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Abstract—In this paper, a new notion of generalized L-K KM mappings is introduced. Some
generalized L-K KM type theorems for generalized L-K KM mappings with finitely closed (or com-
pactly closed) values and with finitely open (or compactly open) values are established in L-convex
spaces. As applications, some Ky Fan type matching theorems, fixed-point theorems and minimax
inequality are obtained in L-convex spaces. These results generalize a number of known results in
recent literature. © 2002 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION AND PRELIMINARIES

Let X and Y be two nonempty sets. We denote by 2" and F(X) the family of all nonempty
subsets of Y and the family of all nonempty finite subsets of X, respectively. For any A € F(X),
we denote by |A] the cardinality of A. Let A, be the standard n-dimensional simplex with
vertices eg, €1,...,6,. If J is a nonempty subset of {0,1,...,n}, we denote by A, the convex
hull of the vertices {e; : j € J}. A topological space X is said to be contractible if the identity
mapping Iy of X is homotopic to a constant function.

The notion of a L-convex space was introduced by Ben-El-Mechaiekh et al. {1]. An L-convexity
structure on a topological space X is given by a nonempty set-valued mapping [ : F(X) — 2%
satisfying the following condition.

(1) For each A € F(X) with |A| = n+ 1, there exists a continuous mapping ¢4 : A, — I'(A)
such that B € F(A) with |B| = J + 1, implies ¢4(A;) C I'(B), where A denotes the
face of A,, corresponding B € F(A). The pair (X,T') is then called an L-convex space. A
subset D of X is said to be L-convex if for each A € F(D), I'(A) C D. It is clear that
each L-convex subset of a L-convex space is also a L-convex space. D is said to be finitely
closed (or finitely open) in X if for each A € F(X), DNT(A) is closed (or open) in T'(A).
D is said to be compactly closed (or compactly open) in X if for each compact subset I¥
of X, DN K is closed (or open) in K.
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If an L-convex space (X, T'} satisfies the additional condition
(2) for each A,B € F(X), A C B implies I'(4) c I'(B),
then (X,T) is called by Park and Kim [2,3] a generalized convex (or G-convex) space.

If an L-convex space (X, T") satisfies the additional condition

(3) for each A, B € F(X), there exists A; C A such that A; C B implies I'(4;) C T'(B).
Then (X,T) is called by Verma [4,5] a generalized H-space (or G-H-space).

The following notion of H-space, which were introduced by Bardaro and Ceppitelli [6], were
motivated by the earlier works of Horvath [7]. A pair (X,I) is saild to be a H-space if X is a
topological space and T : F(X) — 2% has contractible values such that for any 4, 4’ € F(X),
AC A implies [y CTy.

By Lemma 1 of [8], which is contained in the proof of Theorem 1 of 7], each H-space must
be a G-convex space. By the above definitions, it is clear that L-convex space includes G-convex
space, G-H-spacev and H-space as very special cases.

In this paper, we first introduce a new notion of generalized L-K KM (in short, GLKKM)
mappings. Then, some new GLK KM type theorems for set-valued mappings with finitely closed
(or compactly closed) values and with finitely open (or compactly open) values are established
in L-convex spaces. As applications of our results, some new Ky Fan type matching theorems,
fixed-point theorems, and minimax inequality are obtained in L-convex spaces. These theorems
unify and generalize many known results in literature.

DEFINITION 1.1. Let X be nonempty set and (Y,T') be a L-convex space. A set-valued map-
ping G : X — 2Y is said to be a GLK K M mapping if for each nonempty finite set {zo,...,z,} €
F(X) there exists {yo,...,yn} € F(Y) (not necessary all different) such that for any nonempty
subset {Yig,s -, ¥ir } C {%0s-.- ¥yn}, 0 <k < n, we have

k
P({ys, 13 =0,...,k}) < | Glas)).
=0

When (Y, T'} is a H-space or G-convex space or G-H-space, the above definition were given by
Chang and Ma (9], Ding [10], Tan [11], and Verma [4,5], respectively.

2. GLKKM TYPE THEOREMS

THEOREM 2.1. Let X be a nonempty set, (Y,T') be a L-convex space and G : X — 2Y be a
set-valued mapping with finitely closed (or, compactly closed) values.
(1) If G is a GLKK M mapping, then the family {G(z) : x € X} has the finite intersection
property.
(2) If the family {G(z) : * € X} has the finite intersection property and I'({y}) = {y} for
eachy €Y, then G is a GLK KM mapping.

PROOF.
(1) Suppose that the family {G(z) : * € X} has not the finite intersection property. Then
there exists a finite set A = {zp,...,2,} € F(X) such that N]_, G(z;) = 0. It follows
that

n

Y =Y\ () Gi) = Jr\Gla). (2.1)

=0 =0
Since G is a GLK K M mapping, there exists B = {y0,...,yn} € F(Y) such that for each
nonempty subset {y;, : 7 =0,...,k} C {yo,...,yn}, we have

k
T({ys, 15 =0,...,k}) < | Glas,).

=0



L-Convex Spaces 1251

Since (Y, T') is a L-convex space, there exists a continuous mapping ¢p : A, > [(B)C YV
such that ¢p(Ax) C T'({ys; : § = 0,...,k}) for any nonempty subset {y;, : j =0,...,k} C
{yo,-.-,Yn}. Since ¢p(An) is a compact subset in I'(B), if G has finitely closed values,
then for each z € X, G(z) N T'(B) is closed in ['(B), and hence, ¢p(A,) N G(z) =
op(Ay) N G(z) NT(B) is closed in ¢p(A,) for each x € X; if G has compactly closed
values, then it is clear that ¢p(A,) NG(z) is closed in ¢5(A,). It follows from (2.1) that:

$8(0n) = | [#8(80) \ (68(20) N G(z:))],
1=0

and hence, in the two cases, {dp(An) \ (@(D,) NG(z;))}7, is a open cover of pg(A,,).
Let {1 }I*, be the continuous partition of unity subordinated to the open convering, then
we have that for each ¢ € {0,...,n} and y € ¢5(A,),

Vi(y) # 06y € d5(A,) \ (88(Ar) NG(z4)) . (2.2)
Define a mapping ¢ : ¢5(A,) = A, by V() = Yo Yily)e, Yy € ¢p(A,). Obviously,

P oop : A, — A, is continuous. By the Brouwer fixed-point theorem, there exists a
point zg € A, such that zo = ¥ o ¢p(zq). Let ug = ¢5(20), then we have

up = ¢p(z0) = ¢ oo dplzo) = ¢ o YP{ug) (2.3)
and
Yluo) = Y Wj(un)e; € Ay(up), (2.4)
JE€J(uo)

where J(ug) = {j € {0,1,...,n} : ¢;(uo) # 0}. It follows from (2.2) that ug € ¢5(A,)\
(¢B(An) N G(x;)) for all j € J(up). Then we have ug ¢ G(z;) for all j € J(ug). On the
other hand, it follows from (2.3} and (2.4) that:

up = ¢p oP(uo) C dp(As(u)) C I'({y; 15 € J(uo)}) C U G(z;).

1€ (un)

Thus, there exists jo € J(up) such that uy € G(zj,) which contradicts the fact that
uy ¢ G(ry) for all j € J(up). Therefore, the family {G(z) : * € X} has the finite
intersection property.

(2) Suppose that the family {G(z) : 2 € X} has the finite intersection property and I'({y}) =
{y} for each y € Y. Then for any {zo,..., 2.} € F(X), Ni_,G(x;) # 0. Take any
point y* € (_, G(xi), and let y; = y* for i = 0,...n. Then for any {vi,:5=0,...,k} C
{¥o,-- - yn} with 0 < k < n, we have T'({y;, : j = 0,...,k}) = T({y*}) = {v*} C
U;.C:O G(z4,;). Therefore, G is a GLK KM mapping.

REMARK 2.1. Theorem 2.1 generalizes Theorem 3.1 of [10] and Theorem 2.3 of [11] in the
following ways:
(1) from G-convex space to L-convex space,
(2) the class of GLK KM mappings includes the class of G-K KM mappings defined in [11]
as a proper subclass,
(3) the compactness assumption of G-co(A) for each A € F(Y) is dropped.

Obviously, Theorem 2.1 also includes Lemma 2.1 of Verma [4], Theorem 1 of [9] and Lemma 2
of [12] as very special case. If (V,d) is a hyperconvex metric space (see, [13, p. 159]), de-
fine ' : F(Y) — 2Y by I'(A) = co(A4) for each A € F(Y) where co(Ad) = n{B C Y : B
is a closed ball containing A}, then (Y,T') is a H-space with ['({y}) = {y} for each y € Y
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(see [13, p. 161]), and hence, (Y,T") must be a L-convex space. Therefore, Theorem 2.1 also
generalizes Theorem 3 of [14] and Theorem 2.1 of [15] in the following aspects:
(a) from hyperconvex space to L-convex space;
(b) from GMK KM mapping to GLK KM mapping;
(¢) from the class of set-valued mappings with finitely metrically closed values to the class of
set-valued mappings with finitely closed (or compactly closed) values.

THEOREM 2.2. Let X be a nonempty set, (Y,T') be a L-convex space and G : X — 2 be a set-
valued mapping with compactly closed values and [\,¢,; G(z) is compact for some M € F(X).
Then
(1) ifG isa GLK KM mapping, then [\ ¢ x G(z) # 0. (2) if(,ex G(z) # 0 and I'({y}) = {y}
for each y € Y, then G is a GLK KM mapping.

PRrROOF. It is easy to see that conclusions (1) and (2) follow from Theorem 2.1.
REMARK 2.2. Theorem 2.2 generalizes Theorem 2.3 of {11] and Theorem 2.1 of [4] to L-convex

spaces under weaker assumptions. Theorem 2.2 also includes Corollary 3.1 of {10}, Lemma 3
of [12], and Theorem 2.11.8 of [13] as very special case.

THEOREM 2.3. Let X be a nonempty set, (Y,T') be a L-convex space and G : X — 2V be a
set-valued mapping with nonempty finitely open (or, compactly open) values.
(1) If G is a GLK KM mapping, then the family {G(z) : © € X} has the finite intersection
property,
(2) if the family {G(z) : © € X} has the finite intersection property and I'({y}) = {y} for
eachy €Y, then G isa GLKKM mapping.

Proor.

(1) If the family {G(z) : * € X} has not the finite intersection property, then there ex-
ists {xo,x1,...,2n} € F(X) such that _,G(z;) = 0. Since G is a GLKKM map-
ping, there exists A = {yo,¥1,...yn} € F(Y) such that for each nonempty subset
{YiosYiys---»¥in } € A with 0 <k < n, we have

S
F({yio’ Yivy oy Yiy, }) C U G(Tl, ) (2'5)

=0

Since (Y, T') be a L-convex space, there exists a continuous mapping ¢4 : A, — I'(A4) such
that for each {y;, : j =0,...,k} C {y1,.. yn} wWith 0 <k <m, da(Ar) CT({ys, 1 j =
0,...,k}). From N, G(z;) = 0 it follows that ([ (G(z;) N ¢a(A,)) = 0, and hence,

we have

$4(An) = 6a(An)\ () (9a(An) NG(x)) = U [@a(An) \ (94(An) N G(x4))] .

=0

Note ¢ 4(A,) is a compact set in I'(A4), if G has finitely open values, then for each z € X,
G(x)NT(A) is open in I'(A), and hence, p4(A)NG(z) = d4(An)NG(z)NT(A) is open in
@ 4(An); if G has compactly open values, it is clear that ¢ 4(A,)NG(x) is open in ¢4 (Ay)
for each z € X. Hence, in the two cases, ¢ 4(A,)NG(z) is open in ¢4 (A,) for each z € X.
For each z € A,,, let

Iz)={ie{0,...,n}: ¢a(z) ¢ G(z;)} and S(z)=co({e;:i¢€ I(2)}).

If for some z € A,, I(z) = 0 then we have ¢4(2) € G(z;) for all i € {0,...,n} which
contradicts the assumption (;_, G(z;) = #. Therefore, we can assume that I(z) # @ for
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each z € A,, and hence, S(z) is a nonempty compact convex subset of A, for each z € A,,.
Since ;g7 [04(An) \ (pa(A) NG(x;))] is closed in ¢4(A,) and ¢4 is continuous, we
have

U= \3" [ U [0a(an)\ (04(80) N Gl(zi))]
i¢I(z)
is a open neighborhood of z in A,. For each 2’ € U, we have ¢4(z') € G(x;) for all
i ¢ I(z), and hence, I(z') C I(z). It follows that S(z’) C S(z) for all 2’ € U. This shows
that S : A,, — 227 is a upper semicontinuous set-valued mapping with nonempty compact
convex values. By Kakutani fixed point, there exists a 25 € A, such that zp € S(zp). It
follows that:
dalz0) € ¢a(S(x0)) CT({yi i€ I(z)) ¢ ) Glan).
i€1(z0)
Hence, there exists a ig € I{zg) such that ¢4(20) € G(z;,). By the definition of I(z), we
have
¢A(ZO) ¢ G(l‘z), Vie I(ZO),

which is a contradiction. Therefore, the family {G(z) : x € X} has the finite intersection
property.

(2) The proof is same as that in Theorem 2.1, we omit.

REMARK 2.3. Theorem 2.3 generalizes Theorem 2.2 of [15] and Theorem 2.11.18 of [13] in the
following aspects:

(a) from hyperconvex space to L-convex space;

(b) from the class of GM K KM mappings to the class of GLK KM mappings;

{¢) from G being finitely metrically open-valued to G being finitely open-valued or compactly
open-valued,;

(d) for each A € F(M), the compactness assumption of co(A) is dropped.

3. APPLICATIONS

In this section, by applying our GLK KM principle in the above section, some new matching
theorems, fixed-point theorems, and minimax inequality are obtained.

THEOREM 3.1. Let X be a nonempty set, (Y,I'}) be a L-convex space, {A;}"_, be a family of
finitely closed (or compactly closed) subsets of Y such that\J_, A; =Y and o, z1,..., 2, ben+1
points of X. Then for any n + 1 points yg,...,y, in Y there exists {yig,---,¥i. } < {¥o0.-- - Yn}
with 0 < k < n such that

k
T({yi, 15 =0,....kpn [ [ 4, | #0.

j=0
Proor. Let Xy = {x¢,21,....2p}. Since (Y,T") is a L-convex space, for any given A =
{¥0,--.,¥n} C Y, define a set-valued mapping G : Xo — 2¥ by G(z,) = Y \ A, for each
i = 0,1,...,n. Since each A; is finitely closed (or, compactly closed), then G is a set-valued
mapping with finitely open (or, compactly open) values. Suppose that the conclusion is false,
then for any B = {y;; : = 0,1,...,k} C {yo,.--,Yn}, we have T(B) N (ﬂl;zn A;) =0 and so

k k

rB)c | Jw\4,) =G,

j=0 i=0
ie, G: Xy — 2Y is a GLKKM mapping. By Theorem 2.3, Nieg G(zi) # 0. It follows that Y #
UL Ai which contradicts the assumption Y = |J;_, A;. Hence, the conclusion holds.

REMARK 3.1. Theorem 3.1 generalizes Theorem 2.7 of [15] and Theorem 2.11.19 of [13] in several
aspects.
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THEOREM 3.2. Let X be a nonempty set, (Y,T') be a L-convex space and {A;}, be a family
of finitely open (or compactly open) subsets of Y such that Y = UZ‘:O A; and x9,27,...,2T,
be n + 1 points of X. Then for any n + 1 points yo,...,Yn in Y, there exists {y;, : j =
0,1,...,k} T {yo,...,yn} with 0 < k < n such that

/ \

Pl 501t (14 ) 0
§=0

/

PROOF. Let Xo = {%o,Z1,...,%n}. Define a set-valued mapping G : Xo — 2¥ by G(x;)
Fr\r o i 3

r each 7 = 0,1 7. Since each A. ig finitelv onen (or combactly onen) in V eac

= U, 1y ... 70 21I0C €ACIH A4 15 LU Ciy Opail (O Clllpaluly Opci) il ¢, €3l

finitely closed (or compactly closed) in Y. Suppose that the conclusion is false, then for any {y, :
)

J=0,1,..,k} C{yo,...,yn} with 0 < k <n, we have T({y;,:j=0,1,..., kl\ﬂ(ﬂ]: i) =0,
and so
k k
Pfa .41 Iy ~ vy oa y L b
D, 15 =0,1,...,kp) TUX\Ag) = ) Glay),
j=0 3=0

orem 2.1, {),_o G(z;} # 0. It follows

AL, T .

that ¥ # | J;_ o A: which contradicts the assumptlo nY = J_, A;. Hence, the conclusion holds.
REMARK 3.2. Theorem 3.2 generalizes Theorem 2.8 of [15] and Theorem 2.11.20 of [13] in the

i J L 1 -

ie. G Yn—>9yi a GLKKM mapping ByTh

L.E., U E4 W 4 W ITichjyir

following aspects:

{(a) from hyperconvex space to L-convex space;
(b) from the family of open subsets to the family of finitely open (or, compactly open) subsets.

THEOREM 3.3. Let X be Yand A-X _,9Y
kS j o) E Sl [V o / [T Fewe II-IL "‘4

o ),
e nLvi S.G. Pay < 1408 S

o]
O
]
®
£3
=
3
&
<
t\i
¢ \
¢
3
P
D
»
E
o
)
3
Q
Ly
&
~
i
o
>
R
3
O]
4

be a set-valued mapping with ﬁmte]y closed (or compactly closed) values. Suppose that there

exist n + 1 points o, 1, ...,%, in X such that Y = |J'_, G(z;) and for eachy € X, A" (y) =

{z € X 1y € A(z)} is a L-convex subset of Y. Then A has a fixed point in X.

ProOF. By Theorem 3.2 with x; = y;, ¢ = 0,...n, there exists a subset {z;, : 7 = 0,1,....k}

of {zg,...,zn} such that T({zy, : j =0,1,...,k}) N (ﬂ?__,o A(z;)) # 0. Take any z* € T'({x,, :

i=0,1,...,2: )N (ﬂf:g A(z;,)), then z;, € A™!(z*) for all j = 0,1,...k. Since A~ (z*) is

L-convex, we have «* € T({zy, : j =0,1,...,k}) C A7} (z*), i.e, z* € X is a fixed point of A.

REMARK 3.3. Theorem 3.3 generalizes Theorem 3.1 of [15] and Theorem 2.11.21 of 13] in fol-

lowing ways:

(a) from hyperconvex space to L-convex space;

(b) from the class of set-valued mappings with closed values to the class of set-valued mappings
with finitely closed (or compactly closed) values;

{c) the compactness assumption of X is dropped.

THEOREM 3.4. Let X be a nonempty L-convex subset of a L-convex space (Y, [} and A : X — 2¥
be a set-valued mapping with finitely open (or compactly open) values. Suppose that there exist
n + 1 points zg, 21, ...,%, of X such that Y = |JI_, A(z;) and for each y € Y, the set A~} (y) is
L-convex. Then A has a fixed point in X.

Proor. By using Theorem 3.1 and the similar argument as in the proof of Theorem 3.3, it is
easy to prove that the conclusion holds.

REMARK 3.4. Theorem 3.4 generalizes Theorem 3.2 of [15] and Theorem 1.11.22 of [13] in several

a L-convex space. A function ¢ :

@

DEFINITION 3.1. Let X be a nonempty set and (Y,I') b
+

Vx X o BUf4oo) issaid to be sencralized ~-L-diagonally quasiconcave inx € X for some~ € R

Sy T 7 LL\JI WJ 10 oaiUu AN VL vy 5 1101 Ciinoul ’ ul(alrsull((lll kiu(bolbuxg\/a:vb dId L L LS LU OUAILIL ’ AL
if for each A = {z9,x1,...,2n} € F(X), there exists B = {yo,¥1,...,Yn} € F(Y) such that
for any {yi, : 4 =0, kY < {yo,y1,. . yn} and for any y* € T({y;, : 7 = 0,1,...,k}),

1
ming<; <k ¢y* 7-1"1:,) <7
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LEMMA 3.1. Let X be a nonempty set, (Y,I') be a L-convex space, v € R be a given real number
and ¢ : Y x X — RU{£oo} be a function. Then the following conditions are equivalent:

(1) the mapping G : X — 2Y defined by G(z) = {y € Y : ¢(y,z) < v} foreach z € X is a
GLK KM mapping,
(2) the function ¢(y, ) is generalized ~y-L-diagonally quasiconcave in z.

Proor. (1) = (2). As G is GLKKAM mapping, for each A = {zo,21,...,2,} € F(X), there
exists B = {yp,y1...,yn} € F(Y)suchthatforany {y;, : j =0,1,... .k} CBwith0 <k <n, we
have I'({y;, : 3 =0,1,...,k}) C U;C:O G(z4,). Hence, for any y* € ['({y;; : j = 0,1,...,k}), there
exists 0 < m < k such that y* € G(z;,,), and hence, ¢(y*,z,,,) < . Therefore, we have that
ming<j<k ¢(y*,x;,) < v which implies that ¢(y,z) is generalized y-L-diagonally quasiconcave
in z. ' '

(2) = (1). As ¢(y, x) is generalized y-L-diagonally quasiconcave in z, for any {zg,21,...,2,} €
F(X), there exists B = {yqg,¥1,...,Yn} € F(Y) such that for any {y;, : j =0,1,...,k} C B and
for any y* € T'({ys; : j = 0,1,...,k}), ming<;<i ¢(y”,x;;) < v. This implies that there exists
m € {0,1,...,k} such that y* € G(x,,,). From the arbitrariness of y* € T'({y;, : 7 = 0,1,... k}),
it follows that T({y;, : j =0,1,...,k}) C Uj:o G(x,,), ie, G is a GLK KM mapping.

REMARK 3.5. Lemma 3.1 generalizes Lemma 4.1 of [16] in several aspects.

THEOREM 3.5. Let X be nonempty L-convex subset of a L-convex space (Y, I') and ¢ : ¥ x X —
R U {£oc} be a function such that

(1) ¢(y,x) is generalized 0-L-diagonally quasiconcave in x,

(2) for each z € X, the function y — ¢(y,x) is lower semicontinuous on each compact subset
of Y,

(3) there exists M € F(X) such that the set [, cp{y €Y : ¢(y,z) < 0} is compact.

Then there exists y* € Y such that sup,ex¢(y*,z) <0.

PROOF. Define a set-valued mapping G : X — 2¥ by G(z) = {y € Y : ¢(y,2) < 0} for
each z € X. By (1) and Lemma 3.1, G is a GLKKM mapping. Condition (2) implies
that G has compactly closed values and condition (3) implies that there exists M € F(X)
such that [ ., G(x) is compact. By Theorem 2.3, (N v G(z) # 0. Take any y* € ..y G(2).
then we obtain sup.ex #(y*,z) < 0.

REMARK 3.6. Theorem 3.5 generalizes Theorem 2.11.15 of [13] in several aspects which is a
version of Fan’s minimax inequality principle in L-convex spaces.
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