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In their paper [6, p. 95] TARSKI and VAUGHT discuss the following 
question. Does every relational system R with an arbitrary number of 
relations have a proper arithmetically equivalent or arithmetical extension 
of the same cardinality. In case the number of relations of R does not 
exceed the cardinality of R a proper arithmetical extension of the same 
cardinality always exists. This was shown to be, essentialy, a consequence 
of the completeness theorem. But the situation in the general case was 
not known. 

It turns out that there are even countable relational systems which 
have no proper countable arithmetical or arithmetically equivalent 
extensions (Theorem 6). In fact we have an almost complete picture of 
the situation as follows. If the cardinal a satisfies aK• =a then every 
realtional system of cardinality a has a proper arithmetical extension of 
cardinality a (Theorem 5 and Corollary). If a is smaller than the first 
weakly inaccessible cardinal and aK• >a then there exists a relational 
system of cardinality a having no proper arithmetically equivalent 
extension (Theorem 8; when a>No the generalized continuum hypothesis 
is used in the argument, but for a=No this is not necessary). 

It is an immediate consequence of Theorem 6 that for the relational 
system I consisting of the integers together with all number theoretic predicates 
there does not exist any countable non-isomorphic arithmetically equivalent 
relational system; i.e. the first order theory of the system of all number 
theoretic predicates is categorical in cardibality No. This confirms a con­
jecture of A. RoBINSON (oral communication). 

In proving Theorem 5 we use a construction of extensions of models 
inspired by Skolem's models (for a recent treatment see [4]). Namely, 
the elements of the extended system are equivalence classes of functions 
of the original system in the same way that the elements of Skolem's 
model are equivalence classes of the arithmetical functions. Trying to 
carry through an argument similar to that on [ 4, p. 7] one is immediately 
led to the introduction of the equivalence relation .......,F (Section 2) between 
functions of the system. This construction can also be obtained as a special 
case of the ultraproducts introduced by Los [3], especially as formulated 
by FRAYNE, SCOTT and TARSKI [1]. 
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Complete relational systems as defined in the present paper were very 
useful in simplifying proofs. They possess some interesting properties 
(Lemmas land 2, Theorem 7) and thus perhaps deserve a closer study on 
their own merit. 

We would like to thank ABRAHAM RoBINSON for several interesting 
and helpful conversations on the topics of this paper. 

l. Complete systems 

Definition l: A system ffi=(A, Ro, o •• , R.,, ... ).,<e, where each R., 
is a relation or a function of zero or more variables on the set A, is called 
a complete system if among the R., appear all relations or all functions on A. 
A complete system lR is called a complete algebra if each R., is a function. 

As usual, the cardinality a of A will be called the cardinality of ffi 
and e will be called the order of m. 

With ffi we associate a set E!R of sentences as follows. We chose a first 
order language with equality L having, besides the usual logical con­
nectives, quantifiers, and individual variable, a list P 0 , ••• , P fX' 0 0 0, tX < f!, 
such that P tx is a relation or function constant of the same order as Rtxo 
The notions of satisfaction of formulas of L by elements of A and of a 
sentence of L being true in ffi are then defined in a well known manner. 
It should be kept in mind that in these definitions the symbols P tx of L 
are always interpreted as the corresponding Rtx. The set of all sentences 
of L which are true in ffi will be denoted by E!Jt. 

An extension ffi'=(A', R~, o •• , R~, .o.)tx<e of ffi for which all sentences 
of E!R are true is called an arithmetically equivalent extension. 

The following theorem is readily verified. For the concept of an arith­
metical extension see [ 6]. 

Theorem l: Every arithmetically equivalent extension of a complete 
system m is an arithmetical extension of m. 

For a complete algebra ffi an extension ffi' will be an arithmetically 
equivalent extension as soon as ffi' is a model of certain subsets much 
smaller than E!R; this is the contents of the following two statements. 

Theorem 2: Let ffi' be an extension of the complete algebra ffi. If ffi' 
is a model of all those sentences in E!R which are in prenex form and contain 
only universal quantifiers then ffi' is a model of E!R and hence an arithmetically 
equivalent extension of m. 

Proof: We have to show that if -c E E!R then -c is satisfied in ffi'. 
We may clearly assume that -c is in prenex form 

where M is a quantifier free formula containing only the variables 
XI, •.. , Xr, Yb ... , yq. Now the satisfaction of T in m implies, since m is 
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complete, the existence of q-ary function constants P "'•' ... , P "'• such that 

-r:' = (y1) ... (yq)M(P ..,(y~, ... , '!Jq}, P"',(y1, ... , yq}, ... , y1, yz, ... ) 

is satisfied in m. 
By our assumption -r: is also satisfied in fft'. But -r:' -+ -r: is certainly 

satisfied in all systems similar to m; the sentence 7: is therefore satisfied 
in fft. This completes the proof. 

The sentences mentioned in Theorem 2 have the following form: a 
number of universal quantifiers followed by an expression built by 
combining a number of equations and inequations between terms (a term 
is an expression built from individual variables and function constants 
by substitutions) by propositional connectives. We may restrict our­
selves even further and essentially consider only equations between terms. 

Theorem 3: Let P"', Pp, and Py be function constants such that 

(1) 111 = (x)(y)[x*y +--+ P,.(x, y) =Pp(x, y)], 

(2) az = (x)(y)(u)(v)[x= y A u=v +--+ Py(x, u) =Py(y, v)], 

are true in m (since m is a complete algebra such functions always exist). 
If ffi' is an extension of 9l in which a~, az, and all sentences of Em which 

are of the form (xl) ... (xn) [t1=tz] where t1 and tz are terms, are satisfied, then 
ff(' is an arithmetically equivalent extension of m. 

Proof: Let -r: be a universal sentence 

where M(x~, ... , Xn) does not contain quatifiers. We may assume that 
M(x1, ... , Xn) is in disjunctive normal form and thus is a disjunction of 
conjunctions of equations and inequations between terms. Now replace 
each inequation t*s in M by P,.(t, s)=Pp(t, s). From the new sentence 
eliminate all conjunctions by successively replacing t =sA u = v by 
Py(t, u) =Py(s, v). In this way we get a disjunction of one or more equations 
v1 = u1 v ... v Vm = Um. This disjunction is equivalent to 

-., [V1*U1 A ••• A Vm*Um]. 

Transform this, as before, into a single equation t1 = tz. It is easy to see that 

(3) 

Assume now that -r: E Em. Since a1 E Em and az E Em we have, by (3), 
(xl) ... (xn) [t1=tz] E Em. According to our assumptions (xl) ... (xn) [tt=tz] 
is therefore true also in ff('. But a1 and az are true in fft'. Hence, again 
by (3), -r: is true in fft'. 

~ince ff(' is a model of every universal sentence 7: true in m it is an 
arithmetically equivalent extension of 9l by Theorem 2. 

29 Series A 
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2. A construction of extensions 

A collection F of subsets of a set A will be called an ultrafilter if 

(i) cp ¢ F, 
(ii) B E F and 0 E F implies B fl 0 E F, 

(iii) B E F and B k: 0 k: A implies 0 E F, 
(iv) for all B k: A either BE F or A-BE F. 

With an ultrafilter F of A one can associate a relation ""F between 
functions from A into A (i.e. elements of AA) as follows: 

f ""FY if and only if {xlf(x)=g(x)} EF. 

Conditions (ii) and (iii) imply that ""F is an equivalence relation. If 
f ""F g we shall say that f and g are equivalent mod F. Condition (i) 
guarantees that if f and g are constant functions, say f(x) = b, g(x) = c, 
then f ""F g only if b =c. The set A A of all functions is thus decomposed 
into equivalence classes and the classes containing a constant function 
stand in one to one correspondence with the elements of A. 

Definition 2: Let st=(A, Ro, ... , R .. , ... ) .. <e be an algebra and let 
F be an ultrafilter of A. The algebra stp=(A', R~, ... , R~, ... ) .. <e is defined 
as follows. The set A' is the collection of all equivalence classes of AA 
mod F. If R .. is a function of n variables then R~ is the function from 
(A')n into A' defined by 

(4) R~(]1, ... ,]n)=R .. (/1, ... , In), 

where /IE AA, ... , fn E AA, and g denotes the equivalence class mod F 
of the function g. 

Remark: Conditions (ii) and (iii) ensure that (4) does indeed define 
a function. 

By identifying the equivalence classes mod F of the constant functions 
with the corresponding elements of A, we can consider A as a subset of 
A'. The functions R~ then become extensions of the corresponding 
functions R .. , the whole system stF may thus be considered as an extension 
of st. 

Theorem 4: If st is a complete algebra and F is an ultrafilter of A 
then stF is an arithmetically equivalent extension of st. 

Proof: By Theorem 3 we just have to show that all equations between 
terms which are true in st are true in stF; and furthermore that two 
sentences of the forms (l) and (2) which are true in st are also true in stp. 

The first part is obvious. 
Let now P .. , Pp, and P, be function constants for which 0'1 and 0'2 are 

true in st. Let f(t) and g(t) be functions from A to A. If ]=1-g (/, g, etc. 
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are the equivalence classes mod F off, g, etc.) then the set {t[ f(t) = g(t)} =S 
is not in F. But then, by (iv), A-S E F. By (1) 

A-S={t I R,.(f(t), g(t))=Rp(f(t), g(t))}. 

Hence R~(J, g)=RfAJ, g). Similarly if J=g then R~(J, g)=FRp(/,g). The 
sentence a1 is thus true in ffiF· One should notice that this is the only point 
where we use condition (iv). 

It is easily verified that a2 is also true in ffiF· This completes the proof. 

The previous result can also be deduced as a special case of Theorem 
(2.6) of Los [3, p. 105] or Theorem II announced by FRAYNE and ScoTT [2]. 

When is the extension ffiF a proper extension? IfF contains a set con­
sisting of a single element, say xo, then for each f r:=;AA we have f '""F f(xo). 
Thus each function is equivalent to some constant function and we do 
not have a proper extension. The above ultrafilter then contains {xo} 
and we shall call such an ultrafilter a trivial ultrafilter. If, on the other 
hand, F is non-trivial then there are functions not equivalent to any 
constant function (e.g. the identity function f(x)=x). The domain A' 
contains elements other than those in A and thus we have a proper 
extension. 

If S is any infinite subset of A there exsists a non-trivial ultrafilter F 
such that S E F. This is a simple consequence of Zorn's Lemma. 
_Let now ffi= (A, R0 , ... , R,., ... ),.<e be a complete algebra of cardinality 

A= a and let aK• =a. Take a countable subset S CA. Let F be a non­
trivial ultrafilter containing S. The algebra ffiF is an arithmetically equi­
valent proper extension of ffi. 

Iff, g E AA then f '""F g as soon as f and g coincide on the countable 
setS E ~- Thus ~here are at most att• different equivalence classes mod F. 
Hence A'=a=A. We thus have proved 

Theorem 5: If att•=a then every complete algebra of cardibality a 
ha8 a proper arithmetically equivalent exten8ion of the Bame cardinality. 

Corollary: If aK• =a then every relational ByBtem of cardinality a ha8 
a proper arithmetically equivalent exten8ion of the Bame cardinality. 

3. Non exiBtence of certain exten8ion8 

The information which we can gather about _the case att• >a rests 
upon a result due to TARSKI [5]. If att• >a and A_:= a then there_ exists 
a collection 0 of countable subsets of A such that ()>a (namely, a= aKo) 
and the intersection of every two elements of 0 is finite. 

Theorem 6: A complete ByBtem over a countable domain ha8 no proper 
countable arithmetically equivalent extenBion. 

Proof: Let ffi=(A, Ro, R1, ... ), A=No, be a complete system. 
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Let_{R,},£0 be a collection of one to one functions from A into A such 
that (J = N~' and the ranges of every two functions have a finite inter­
section. Thus for every pair IX _E C, fJ E C, there exsists an integer n (n = 0 
is not excluded) such that the sentence -r:"'p expressing the fact that the 
ranges of R"' and Rp have exactly n elements in common is true in ffi; 
this sentence is of course elementary. 

If ffi' =(A', R~, R;, ... ) is a proper arithmetically equivalent extension 
of ffi then R,(A) C R,(A') (proper inclusion) for all y E C. For R, is a 
one to one function and since this can be expressed elementarily so is its 
extension R;; hence if a' E A' -A then R;(a') ¢: R,(A). But for any two 
IX and fJ the sentence -r:"'p remains true in ffi', thus R~(A ') and R{i(A ') have 
the same number of common elements as R"'(A) and Rp(A). Hence 
R"'(A) r. Rp(A)=R~(A') r. R{i(A'). This means that the non e~pty sets 
R;(A ')- R,(A) are pairwise disjoint. Thus A' contains at least (J different 
elements, in particular A' cannot be countable. This completes the proof. 

To deal with complete systems of cardinality greater than No certain 
preliminaries are necessary. We first make the observation that for a 
complete system ffi=(A, Ro, R~, ... ) and an arithmetically equivalent 
extension ffi' =(A', R~, R~, ... ), if there exists a predicate (set) R"' of 
cardinality b which is enlarged in passing from ffi to ffi' (i.e. there exists 
an element x E A' such that R~(x) but either x ¢:A or not R"'(x)) then 
every predicate Rp of cardinality b is enlarged in passing from ffi to ffi'. 

We shall say that ffi' is non-standard with respect to cardinality b if 
the predicates of ffi of cardinality b are enlarged in passing to ffi', otherwise 
we shall call ffi' standard with respect to b. 

We have the following two results concerning standardness with 
respect to a cardinal of an arithmetically equivalent extension ffi' of a 
complete system ffi of cardinality a. 

Le_:nma 1: If b=EnT<l.- and if ffi' is standard with respect to all a.. 
and T then ffi' is standard with respect to b. 

Proof: Let R(x, y) be a binary predicate of ffi with the following 
properties. The setS= {xI ([i[y)R(x, y)} has cardinality T. If xi'x' then 
........., [R"(x, y) A R(x', y)]. There exists a one to one correspondence xT~ -r: 
between S and T such that {y I R(xT, y)} has cardinality a.,.. From our 
assumptions it follows that R(x, y) and R'(x, y) are the same predicates. 
Therefore the predicate Q(y) = ([i[x)R(x, y) does not change when passing 
to ffi'. But the cardinality of {y I Q(y)} is b. 

Lemma 2: If 2li<a and ffi' is standard with respect to b then ffi' is 
standard with respect to 2li. 

Proof: Let P(x) be a predicate of ffi of cardinality b. Let Q(x, y) be 
a predicate of ffi with the following properties. Q(x, y) ~ P(x). Extension­
ality: (x)[Q(x, y) +--'~ Q(x, y')] ~ y = y'. For every subset of the predicate 
P(x) there exists a y bearing "the relation Q(x, y) to exactly those x in 
the subset. 
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It is immediately seen that since P(x) does not change when passing 
to ffi' and since the first two properties of Q(x, y) are elementarily 
expressible and hence preserved in ffi', Q(x, y) does not change when 
passing to ffi' (this depends in an essential way also on the third property 
of Q even though it is not elementarily expressible). But the cardinality 
of {y I ([tlx)Q(x, y)} is 2b. 

Theorem 7: Assuming 2K"'=N.,+I· If the cardinality a of a complete 
system ffi is less or equal to the first weakly inaccessible number and if ffi' 
is a proper arithmetically equivalent extension of ffi, then ffi' is non-standard 
with respect to all infinite cardinals. 

Proof: Assume by way of contradiction that ffi' is standard with 
respect to some infinite cardinal. If ffi' is standard with respect to a 
cardinal then it is clearly standard with respect to all smaller cardinals. 
Thus ffi' is standard with respect to No. On the other hand ffi' is not 
standard with respect to the cardinality of m. 

Let c be the smallest cardinal with respect to which ffi' is not standard; 
thus c>No. The cardinal c must have an immediate predecessor. For if 
c = N .. where IX is a limit number then, since c is smaller than the first 
inaccessible n_l!mber and c #No, we have c =.EuT a, for some T and ~ardinals 
a, such that T < c and a.,.< c. Thus ffi' is standard with respect to T and all 
a.,.. This implies, by Lemma 1, that ffi' is standard with respect to c which 
it cannot be. 

Hence C=N., where IX is not a limit number. Now ffi' is standard with 
respect to N,._ 1• Assuming the generalized continium hypothesis we have 
2K .. -I = c so that by Lemma 2 ffi' is standard with respect to c, a contra­
diction. 

Theorem 8: Assuming 2K,.=N .. +1 • If the cardinality a of a complete 
system is less than the first weakly inaccessible number and if aK• >a, then 
ffi has no proper arithmetically equivalent extension of the same cardinality. 

Proof: Assume ffi' to be an arithmetically equivalent extension of ffi. 
By Theorem 7 ffi' is non-standard with respect to all infinite cardinals, 
in particular with respect to No. 

There exists now by Tarski's theorem a collection of countable predicates 
{R.,.(x)}nT of ffi such that T = aKo, and the intersection of each pair of 
these predicates is finite. Each of the sets defined by the R.,.(x) is enlarged 
when passing to ffi'. The argument of Theorem 6 therefore applies to 
show that the cardinality of ffi' is at least aKo >a. 

It would be interesting to determine whether it follows from a suitable 
axiom of existence of inaccessible cardinals that even for some cardinals 
b satisfying l)Ko > b, every relational system of cardinality b has a proper 
arithmetical extension of the same cardinality b. 

Hebrew University, Jerusalem 
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