.5 Mg h�1, respectively).
c Cost reduction achieved by the transition from a rotary dryer in CPP to a cross flow pellet dryer in HMPP.
d Cost reduction achieved by increasing the machine capacity caused by increasing the screen size of stage-one grinder in HMPP.
e Miscellaneous equipment includes: twine remover, moisture meter, electro magnet, bale ejecter.
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and from US$53 Mg�1 to US$110 Mg�1 for AFEX (Figs. S1–S3). The
second largest variations were observed in configurations with
higher energy consumption, to which drying and thus dryer type
is the most critical influencing parameter.

We also assessed the impact of variations of all sensitivity
parameters simultaneously on depot fixed and operations cost at
different depot configurations (Fig. 5). This was done by generating
random variations of different sensitivity parameters from the tri-
angular distribution and running the model 1000 times with ran-
domly selected different combinations of sensitivity parameters.

As the depot size increases, fixed and operation costs decrease
(Fig. 6). Total cost reduction however remain fairly small. As the
depot size increases from 5 to 18 Mg h�1, the fixed and operations
costs drop from US$49.67 Mg�1 to US$47.94 Mg�1 for CPP, from
US$32.10 Mg�1 to US$30.79 Mg�1 for HMPP, and from
US$66.08 Mg�1 to US$63.41 Mg�1 for AFEX. The slight increase in
the AFEX configuration between 10 and 11 Mg h�1 is due to an
increase in adding another dryer in whole increments.

4. Conclusions

Decentralized biomass processing facilities (depots) may be
necessary to achieve feedstock costs, quantity, and quality required
to grow the future U.S. bioeconomy. Depending on the depot con-
figuration, processing costs range from US$30.80 Mg�1 to
US$62.50 Mg�1, but are expected to be outweighed by overall sup-
ply system benefits. Multiple depot set-ups are possible. Feedstock
stability, bulk density, and improved flowability can be met via
Standard Depots, while Quality Depots encompass additional pro-
cessing steps such as leaching or chemical treatment. The eco-
nomic burden of each design depends greatly on the energy
consumption of the respective processing equipment.



Fig. 5. Impact of all sensitivity parameters on depot production costs per unit
output for CPP (a), HMPP (b), AFEX (c). Legend: CPP: conventional pelleting process;
HMPP: high moisture pelleting process; AFEX: ammonia fiber expansion.

Fig. 6. Impact of depot size on production costs for the different configurations. Legend:
ammonia fiber expansion.
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