
An International Journal 

computers & 
mathematics 
with applications 

PERGAMON Computers and Mathematics with Applications 43 (2002) 1249-1256 

Generalized L-I-MM Type Theorems in 
L-Convex Spaces with Applications 

XIE PING DING 
Department of Mathematics 

Sichuan Normal University 

Chengdu, Sichuan 610066, P.R. China 

(Received February 2000; accepted July 2001) 

Abstract-In this paper, a new notion of generalized L-KKAZI mappings is introduced. Some 
generalized L-KKM type theorems for generalized L-KKM mappings with finitely closed (or con,- 
pactly closed) values and with finitely open (or compactly open) values are established in L-convex 
spaces. As applications, some Ky Fan type matching theorems. fixed-p&t theorems and minimax 
inequality are obtained in L-convex spaces. These results generalize a number of known reslllt,s in 
recent literature. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION AND PRELIMINARIES 

Let X and Y be two nonempty sets. We denote by 2’ and F(X) the family of all nonemptl 
subsets of Y and the family of all nonempty finite subsets of X, respectively. For any A E F(X). 

we denote by IAl the cardinality of A. Let A, be the standard ?L-dimensional simplex with 

vertices eo, el, , eTL. If J is a nonempty subset of (0, 1, , TX}, we denote by A,, t,he convex 

hull of the vertices {ej : j E J}. A topological space X is said t,o be contractible if t,he idcnt,ity 
mapping I,- of X is homotopic to a constant function. 

The notion of a L-convex space was introduced by Ben-El-Mechaiekh et al. [I]. An L-convcxit! 

structure on a topological space X is given by a nonempty set-valued mapping r : F(X) + 2.’ 

satisfying the following condition. 

(1) For each A E F(X) with IAl = 71+ 1, there exists a continuous mapping #.,I : A,, + r(A) 

such that B E F(A) with IB\ = J + 1, implies iA c r(B). where A,, denotes the 
face of A,,L corresponding B E F(A). The pair (X, I-) is then called an L-couvex space. A 

subset D of X is said to be L-convex if for each A E F(D), T(A) c D. It is clear that 
each L-convex subset of a L-convex space is also a L-convex space. D is said t,o be fiuitel> 

closed (or finitely open) in X if for each A E F(X), D n T(A) is closed (or open) in l?(A). 

D is said to be compactly closed (or compactly open) in X if for each compact, sllbset I< 
of X, D n K is closed (or open) in Ii’. 
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If an L-convex space (X, l?) satisfies the additional condition 

(2) for each A, B E F(X), A c B implies l?(A) c I’(B), 

then (X, I’) is called by Park and Kim [2,3] a generalized convex (or G-convex) space. 

If an L-convex space (X, l?) satisfies the additional condition 

(3) for each A, B E F(X), there exists Al c A such that Al c B implies IT(Al) c T(B). 

Then (X, l?) is called by Verma [4,5] a generalized H-space (or G-H-space). 

The following notion of H-space, which were introduced by Bardaro and Ceppitelli [6], were 

motivated by the earlier works of Horvath [7]. A pair (X, r) . 1s said to be a H-space if X is a 

topological space and l? : 3(X) -+ 2 -’ has contractible values such that for any A,A' E F(X), 
A c A' implies rA c rA'. 

By Lemma 1 of [8], which is contained in the proof of Theorem 1 of [7], each H-space must 

be a G-convex space. By the above definitions, it is clear that L-convex space includes G-convex 

space, G-H-spacev and H-space as very special cases. 

In this paper, we first introduce a new notion of generalized L-KKM (in short, GLKKM) 

mappings. Then, some new GLKKM type theorems for set-valued mappings with finitely closed 

(or compactly closed) values and with finitely open (or compactly open) values are established 

in L-convex spaces. As applications of our results, some new Ky Fan type matching theorems, 

fixed-point theorems, and minimax inequality are obtained in L-convex spaces. These theorems 

unify and generalize many known results in literature. 

DEFINITION 1.1. Let X be nonempty set and (Y, I?) be a L-convex space. A set-valued map- 

ping’ G : X + 2’ is said to be a GLKKM mapping if for eacJ1 nonempty finite set (x0,. . . , x,} E 

F(X) there exists {yo,. , yn} E F(Y) ( no necessary all different) such that for any nonempty t 

subset {yi,, . .,yia} C {YO,...,Y~~}, 0 I k In, wehave 

r(h, : j = 0,. . , k}) c (j G(xi,,). 
J=o 

When (Y, I’) is a H-space or G-convex space or G-H-space, the above definition were given by 

Chang and Ma [9], Ding [lo], Tan [ll], and Verma [4,5], respectively. 

2. GLKKM TYPE THEOREMS 

THEOREM 2.1. Let X be a nonempty set, (Y,l?) be a L-convex space and G : X ---) 2y be a 

set-valued mapping with finitely closed [or, compactly closed) values. 

(1) If G is a GLKKM mapping, then the family {G(x) : x E X} has the finite intersection 

property. 

(2) If the family {G(x) : x E X} has the finite intersection property and r({y}) = (y} for 

each y E Y, then G is a GLKKM mapping. 

PROOF. 

(1) Suppose that the family {G(s) : 3: E X} h as not the finite intersection property. Then 

there exists a finite set A = {SO,. . . ,x,} E F(X) such that nb, G(x,) = 0. It follows 

that 

Y = Y \ h G(xi) = ij(Y \ G(x,)). (2.1) 
r=O 2=0 

Since G is a GLKKM mapping, there exists B = (~0,. . , yn} E F(Y) such that for each 
nonempty subset {yii : j = 0,. . . , k} c (~0,. . . , y,}, we have 

wh., : j = 0,. . . , k)) c u G(xL,). 
j=o 
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(2) 

Since (Y, l?) is a L-convex space, there exists a continuous mapping 4~ : A, + T(B) c Y 

such that q5~(Ak) c l?({yi, : j = 0,. . . , k}) for any nonempty subset {yi, : j = 0,. . , k} c 

{yo, . . , yn}. Since q5~ (A,) is a compact subset in l?(B), if G has finitely closed values, 

then for each z E X, G(z) fl I’(B) is closed in I(B), and hence, q5~ (A,,) n G(Z) = 
4n(A,) n G(z) n l?(B) is closed in $~(a~~) f or each z E X; if G has compactly closed 

values, then it is clear that $,(A,) nG(z) is closed in &,(A,). It follows from (2.1) that: 

$B(&) = ij ME(&) \ (4d&) n G(d)1 7 

2=0 

and hence, in the two cases, {@~(a,) \ ($~(a~) n G(z,))}~~“=, is a open cover of dB(An). 

Let {r,!~~}~=~ be the continuous partition of unity subordinated to the open convering, then 

we have that for each i E (0,. . ,n} and y E @,(A,), 

T&(Y) # 0 * Y E &d&d \ bh@L) n G(d). (2.2) 

Define a mapping $ : ds(All) -+ A, by 1L(y) = Cy=, ,$,(y)ei, vy E @s(A,,). Obviously, 

II, 0 $JB : An + An is continuous. By the Brouwer fixed-point theorem. there exists a 

point z. E A, such that zo = ,$I o ~B(zo). Let 2~0 = @B(Q), then we have 

‘UO = dB(ZO) = 4B 0 II, 0 Qjs(zo) = 4B 0 $quo) (2.3) 

and 

$J(UO) = c $j(jo)ej E AJ(uo), 

3EJCuo) 
(‘w 

where J(q) = {j E (0, 1, . , n} : $J~(uo) # O}. It foll ows from (2.2) that 2~0 E @n(An) \ 
(I$B(A~) n G(z~)) for all j E J(Q). Then we have uo $ G(zj) for all ,j E J(Q). On t,he 

other hand, it follows from (2.3) and (2.4) that: 

w = 4~ O$(UO) c ~B(AJ(~LO)) c r(b7 : j c J(~o))) c IJ G(z,). 
.IEJ(%) 

Thus, there exists jc E J(uo) such that ~0 E G(z:,,) which contradicts the fact that. 
uo $ G(z~) for all j E J(uo). Therefore, the family {G(z) : R: E X} has the finite 

intersection property. 

Suppose that the family {G(z) : 5 E X} has the finite intersection property and I({y}) = 

{y} for each y E Y. Then for any {~a,. . , :rT1} E F(X), nr=“=, G(n:,) # kl. Take any 

point y* E nr=“=, G(z;), and let yZ = y* for i = 0, . ?I,. Then for any { y1 ) : j = 0, , k} c 

{y. ,..., yn} with 0 5 Ic < 72, we have r({yi, : j = 0 ,..., k}) = r({y*}) = {y*} c 

Uszo G(z?,). Therefore, G is a GLKKM mapping. 

REMARK 2.1. Theorem 2.1 generalizes Theorem 3.1 of [lo] and Theorem 2.3 of [ll] in the 
following ways: 

(1) from G-convex space to L-convex space, 
(2) the class of GLKKM mappings includes the class of G-KKIC1 mappings defined in [ll] 

as a proper subclass, 
(3) the compactness assumption of G-co(A) for each A E F(Y) is dropped. 

Obviously, Theorem 2.1 also includes Lemma 2.1 of Verma [4], Theorem 1 of [9] and Lemma 2 
of [12] as very special case. If (Y,‘:) . is a hyperconvex metric space (see, [13, 1). 159]), de- 
fine r : F(Y) -+ 2y by I’(A) = co(A) f or each A E F(Y) where co(A) = n{L? c Y : B 
is a closed ball containing A}, then (Y, I’) is a H-space with r({y}) = {y} for each y E Y 
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(see [13, p. 161]), and hence, (Y,I’) must be a L-convex space. Therefore, Theorem 2.1 also 
generalizes Theorem 3 of [14] and Theorem 2.1 of [15] in the following aspects: 

(a) from hyperconvex space to L-convex space; 

(b) from GMKKAI mapping to GLKKM mapping; 

(c) from the class of set-valued mappings with finitely metrically closed values to the class of 

set-valued mappings with finitely closed (or compactly closed) values. 

THEOREM 2.2. Let X be a nonempty set, (Y, I) be a L-convex space and G : X + 2y be a, set- 
valued mapping with compactly closed values and naEM G(z) is compact for some Al E F(X). 

Then 

(1) ifGisaGLKKMmapping, thennZEx G(z) # 0. (2)ifnzES G(Z) # 0 and I’({y}) = {y} 

for each y E Y, then G is a GLKKM mapping. 

PROOF. It is easy to see that conclusions (1) and (2) follow from Theorem 2.1. 

REMARK 2.2. Theorem 2.2 generalizes Theorem 2.3 of [II] and Theorem 2.1 of [4] to L-convex 

spaces under weaker assumptions. Theorem 2.2 also includes Corollary 3.1 of [lo], Lemma 3 

of [la], and Theorem 2.11.8 of [13] as very special case. 

THEOREM 2.3. Let X be a nonempty set, (Y,I) be a L-convex space and G : X + 2’ be a 

set-valued mapping with nonempty finitely open (or, compactly open) values. 

(1) If G is a GLKKM mapping, then the family {G(z) : z E X} has the finite intersection 

property, 

(2) if the family {G(z) : 5 E X} has the finite intersection property and I’({y}) = {y) for 

each y E Y, then G is a GLKKM mapping. 

PHOOF. 

(1) If the family {G(z) : 2 E X} has not the finite intersection property, then there ex- 

ists {Q,z~, . . ,Z,} E .7=(X) such that ny=“=, G(z,) = 0. Since G is a GLKKA6 map- 

ping, there exists A = (~0, ~1,. yin} E F(Y) such that for each nonempty subset 

{yo,, yrl, . , yli } c A with 0 I k I n, we have 

wYio,Yal,. . . ,yzi 1) c u G(G,). (2.5) 
j=o 

Since (Y, I) be a L-convex space, there exists a continuous mapping 4~ : A, + I’(A) such 

that for each {y7, : j = 0, . , k} c {yi, . . , yn} with 0 2 k 5 ~2, ~&(a~) c r({y,, : j = 

0,. , k}). From ny=“=, G(zi) = 8 it follows that n~=o(G(~z) n $A(A~)) = 0, and hence, 
we have 

$A(&) = $A(&) \ h (+A(&) n G(d) = fi MA(&) \ ($A(&) n Gbdl. 
i=o 7=0 

Note $,~(a~) is a compact set in r(A), if G has finitely open values, then for each 5 E X, 

G(z)nJ?(A) is open in r(A), and hence, 4A(A)nG(z) = ~$,~(A,)nG(zz)nl?(A) is open in 
4,(A,); if G has compactly open values, it is clear that c$~(A~)nG(x) is open in $~(a,) 
for each z E X. Hence, in the two cases, @~(a,) nG( ) z is open in @a( A,) for each z E X. 

For each z E A,, let 

I(Z) = {i E (0,. ,n} : @A(Z) q! G(zi)} and S(z) = co({e, : i E I(z)}). 

If for some z E ATL, I(Z) = 8 then we have $A@) E G(Q) for all i E (0,. ,n} which 
contradicts the assumption nzoG(z,) = 0. Therefore, we can assume that I(z) # 8 for 
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each z E A,, and hence, S(z) is a nonempty compact convex subset of A, for each z E AIL. 

Since UieIc,,[d~(A,) \ (c$A(A~) n G(xa))] is closed in $.~(a,) and 4~ is continuous, we 

U = A, \ 4i1 lJ \ (~A(~)~G(Q))I 

: + 2a,, 

A E F(M), the compactness assumption of co(A) is dropped. 

3. APPLICATIONS 

In this section, by applying our GLKlcM principle in the above section, some new matching 

theorems, fixed-point theorems, and minimax inequality are obtained. 

THEOREM 3.1. Let X be a nonempty set, (Y. I?) be a L-convex space, {Ai}T=o Be a fami1,y of 

finitely closed (or compactly closed) subsets ofY such that U:=, A, = Y and 20, ~1, . ,x, be,n+l 

points of X. Then for any n + 1 points yo, . . . , yn in Y there exists {yior . . ,yii } C (2~0.. g7L} 

wit6 0 5 k 5 n such that 

r({yi, :j=O,....Ic})n ;A?, 

i 1 

# 0. 
3=0 

PROOF. Let X0 = {Q,IC~,. . ,z,}. Since (Y,I’) is a L-convex space, for any given A = 

{yo, , yn} c Y, define a set-valued mapping G : X0 ---) 2y by G(z,) = Y \ A, for each 

1; = O,l,..., n. Since each Ai is finitely closed (or, compactly closed), then G is a set-valued 

mapping with finitely open (or, compactly open) values. Suppose that the conclusion is false, 

then for any B = {y%,, : j = 0, 1, . . . , k} C (~0, . . , yn}, we have r(B) n (nt=,, A,,) = 0 and so 

r(B) C (k \ A,,) = b G(z,,), 
j=o r=O 

i.e, G : X0 + 2y is a GLKIcI11 mapping. By Theorem 2.3, nr=“=, G(z,) # 8. It follows that Y # 

Uy=“=, Ai which contradicts the assumption Y = Uy=“=, A,. Hence, the conclusion holds. 

REMARK 3.1. Theorem 3.1 generalizes Theorem 2.7 of [15] and Theorem 2.11.19 of [13] in several 

aspects. 



1254 X. P. DING 

THEOREM 3.2. Let X be a nonempty set, (Y, r) be a L-convex space and {A,}~zo be a family 

of finitely open (or compactly open) subsets of Y such that Y = l-l:=“=, A, and ~0, ~1,. , xn 

be 12 + 1 points of X. Then for any n + 1 points 90,. . , yn in Y, there exists {y?, : j = 
0, 1, . , /c} c (~0,. , yrL} with 0 5 k < n SUCJI that 

T({Yi, : j = O,l,. . , k)) n f-) Ai,, # 0. 
( ) I=0 

PROOF. Let X0 = {zo,icl,. . . , .‘c,}. Define a set-valued mapping G : X0 -+ 2= by G(z,) = Y \ A, 

for each i = 0, 1, . .u. Since each Ai is finitely open (or compactly open) in Y, each G(z,) is 

finitely closed (or compactly closed) in Y. Suppose that the conclusion is false, then for any {yi, : 

j = 0,l I , k} c {Y/o, .“,Y?Z] with 0 < JC 5 n, we have I’({ya,:j=O,l ,..., k})f~(n~=,,A~,)=O, 

and so 

WY,, :j=O,l,...,k})c iJ(Y\Ai,)= &z,,), 
j=o 3=0 

i.e., G : Xa + 2 y is a GLKKM mapping. By Theorem 2.1, n,“=, G(Q) # 0. It follows 

that Y # u;=“=, A, which contradicts the assumption Y = Uy=“=, A,. Hence, the conclusion holds. 

REMARK 3.2. Theorem 3.2 generalizes Theorem 2.8 of [15] and Theorem 2.11.20 of [13] in the 

following aspects: 

(a) from hyperconvex space to L-convex space; 

(b) from the family of open subsets to the family of finitely open (or, compactly open) subsets. 

THEOREM 3.3. Let X be a nonempty L-convex subset of a L-convex space (Y, I’) and A: X --) 2’ 

be a set-valued mapping with finitely closed (or, compactly closed) values. Suppose that there 

exist n + 1 points 20~51,. , zn in X such that Y = U~zo G(z,) and for each y E X, A-l(y) = 

{z E X : y E A(z)} is a L-convex subset of Y. TJrcn A has a fixed point in X. 

PROOF. By Theorem 3.2 with zL = y/i, i = 0,. n, there exists a subset {z,, : j = 0, 1, , k} 

of {Ica,. . ,&} such that I’((z,, : j = O,l,. . . , k}) n (nfzo A(sj,)) # 0. Take any Z* E r({x,,, : 

j = 0, 1,. ,x1;)) n (f&, A(zi,)), then G, E A-l(z*) for all j = O,l,. . . k. Since A-‘(z”) is 

L-convex, we have .‘c* E l?({xi, : j = 0, 1, . , Ic}) C A-‘(z*), i.e., Z* E X is a fixed point of A. 

REMARK 3.3. Theorem 3.3 generalizes Theorem 3.1 of [15] and Theorem 2.11.21 of [13] in fol- 

lowing ways: 

(a) from hyperconvex space to L-convex space; 

(b) from the class of set-valued mappings with closed values to the class of set-valued mappings 

with finitely closed (or compactly closed) values; 

(c) the compactness assumption of X is dropped. 

THEOREM 3.4. Let X be a nonempty L-convex subset ofa L-convexspace (Y, I?) a,nd A : X -+ 2’ 

be a set-valued mapping with finitely open (or compactly open) values. Suppose that tlrere exist 

1) + 1 points ~0, ~1,. ,z, of X such that Y = Uy=, A(q) and for each y E Y, the set A-‘(y) is 

L-convex. TJlen A has a fixed point in X. 

PROOF. By using Theorem 3.1 and the similar argument as in the proof of Theorem 3.3, it is 

easy to prove tha.t the conclusion holds. 

REMARK 3.4. Theorem 3.4 generalizes Theorem 3.2 of [15] and Theorem 1.11.22 of (131 in several 

aspects. 

DEFINITION 3.1. Let X be a nonempty set and (Y, I?) be a L-convex space. A function q5 : 

Y xX + RU{ dxx~} is said to be generalized y-l-diagonally quasiconcave in .x E X for some y E R 
if’ ~OJ, eacli A = {.zo, ~1, . ,z,,} E F(X), there exists B = {yo, ~1,. . , yn} E F(Y) SUCJI that 

for aJ1.y {yi, : j = O,l,. . ,k} c {yo,yl,. . , yn} and for any y* E I?({&, : j = O,l,. . . ,Jc}), 

mino<,</i $(y*, xl,) F 7. _- 






