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SUMMARY

Signaling events that regulate central nervous
system (CNS) angiogenesis and blood-brain barrier
(BBB) formation are only beginning to be elucidated.
By evaluating the gene expression profile of mouse
vasculature, we identified DR6/TNFRSF21 and
TROY/TNFRSF19 as regulators of CNS-specific
angiogenesis in both zebrafish and mice. Further-
more, these two death receptors interact both genet-
ically and physically and are required for vascular
endothelial growth factor (VEGF)-mediated JNK acti-
vation and subsequent human brain endothelial
sprouting in vitro. Increasing beta-catenin levels in
brain endothelium upregulate DR6 and TROY,
indicating that these death receptors are down-
stream target genes of Wnt/beta-catenin signaling,
which has been shown to be required for BBB
development. These findings define a role for death
receptors DR6 and TROY in CNS-specific vascular
development.

INTRODUCTION

The vasculature of the CNS is an example of uniquely differenti-

ated organ-specific blood vessels. CNS blood vessels differen-

tiate to form the blood-brain barrier (BBB), which consists of

a complex network of intercellular tight and adherens junctions

that form a molecular seal between adjacent endothelial cells

to limit molecular exchange across CNS vessels. Accordingly,

the BBB has many transport mechanisms that enable specific

jettisoning of unwanted molecules out of the CNS while import-

ing molecules essential for brain function (Rubin and Staddon,

1999; Tam and Watts, 2010).

The molecular cues that regulate BBB development have

remained elusive until recent findings described a role for the

canonical Wnt/beta-catenin signaling cascade in CNS angio-

genesis and barriergenesis (Daneman et al., 2009; Liebner

et al., 2008; Stenman et al., 2008). These discoveries now

raise a number of important questions related to BBB biology
Developm
(Tam and Watts, 2010). For example, how does Wnt signaling

regulate CNS angiogenesis and barriergenesis? Which mole-

cules downstream of Wnt signaling drive BBB development? In

addition to the canonical Wnt signaling components, these

studies also identified tight junction proteins and transporters

that may contribute to mature BBB function (Daneman et al.,

2009, 2010).

We reasoned that gene expression profiling the BBB vascula-

ture at embryonic, neonatal, and adult stages would enable

identification of signaling molecules driving CNS vascular devel-

opment. Subsquently, we show that death receptors DR6 and

TROY are enriched in CNS vasculature during embryogenesis,

and accordingly drive angiogenesis and barriergenesis in zebra-

fish and mouse model systems. Using an in vitro cell sprouting

assay, we demonstrate that these two tumor necrosis factor

(TNF) receptor family members are required for endothelial

sprouting events in a cell-autonomous fashion through VEGF-

mediated JNK activation of angiogenesis. Additionally, we find

that DR6 and TROY genetically and physically interact, and

may form a coreceptor complex at the BBB. Finally, we identify

canonical Wnt/beta-catenin signaling as a key transcriptional

regulator of DR6 and TROY BBB expression, suggesting one

possible mechanism by which Wnt/beta-catenin transcription

factor activity drives BBB angiogenesis and barriergenesis.

RESULTS

Identification of Genes Enriched in Brain Vasculature
To identify signaling molecules driving BBB development, matu-

ration, and maintenance, we evaluated the gene expression

profile of mouse vasculature at three distinct developmental

time points (Figure 1A), corresponding to CNS angiogenesis

(E14.5), astrocytic endfeet contact with cortical endothelium

(P7.5), and maintenance of a mature BBB (Adult). We utilized

florescence-activated cell sorting (FACS) to isolate CD31-posi-

tive, CD45-negative endothelial cells from mouse brain cortices,

liver, and lung vasculature (Figure S1A available online), and

subsequently verified FACS-mediated CNS vascular purification

by qPCR analysis (Figure S1B). As expected, microarray analysis

identified several Wnt/beta-catenin target genes and other previ-

ously characterized BBB-specific components to be enriched in

BBB vasculature (Figure 1C; Figure S1) (Daneman et al., 2009;

Hallmann et al., 1995; Pardridge et al., 1990).
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Figure 1. Blood-Brain Barrier Expression Profiling Identifies Genes Enriched in Brain Vasculature

(A) Three blood-brain barrier (BBB) developmental time points identified by immunohistochemical analysis of GLUT1 expression and astrocyte localization in the

mouse cortex. (GLUT1, endothelial cells; GFAP, astrocytes; P-gp, P-glycoprotein) Results representative of at least three independent experiments are shown.

(B) Distinct developmentally regulated classes of BBB-specific transcripts were identified by microarray analysis. Samples are in columns; probes are in rows.

Red and green color indicates over- or underexpression of probes in brain tissue relative to liver/lung tissue of the same stage, respectively. Developmental stage

is indicated to the left of the heatmap (E, embryo; P, pup; A, adult). The probes shown in the heatmap are also presented in Table S1.

(C) Expression profiling FACS-purified BBB and liver/lung vasculature shows enrichment of BBB markers Lef1, P-gp, and Glut1.

(D) Selected transcripts enriched at the BBB.

(E) TNF receptor family members Tnfrsf1a, 10b, and 11a are not preferentially expressed in CNS vasculature. Box and whisker plots indicate distribution of data

and highlight median (horizontal line through box) and the 25th and 75th quartiles (box edges). Expression values were compared between brain and liver/lung

tissue at each developmental stage. Statistical significancewas defined as those stage-specific comparisons yielding an adjusted p value (**p < 0.005; *p < 0.05).

Further details of statistical analysis are described in extended Experimental Procedures. See also Figure S1 and Table S1.
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Microarray analysis across the BBB developmental timeline

was able to resolve gene expression changes in a spatiotemporal

fashion (Figure 1B; Table S1; full microarray data set is publicly

available at the NCBI Gene Expression Omnibus). For instance,

while the CNS-specific glucose transporterGlut1 is expressed in

CNS at all three developmental time points, P-glycoprotein

(P-gp) expression is highly upregulated at the BBB by postnatal

day 7.5 (Figures 1A and 1C). Conversely, as Meca32 is only ex-

pressed in fenestrated endothelium, transcript levels remained

high in liver/lung vasculature at all time points and in embryonic

brain vasculature, but are dramatically downregulated in brain

vasculature by P7.5 and adult time points (Figure 1C) (Hallmann

et al., 1995).
404 Developmental Cell 22, 403–417, February 14, 2012 ª2012 Elsev
Further investigation of our gene expression data set yielded

several classes of BBB-specific transcripts: upregulated exclu-

sively at E14.5, P7.5, adulthood, p7.5 and adulthood (e.g.,

Tspn5 and Gpr37L), E14.5 and P7.5 (e.g., Adora2b and Dlx2),

and across all three developmental time points (e.g., DR6,

TROY, Spock2, and Adcyap1r1) (Figures 1B and 1D; Table S1).

Several of these transcripts have been previously described.

For instance, both the proteoglycan SPOCK2 and homeobox

transcription factor DLX2 have been shown to be expressed in

CNS vessels and potentially drive CNS angiogenesis in a cell-

autonomous fashion (Schnepp et al., 2005; Vasudevan et al.,

2008). Notably, the death receptors Tnfrsf21/DR6 and Tnfrsf19/

TROY (Figure 1D; Figures S1D and S1E) were found to be highly
ier Inc.
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expressed in CNS-specific vasculature, while several TNF

receptor family members including Tnfrsf10b, Tnfrsf11a, and

Tnfrsf1a are not enriched in BBB vasculature (Figure 1E).

Zebrafish Candidate-Based Genetic Screen Identifies
Regulators of CNS Angiogenesis and Barriergenesis
To understand the functional relevance of the BBB-specific tran-

scripts identified in our expression profiling analysis, we em-

ployed a secondary screen utilizing the bony fish danio rerio

(zebrafish) as a BBB developmental model system. Recently, ze-

brafish was shown to have a functional BBB as early as 3 days

postfertilization (dpf), expressing ZO-1 and CLAUDIN-5 tight

junction protein in CNS endothelia (Jeong et al., 2008). To

directly visualize CNS vasculature we utilized Kdrl-eGFP trans-

genic zebrafish expressing green fluorescent protein in endothe-

lial cells (Jin et al., 2005). We injected a solution containing

350 Da cationic DAPI and 10 kDa rhodamine-dextran into the

common cardinal vein of 3 dpf zebrafish embryos and found

dramatic retention of both dyes within CNS vasculature,

whereas peripheral vessels exhibited gross leakage into the

surrounding parenchymal space (Figures S2A and S2B) (Jeong

et al., 2008). At this stage of development, blood vessels sprout-

ing from the primordial hindbrain channels (PHBC) and basilar

artery (BA) have formed an elaborate network of central arteries

(CtA) in the brain (Figure 3C). Similar to the mammalian BBB, we

found CNS-specific glucose transporter GLUT1 exclusively

expressed in this vascular network (Figure 1; Figure S3F) (Par-

dridge et al., 1990).

Importantly, the zebrafish genome contains orthologs for

murine BBB-enriched molecules DR6, TROY, Spock2,

Adcyap1r1, and Tspn5 (Figures S5A and S5B; data not shown),

and mRNA transcripts and protein corresponding to DR6 and

TROY expression were detectable (Figures S3A, S3E, S5C,

and S5D). Consistent with our murine expression profiling

data, zebrafish DR6 was detected in CNS vasculature (Figures

S3B and S3C). Therefore, we assessed CNS vasculature in 3

dpf embryos upon morpholino-mediated knockdown of these

BBB-specific molecules at the developing zebrafish BBB

(Figures S3A and S5C). Protein translation was sterically in-

hibited through translation-blocking antisense hybridization

with mRNA start codon. Loss of function of BBB-enriched

DR6, TROY,Spock2,Adcyap1r1, and Tspn5 all resulted in robust

CNS-specific defects in vessel arborization, whereas trunk inter-

segmental vessels (ISVs) were unperturbed (Figures 2A and 2B).

Conversely, Tnfrsf1a (a TNF receptor familymember that was not

enriched at the BBB) knockdown embryos were indistinguish-

able from control embryos.

During vascular sprouting into the developing CNS many

features specific to BBB function are initiated (Virgintino et al.,

2007). At the earliest stages of CNS angiogenesis, BBB compo-

nents such as CLAUDIN-5 and GLUT1 are present along with

a physical barrier that can exclude small molecules from entering

the embryonic CNS (Daneman et al., 2009; Ek et al., 2006).

Therefore, our findings that DR6, TROY, SPOCK2, ADCYAP1R1,

and TSPN5 modulate CNS vascular development suggested

that these BBB-specific components may also regulate CNS

barriergenesis. To test this possibility, microangiographic injec-

tions of leakage tracers DAPI and rhodamine-dextran were per-

formed on 3 dpf knockdown zebrafish embryos followed by
Developm
confocal live imaging of the CNS. Whereas control, Adcyap1r1,

Tspn5, and Tnfrsf1a morphant embryos excluded most of these

tracers, as rhodamine-dextran was restricted to CtA vessel

lumen while DAPI-stained nuclei were only found in CtA vessels,

DR6, TROY, and Spock2morphants exhibited dramatic leakage

of both tracers across the BBB, as evidenced by an increase in

rhodamine-dextran signal and parenchymal nuclear staining by

DAPI (Figure 2A). Quantification of BBB leakage was accom-

plished by counting the number of DAPI-positive parenchymal

nuclei in the zebrafish brain. We observed a greater than 5-fold

increase in DAPI leakage across the BBB upon DR6, TROY

and Spock2 knockdown compared to control embryos (Fig-

ure 2C). These findings support a role for DR6, TROY, and

SPOCK2 in CNS vascular development.

DR6 Is Necessary for CNS Angiogenesis in Zebrafish
We next set out to quantify zebrafish brain and trunk vasculature

in response to DR6 loss of function. Consistent with the results

from our screen, 2D quantification of 3 dpf zebrafish CNS and

trunk vasculature revealed that the number of hindbrain CtAs

per brain, but not trunk ISV density, was reduced upon DR6

knockdown (Figures 3A and 3B). Likewise, fractional vessel

heights were only reduced in the CNS.

As vascular arborization is a product of coordinated sprouting,

branching, and lumenization (Adams and Alitalo, 2007), we

asked which of these processes are driven by DR6 by recon-

structing 3D confocal z stacks imaged from the developing

zebrafish CNS vasculature and computationally measured the

CtA density, branch density, and vessel diameter in response

to DR6-targeting morpholinos (Figure 3C). While both CtA vessel

diameter and branch density were not significantly altered upon

DR6 knockdown, vascular density was decreased approxi-

mately 30% compared to control morpholino-injected embryos

(Figures 3D). Furthermore, time-lapse imaging of 1.5–3 dpf

embryos suggests that DR6 is required for initial CtA sprouting

events from the BA and PHBC vascular networks, but not

required to inhibit vascular regression or degeneration (Movies

S1, S2, S3, and S4). While DR6 knockdown phenotypes could

not be rescued upon DR6 overexpression, as death receptors

are acutely cytotoxic at high levels (Lavrik et al., 2007; Pan

et al., 1998), the specificity of DR6 knockdown phenotypes

was verified using another nonoverlapping translation blocking

morpholino, as well as a splice-blocking morpholino that leads

to efficient pre-mRNA exon deletion in DR6 transcripts and

similar defects in CNS angiogenesis and barriergenesis (Fig-

ures S3D, S3E, S4E, and S4F). We conclude that DR6 is required

for CNS-specific angiogenesis, primarily through regulation of

sprouting activity, but not through regression, anastamosis, or

lumenization.

DR6 Is Required for Proper CNS Vascular Density
and Barrier Function in Mice
We next examined DR6 expression in the developing mouse

CNS vasculature. Immunohistochemistry (Figure 4A; Fig-

ure S4A), DR6.eGFP knockin expression (Figure S5F) and

in situ hybridization (Figure 4B) confirmed that DR6 is not only

expressed in neurons, particularly commissural axons in the

developing spinal cord, but also in CNS-specific vasculature

(double labeling with GLUT1), suggesting that DR6 might be
ental Cell 22, 403–417, February 14, 2012 ª2012 Elsevier Inc. 405
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Figure 2. Zebrafish Candidate-Based Genetic Screen Identifies Regulators of CNS Angiogenesis and Barriergenesis

(A and B) Morpholino-mediated knockdown of BBB-enriched transcripts in Tg(kdrl:egfp) embryos. As described in Experimental Procedures, following a 4 ng

morpholino injection, DAPI-positive brain parenchymal nuclei (Parenchymal DAPI; A: right panels) were visually isolated by computationally removing brain
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necessary for murine CNS vascular patterning and/or barrier

function.

In order to elucidate the functional relevance of DR6 enrich-

ment inmouse BBB vasculature, we characterized both vascular

density and barrier function in DR6 knockout mice. Ex vivo X-ray

microcomputed tomography (micro-CT) angiography was used

to quantitatively measure the whole-brain 3D cerebral vascular

structure. Importantly, we found that adult DR6 knockout mice

exhibit �30% decrease in brain vascular density compared to

wild-type littermates (Figures 4C and 4D; Figure S4B). This

defect is similar to vascular density reduction in zebrafish

embryos upon DR6 knockdown (Figure 3D; Figure S3D).

Our findings that DR6 is required for proper CNS vascular

density in the mature mouse brain, and drives both CNS angio-

genesis and barriergenesis during zebrafish development sug-

gest that DR6may also regulate CNS barrier function in the adult

mouse. To test this possibility, we evaluated whether DR6

knockout mice also have a disrupted BBB by quantifying CNS

extravasation of intravenously injected Evans blue dye, as previ-

ously described (Eliceiri et al., 1999). Even though DR6 KO adult

mice are viable, these animals exhibited an approximately 2-fold

increase in Evans blue dye leakage compared to wild-type litter-

mate controls (Figure 4E), which is similar in magnitude to

barrier deficits observed after intracortical delivery of VEGF (Fig-

ure S4C), a well-known cytokine that induces vascular perme-

ability. Therefore, we conclude that DR6 contributes to CNS

vascular morphogenesis and barrier function in mice.

To determine if DR6 loss-of-function phenotypes in adult mice

may be a consequence of dysregulated CNS angiogenesis and

barriergenesis during development, we investigated possible

embryonic phenotypes. Indeed, DR6 knockout embryos ex-

hibited both forebrain-specific hemorrhaging events (Figure 4F)

as well as an�15% increase in sulfo-NHS-biotin leakage across

the BBB upon transcardiac perfusion (Figure 4G). Furthermore,

embryonic hindbrain radial vessel density was significantly

reduced inDR6 knockout embryos (Figures 4H and 4I). To deter-

mine if these phenotypes arise as a consequence of DR6 specif-

ically in endothelial cells, we generated a floxed exon2DR6 allele

and crossed it to a Tie2-Cre mouse driver line to remove DR6

from endothelium in vivo. Similar to our observations in DR6

knockout embryos (Figures 4F, 4H, and 4I), we find that endo-

thelial-specific DR6 deletion in DR6flox/flox;Tie2-Cre embryos

recapitulated the DR6 null phenotype with forebrain-specific

hemorrhaging events at E11.5 and reduced hindbrain radial

vessel density (Figures 4J–4L). Furthermore, we observed that

both the DR6 knockout and the endothelial-specific DR6 condi-

tional knockout show a reduction in tight junction component

ZO-1 protein levels (Figure S7B). These early developmental

BBB phenotypes are consistent with the idea that DR6 is an

essential regulator of BBB development in a cell-autonomous

fashion.

Intriguingly, amyloid precursor protein (APP), a candidate DR6

ligand that was proposed to drive developmental axon degener-
vasculature-derived DAPI signal from the DAPI channel. Results representative of

DAPI is blue, rhodamine-dextran is red. MO, morpholino.

(C) Quantification of DAPI leakage across the zebrafish BBB. n = 6 (control_MO

Tnfrsf1a_MO).

Data are presented as the mean ± standard error of the mean (SEM) (***p < 0.00

Developm
ation in neurons (Nikolaev et al., 2009), was identified in our

expression profiling data to be modestly enriched in BBB vascu-

lature exclusively during embryogenesis, and somewhat down-

regulated in adult CNS vasculature, relative to liver/lung vascular

expression (Figure S4D). To determine whether APP drives DR6

activity during BBB development, we asked if APP and DR6

deletions share similar BBB developmental phenotypes. We

found that while APP loss of function in zebrafish and mice ex-

hibited subtle vascular abnormalities (Figures S4E, S4G, and

S4H), APP loss of function did not result in BBB leakage (Figures

S4E–S4G). We conclude that APP is not required for CNS bar-

riergenesis and therefore likely does not drive DR6 activity during

BBB development.

Cell-Autonomous Regulation of Vascular Sprouting
by DR6
In order to examine the contribution of endothelial cell-derived

DR6 toward BBB development in more detail, we utilized an

in vitro human brain microvascular endothelial cell (HBMEC)

sprouting assay that we established whereby primary HBMECs

were coated onto cytodex beads and allowed to sprout in a 3D

fibrin matrix. In a similar fashion to DR6, Neuropilin-1 (NRP1)

has been demonstrated to guide the development of both the

nervous and vascular systems (Gu et al., 2003; Tam and Watts,

2010). Accordingly, function-blocking antibodies targeting NRP1

strongly inhibited HBMEC vascular remodeling and sprouting,

which confirmed HBMEC sprouting activity to be NRP1-depen-

dent (Figure 5A) (Pan et al., 2007). Importantly, two distinct func-

tion-blocking antibodies targeting DR6 directly inhibited the

number of sprouting HBMECs and their mean sprout length to

a similar extent as anti-NRP1 antibody treatment (Figure 6A; Fig-

ure S6C). Furthermore, siRNA-mediated knockdown of DR6

yielding >70% reduction in transcript and protein levels (Figures

S6A and S6B), also significantly reduced HBMEC sprout length

and cell number (Figure 5B), albeit to a lesser extent than anti-

DR6 function-blocking antibodies. These results suggest that

during BBB development, DR6 directs brain vascular develop-

ment and barriergenesis through regulation of sprouting in a

cell-autonomous fashion.

TROY Is Necessary for CNS Angiogenesis
Based on our DR6 results and data from our zebrafish screen, we

speculated that another death receptor, TROY, may work in

concert with DR6 to regulate CNS vascular development.

Consistent with our zebrafish screening results (Figure 2), 2D

quantification of 3 dpf zebrafish CNS and trunk vasculature re-

vealed that the number of hindbrain CtAs per brain, but not trunk

ISV density, was reduced upon TROY knockdown (Figures 5C

and 5D). Likewise, fractional vessel heights were only reduced

in the CNS. While brain vascular density decreased by �30%

in response to TROY-targeting morpholino, there were no signif-

icant defects with respect to CtA branch density or vessel diam-

eter (Figure 5E). Time-lapse imaging of 1.5–3 dpf embryos also
at least three independent experiments are shown. Endothelial cells are green,

), n > 6 (DR6_MO, TROY_MO, Spock2_MO, Adcyap1r1_MO, Tspn5_MO, and

5; **p < 0.01; *p < 0.05). See also Figure S2.
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(A) Translation-blockingmorpholino-mediatedDR6knockdown leads toCNS-specific angiogenic defects inTg(kdrl:egfp) embryos. Each embryowas treatedwith

4 ng morpholino. Results representative of at least three independent experiments are shown. MO, morpholino; CtA, central artery; ISV, intersegmental vessels.

(B) 2D quantification of 3 dpf zebrafish CNS and trunk vasculature. n = 36 (control_MO), n = 15 (DR6_MO), see Experimental Procedures, Zebrafish Micro-

angiographic Imaging and Quantification, for calculation of the fractional height of CtAs and ISVs.
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suggested that TROY is required for initial CtA sprouting events

but not for degenerative developmental processes during CNS

vessel formation (Movies S5 and S6). We verified morpholino-

mediated knockdown using a splice-blocking morpholino, which

inhibits splicing events in TROY transcripts and resulted in

similar defects in CNS angiogenesis and barriergenesis

(Figure S5D).

To further establish that TROY plays a role in CNS vascular

biology we evaluated both TROY knockout mice phenotypes

and TROY regulation of angiogeneic sprouting in the HBMEC

bead assay. Adult TROY knockout mice exhibited a modest

increase in Evans blue dye BBB leakage compared to wild-

type littermate controls (Figure 5F). Furthermore, siRNA-medi-

ated knockdown of TROY yielding >85% reduction in transcript

levels (Figure S6A) significantly reduced HBMEC sprout length

and cell number (Figure 5B). Therefore, similar to DR6, TROY is

required for CNS-specific angiogenesis, primarily through regu-

lation of sprouting activity, but not through regression, anasta-

mosis, or lumenization.

DR6 and TROY Physically Interact
As DR6 and TROY loss of function shared similar CNS vascula-

ture developmental defects in zebrafish and sprouting defects

in vitro, we hypothesized that DR6 and TROY may form func-

tional coreceptors. Specific TNF receptors have been shown

to heteromultimerize with other family members, as well as other

signaling receptor families. For instance, TNF receptor family

member p75 inhibits axon regeneration through Nogo-66

receptor (NgR1) binding (Wang et al., 2002). TNF receptor

TROY can also form a receptor complex with NgR1 and function-

ally replace p75 in neurons (Park et al., 2005; Shao et al., 2005).

Indeed, when transfected into COS7 cells, TROY can be coim-

munoprecipitated with NgR1 (Figure 6A). Notably, TROY ap-

peared to homo-oligomerize upon transfection as HA-tagged

TROY could pulldown flag-tagged TROY. Consistent with our

prediction, transfected DR6 strongly coimmunoprecipitated

with TROY to an even greater degree than compared to positive

control NgR1 (Figure 6A). Furthermore, both anti-DR6 function-

blocking antibodies that were used to inhibit HBMEC sprouting

were able to partially block DR6/TROY binding (Figure 6B).

Considering that purified DR6 extracellular domains did not

directly bind to TROY-expressing 293 cells (Figure S6D), we

propose a model whereby DR6 and TROY physically interact

through their cytoplasmic or transmembrane domains to form

a functional receptor complex in CNS vascular development.

DR6 and TROY Genetically Interact
Having shown that DR6 and TROY physically interact, we next

examined their potential genetic interactions. We coinjected

DR6 and TROY targeting morpholinos at suboptimal concentra-

tions that individually caused no detectable defects in zebrafish
(C) 3D reconstructions of zebrafish hindbrain vasculature were used to create a

average CtA diameter. Filament tracing of the vessel-derived eGFP signal (first a

(D) 3D quantification of 3 dpf zebrafish hindbrain vasculature. Standard devia

(control_MO), n = 6 (DR6_MO).

(E) Zebrafish brain volume calculation diagram. The volume of the half brain was ap

vein; DLV, dorsal longitudinal vein; BCA, basal communicating artery; PHBC, pri

Data are presented as the mean ± SEM (***p < 0.005; *p < 0.05). See also Figure

Developm
CNS vessel formation and barrier function (Figures 6C and 6D).

Embryos coinjected with both morpholinos at these concentra-

tions displayed synergistic CNS-specific vascular defects and

barrier leakage. In other words, simultaneous suboptimal DR6

and TROY knockdown unmasked otherwise silent BBB-specific

phenotypes that resulted in an enhanced genetic interaction

similar to yeast gene function mapping studies identifying gene

deletion pairs that uncover sick/lethal synthetic phenotypes

(Tong et al., 2001). The identification of both BBB-specific

genetic and physical interactions between DR6 and TROY

suggests that binding partners DR6 and TROY function in unison

to contribute to CNS angiogenesis and barriergenesis during

development.

DR6 and TROY Are Required for VEGF-Mediated JNK
Activation and Subsequent Human Brain Endothelial
Sprouting
Mediated largely through proangiogenic factor VEGF binding to

cognate receptor VEGFR2, sprouting angiogenesis requires the

orchestration of a number of cellular events that are integrated

by molecular signals including cellular migration via p38 (Rous-

seau et al., 1997), proliferation via ERK (Rousseau et al., 1997;

Takahashi et al., 1999), and survival/vascular permeability via

PI3-kinase/AKT (Chen et al., 2005; Gerber et al., 1998; Six

et al., 2002). Interestingly, wild-type or dominant-negative

ERK2 overexpression triggers enhancement or suppression of

JNK activation, respectively, which demonstrates that VEGF-

mediated ERK phosphorylation activates downstream JNK (Pe-

dram et al., 1998). Accordingly, JNK activation has since been

identifiedasapositive regulator of humanumbilical vein endothe-

lial cell (HUVEC) angiogenesis (Uchida et al., 2008; Wu et al.,

2006). Indeed, we found that VEGF strongly stimulates JNK acti-

vation in HBMECs, as evidenced by increased phospho-JNK

levels (Figure 6E). In order to verify the hypothesis that JNK acti-

vation is required for efficient brain vessel sprouting, two struc-

turally distinct and highly selective JNK inhibitors (JNK-V and

JNK-VIII) were individually tested in the HBMEC bead-sprouting

assay (Gaillard et al., 2005; Szczepankiewicz et al., 2006). Upon

addition of each JNK inhibitor, we found robust inhibition of

both HBMEC sprout length and sprouting cell number to a similar

degree as DR6 and TROY knockdown (Figure 6F).

While death receptors are typically thought to functionally

interact with the cellular apoptosis machinery, different cellular

environments can shift death receptors toward mediating func-

tions distinct from, or even against cell death (Ashkenazi and

Dixit, 1998). For instance, TNF binding to death receptor

TNFR1 activates NF-kB signaling which in turn suppresses

TNF-induced apoptosis (Beg and Baltimore, 1996). Only upon

sufficient suppression of NF-kB signaling can TNF-TNFR1

induce cell death. Additionally, death receptor TNFRSF6/CD95

has recently been shown to promote tumor cell proliferation
vascular mask (second panel from the left) to determine vascular density and

nd second panels from the right) enabled branch density calculations.

tion of CtA diameter is a metric of irregularity in vessel lumenization. n = 4

proximated as V = R1R2R3. MtA, metencephalic artery; MCeV, middle cerebral

mordial hindbrain channel; BA, basilar artery.

S3 and Movies S1, S2, S3, and S4.
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Figure 4. DR6 Is Required for Proper CNS Vascular Density and Barrier Function in Mice in a Cell-Autonomous Fashion

(A) DR6 protein expression in CNS commissural axons and GLUT1-positive vasculature. Immunohistochemical staining for DR6 protein exhibited both neuronal

and vascular signal in spinal cord (top panels) and forebrain (bottom panels) tissue from E11.5 embryos. This signal is specific to DR6 protein, as no antibody
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through downstream JNK activation (Chen et al., 2010). The dual

functions of CD95 can be explained by the observation that

CD95-mediated apoptosis requires 1,000-fold higher protein

levels compared to its nonapoptotic activity (Lavrik et al.,

2007). Therefore, the cellular consequences of death receptor

activation of downstream signaling pathways function in a

context-dependent manner. The death receptors DR6 and

TROY were initially identified as JNK-activating members of

the TNFR superfamily that promote cell death (Eby et al., 2000;

Pan et al., 1998). Interestingly, JNK2/3 double knockouts have

been previously described to exhibit gross vascular defects

(Laukeviciene et al., 2006). Therefore, we reasoned that DR6

and TROY might promote CNS angiogenesis through nonapop-

totic JNK activation.

In order to delineate potential signaling crosstalk between

VEGF-VEGFR2 and these BBB-specific death receptors, proan-

giogenic signaling pathways were examined in HBMECs trans-

fected with siRNA against either DR6 or TROY followed by

VEGF addition. VEGF-mediated activation of ERK, AKT, or p38

signaling was not modified upon DR6 or TROY knockdown (Fig-

ure 6E). However, consistent with previous cell culture studies

demonstrating JNK activation upon DR6 or TROY overexpres-

sion (Eby et al., 2000; Pan et al., 1998), we found that VEGF-

mediated JNK phosphorylation was reduced upon abrogation

ofDR6 or TROY expression in human brain endothelial cells (Fig-

ure 6E, right). These results are consistent with the finding that

DR6 and TROY are required for VEGF-mediated JNK activation

and subsequent human brain endothelial sprouting.

DR6 and TROY Are Downstream of Canonical
Wnt/Beta-Catenin Signaling in CNS Vasculature
Recently, canonicalWnt/beta-catenin signaling was identified as

a key regulator essential for CNS-specific angiogenesis, barrier-

genesis, andGLUT1 expression at the BBB in a cell-autonomous

fashion (Daneman et al., 2009; Liebner et al., 2008; Stenman

et al., 2008). Intriguingly, we found that DR6 and TROY knock-

outs maintain high levels of GLUT1 expression, low levels of

vesicular-protein PLVAP, normal PDGFRbeta-positive pericyte
staining was apparent in DR6.KO embryos (right panels). Results representativ

knockout.

(B) DR6 mRNA expression in Glut1-positive vasculature. Dual-target two-color fl

transcripts in mouse E14.5 brains. Results representative of at least three indepe

(C) MicroCT angiographic surface renderings of adult mouse brain vasculature. 2D

of six independent experiments are shown.

(D) Quantification of microCT CNS vascular network. Vascular density was cal

(DR6.WT), n = 6 (DR6.KO).

(E) Evans blue leakage assay detects barrier defects in adult mice. n = 7 (DR6.W

(F) E11.5 DR6.KO embryos exhibit forebrain-specific hemorrhaging (observed i

pendent experiments are shown.

(G) Fixable biotin transcardiac perfusion assay detects barrier defects in E18.5 m

(H)DR6.KO embryos exhibit reduced hindbrain vascular density at E14.5. Confoca

experiments are shown.

(I) Quantification of E14.5 mouse hindbrain vascular density. Vascular density was

normalized by field area. n = 12 (DR6.WT), n = 11 (DR6.KO).

(J) E11.5 DR6flox/flox;Tie2-Cre embryos exhibit forebrain-specific hemorrhaging (o

independent experiments are shown.

(K) E11.5DR6flox/flox;Tie2-Cre embryos exhibit reduced hindbrain vascular density

nine independent experiments are shown.

(L) Quantification of E14.5 mouse hindbrain vascular density. Vascular density wa

Data are presented as the mean ± SEM (***p < 0.005; **p < 0.01; *p < 0.05). See

Developm
and tight junction protein localization within CNS vasculature

(Figure 4A; Figures S3F, S5E, and S7), suggesting that the

Wnt/beta-catenin pathway is likely not downstream of DR6

and TROY signaling. However, we found that DR6 and TROY

knockouts exhibit reduced ZO-1 protein levels, which suggests

that these death receptors may regulate brain vascular develop-

ment partially through tight-junction component modulation

(Figure S7B).

We next investigated whether the Wnt signaling pathway

drives CNS angiogenesis and barrier formation in part by modu-

lating DR6 and TROY expression at the BBB. To examine the

possibility that these two death receptors are downstream effec-

tors that partially account for Wnt/beta-catenin involvement in

BBB development, we measured DR6 and TROY transcript

levels in response to recombinant hWnt3a ligand, hWnt3a condi-

tioned media, and GSK3beta inhibitor SB216763 in HBMECs. In

a similar fashion to canonical Wnt target gene Axin2, DR6 and

TROYwere significantly upregulated in response to two different

forms of exogenous Wnt3a ligand, as well as pharmacological

stabilization of beta-catenin by SB216763 (Figures 7A, 7B, and

7D). Furthermore, Wnt3a-mediated transcriptional upregulation

of these two BBB-specific death receptors was completely

reversible upon siRNA-mediated beta-catenin knockdown or

addition of the pan-Wnt ligand binding soluble Fzd8-Fc protein

(Figures 7C and 7D) (DeAlmeida et al., 2007; Gong et al., 2010).

The Wnt/beta-catenin developmental pathway employs

expression feedback loops to enable temporal autoregulation

through Wnt-responsive gene expression (Logan and Nusse,

2004). In light of our findings that DR6 and TROY are Wnt-

responsive genes, we reasoned that DR6 and TROY may also

participate in Wnt signaling autoregulation. A prediction of this

idea is that death receptor loss of function would modulate brain

vascular Wnt target gene expression levels. Indeed, expression

analysis of FACS-purified brain vasculature revealed that DR6

knockout BBB vasculature exhibit marked reduction of two

canonical Wnt target gene transcripts, Apcdd1 and Axin2 (Fig-

ure 7E). However, given that Wnt-driven GLUT1 expression is

largely unaffected upon DR6 or TROY loss of function (Figure 4A;
e of at least three independent experiments are shown. WT, wild-type; KO,

uorescent in situ hybridization was used to detect DR6 (red) and Glut1 (green)

ndent experiments are shown.

projections of DR6.WT and DR6.KO brains are shown. Results representative

culated as a function of vascular volume normalized by brain volume. n = 6

T), n = 8 (DR6.KO).

n 60% embryos tested; arrow). Results representative of at least three inde-

ouse embryos. n = 12 (DR6.WT), n = 12 (DR6.KO).

l images of flat-mounted hindbrains representative of at least nine independent

calculated as a function of number of GLUT1-positive hindbrain radial vessels

bserved in 80% embryos tested; arrow). Results representative of at least three

at E14.5. Confocal images of flat-mounted hindbrains representative of at least

s calculated as described above. n = 15 (control), n = 11 (DR6flox/flox;Tie2-Cre).

also Figure S4.
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Figure 5. DR6 and TROYAre Required for Proper CNSVascular Density andBarrier Function throughBrain Endothelial Angiogenic Sprouting

in a Cell-Autonomous Fashion

(A) Anti-DR6 function-blocking antibodies reduce HBMEC sprouting. Actin is green, nuclei are blue (left). Results representative of at least three independent

experiments are shown. Quantification of sprout length (middle) and number of sprouting cells (right) are shown.

(B) siRNA-mediated knockdown of DR6 and TROY inhibits HBMEC sprouting.

(C) Translation-blocking morpholino-mediated TROY knockdown leads to CNS-specific angiogenic defects. Each Tg(kdrl:egfp) zebrafish embryo was treated

with 4 ng morpholino. Results representative of at least three independent experiments are shown.

(D) 2D quantification of 3 dpf zebrafish vasculature. n = 36 (control_MO), n = 25 (TROY_MO).

(E) 3D quantification of 3 dpf zebrafish hindbrain vasculature. n = 5 (control_MO), n = 6 (TROY_MO).

(F) Evans blue leakage assay detects barrier defects in adult mice. n = 16 (TROY.WT), n = 18 (TROY.KO).

Data are presented as the mean ± SEM (***p < 0.005; **p < 0.01; *p < 0.05). See also Figure S5 and Movies S5 and S6.
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Figures S3F and S5E), DR6-mediated autoregulation of Wnt

signaling at the BBB may only have modest functional relevance

and therefore requires more detailed investigation. In conclu-

sion, we find that DR6 and TROY expression is regulated by

canonicalWnt/beta-catenin signaling at the BBB, thereby driving

BBB-specific activity of these death receptors to contribute

toward CNS angiogenesis and barriergenesis during develop-

ment (Figure 7F).

DISCUSSION

A Progrowth/Morphogenic Role for Death Receptors
The death receptor CD95 has been shown to function in direct

opposition to, or even entirely independent of necrotic cell death

(Chen et al., 2010). Similarly, we find that DR6 and TROY

promote BBB development, independent of their canonical pro-

degenerative or apoptotic activities. We therefore propose that

nonapoptotic activity mediated by death receptors may be

a general property inherent to these signaling molecules. Specif-

ically, death receptors may act as cell fate switches that amplify
412 Developmental Cell 22, 403–417, February 14, 2012 ª2012 Elsev
signaling toward either proliferation or caspase-mediated cell

death through context-dependent molecular cues. Alternatively,

the cellular functions of these receptors may be predetermined

within specific cell types. For instance, DR6 and TROY might

not be able to engage the apoptotic machinery in endothelial

cells.

Although Wnt/beta-catenin signaling is indispensible for

BBB-specific GLUT1 expression, we find that DR6 and TROY

are not. How then do DR6 and TROY contribute to CNS

vessel and barrier formation at the molecular level? Are the

barrier defects associated with DR6 and TROY loss of function

a direct consequence of vascular developmental defects, or

do these death receptors drive CNS angiogenesis and barrier-

genesis independently? Although DR6, TROY, and Spock2

knockdown resulted in both vascular and barrier defects,

BBB-enriched molecules Adcyap1r1 and Tspn5 knockdown

exhibited gross brain vascular malformations in the absence

of barrier leakage phenotypes, suggesting that impaired CNS

vascular development does not inevitably inhibit BBB

formation.
ier Inc.
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Figure 6. DR6 and TROY Physically and Genetically Interact and Are Required for VEGF-Mediated JNK Activation

(A) DR6 physically interacts with TROY. Epitope-tagged receptors were overexpressed in COS-7 cells and flag-tagged TROY bait was immunoprecipitated. Input

was 1% total cellular lysate used in pulldown. IP, immunoprecipitation; IB, immunoblot. Results representative of at least three independent experiments are

shown.

(B) Anti-DR6 function-blocking antibodies, which inhibit human brain endothelial sprouting, also reduce DR6 and TROY physical interaction. Pulldown assays

were carried out as described above with the addition of anti-DR6 antibodies four hours after transfection. Relative TROY coimmunoprecipitation was calculated

by normalization to both TROY-HA input and DR6-flag pulldown levels. Results representative of at least three independent experiments are shown.

(C) Suboptimal concentrations of DR6- and TROY-targeting morpholinos unmask genetic interactions. Each embryo was treated with 4 ng of each splice-

blocking morpholino. Endothelial cells are green, DAPI is blue, rhodamine-dextran is red. Results representative of at least three independent experiments are

shown.

(D) Quantification of DAPI leakage reveals DR6 and TROY genetic interaction. n = 8 (control_MO), n = 8 (DR6_MO), n = 8 (TROY_MO), n = 8 (DR6_MO and

TROY_MO).

(E) VEGF activates JNK in HBMECs and requires DR6 and TROY expression. Relative protein phosphorylation was calculated by normalization to total protein

levels. Results representative of at least three independent experiments are shown.

(F) JNK activity is required for HBMEC sprouting. 1 mM JNK inhibitor V or VIII was used.

Data are presented as the mean ± SEM (***p < 0.005; **p < 0.01; *p < 0.05). See also Figure S6.

Developmental Cell

Death Receptors Regulate CNS Vascular Development
Death Receptor Crosstalk with VEGF-VEGFR2 Signaling
In addition to the signaling kinases p38, ERK, and AKT, we find

that the VEGF-VEGFR2 pathway activates JNK in human brain

endothelial cells in a DR6 and TROY-dependent fashion. We

postulate that death receptors directly interface with the down-

stream signaling elements of the VEGF-VEGFR pathway in order

to effectively modulate sprouting angiogenesis. This signaling

axis would then allow for the integration of signaling input from

both VEGF ligands and death receptors. Consistent with this

hypothesis, p75 activity has been shown to promote endothelial
Developm
cell apoptosis and inhibit angiogenesis through modulating

VEGF signaling by inhibition of AKT (Caporali et al., 2008).

Death Receptor Regulation in CNS Vasculature
It remains to be determined if DR6 and TROY function in a ligand-

independent fashion, or if DR6 and TROY act as coreceptors for

an unidentified ligand to mediate CNS vascular biology. Notably,

TNF receptor family members including TNFRSF1A/TNFR,

TNFRSF10B/DR5, and TNFRSF5/CD40 can assemble into pre-

formed trimer complexes in the absence of cognate ligand
ental Cell 22, 403–417, February 14, 2012 ª2012 Elsevier Inc. 413
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Figure 7. DR6 and TROY Are Downstream of Canonical Wnt/Beta-Catenin Signaling in CNS Vasculature
(A) Wnt3a ligand stimulatesDR6 and TROY expression in human brain endothelial cells. Recombinant humanWnt3a (200 ng/ml) was added to HBMECs and RNA

was analyzed 24 hr postligand addition by qPCR.

(B) Increased beta-catenin levels stimulate DR6 and TROY expression in human brain endothelial cells. GSK3beta inhibitor SB216763 (20 mM) was added to

HBMECs and analyzed as described above.

(C) Recombinant Wnt3a-mediated DR6 and TROY expression is dependent on beta-catenin. HBMEC RNA was analyzed as above 24 hr after Wnt3a addition ±

siRNA targeting beta-catenin.

(D) Wnt3a-conditioned media stimulates DR6 and TROY expression in a ligand-dependent fashion. HBMEC RNA was analyzed as above 24 hr after Wnt3a-CM

addition ± pan-Wnt binding Fzd8-Fc.

(E) Wnt signaling in embryonic mouse brain vasculature is attenuated upon DR6 knockout. CD31+CD45- vasculature was FACS-purified as in Figure S1A and

analyzed as described above.

(F)Model for death receptorsDR6 and TROY function in BBBdevelopment.Wnt ligands secreted by the embryonic neuroepithelium stabilize beta-catenin protein

levels in CNS endothelial cells which subsequently upregulates, among many other target genes, DR6 and TROY expression. DR6, and possibly TROY,

participate in a Wnt/beta-catenin positive feedback loop whereby signaling is amplified by these death receptors through an unknownmechanism. Through JNK

activation, these receptors engage in crosstalk with the VEGF/VEGFR2 signaling pathway to drive CNS angiogenesis and possibly barriergenesis.

Data are presented as the mean ± SEM (***p < 0.005; **p < 0.01; *p < 0.05; #p < 0.005 comparing Wnt3a ± Fzd8-Fc or sibeta-catenin). See also Figure S7.
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binding (Chan et al., 2000), while TNFRSF8/CD30 overexpres-

sion has been shown to drive downstream NF-kB signaling in a

ligand-independent fashion (Horie et al., 2002). Thus, it is

possible that DR6 and TROY function at the BBB as a ligand-

independent signaling unit.

Importantly, we found that DR6 and TROY are coregulated at

the BBB. In addition to exhibiting similar loss-of-function pheno-

types, these two death receptors physically and genetically

interact, and have overlapping expression patterns. Recently,

both in silico transcription factor binding prediction and expres-

sion profiling studies to identify Wnt/beta-catenin target genes in

human fibroblasts, dermal papilli, and stromal stem cells found

both DR6 and TROY as potential downstream effectors (Hödar
414 Developmental Cell 22, 403–417, February 14, 2012 ª2012 Elsev
et al., 2010; Klapholz-Brown et al., 2007; Qiu et al., 2010;

Shin et al., 2010). Accordingly, we find that DR6 and TROY are

downstream target genes of canonical Wnt/beta-catenin

signaling in human brain endothelium, which is exclusively acti-

vated in CNS-specific endothelial cells during development.

Considering that loss of Wnt/beta-catenin signaling results in

more severe BBB developmental defects when compared to

DR6 and TROY loss of function, it must be the case that DR6

and TROY work in concert with other Wnt target genes to fully

regulate CNS angiogenesis and barriergenesis. Nevertheless,

our results provide a mechanistic explanation of how DR6

and TROY coexpression is regulated at the BBB. Specifically,

DR6 and TROY are expressed in CNS endothelial cells through
ier Inc.
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neuroepithelium-derived Wnt ligands and subsequent induction

of Wnt/beta-catenin transcriptional target genes. It is through

the expression of these particular death receptors, as well as

other unidentified components, that Wnt/beta-catenin signaling

regulates organ-specific formation and differentiation of CNS

vasculature.

EXPERIMENTAL PROCEDURES

Zebrafish Microangiographic Imaging and Quantification

Microangiography and live imaging of brain vascularization were adapted from

(Jeong et al., 2008; Lawson and Weinstein, 2002). For microangiographic

assessment of BBB integrity, morpholino-injected embryos were anesthetized

at 3.25 dpf in 0.04% tricaine pH 7 (Sigma E10521), and injected with 12 nl of

12.5 mg/ml rhodamine-dextran and 0.85 mg/ml DAPI mix into the common

cardinal vein. Embryos were mounted in 1% low-melt agarose in Danieau

buffer (58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6 mM Ca[NO3]2, and

5 mM HEPES [pH 7.6]) containing tricaine in a glass-bottom 96-well plate,

and z stacks (�100 mm thick, 3 mm spacing between sagittal planes, three

line averages) were collected within 30 min of injection. All images were

acquired using a laser scanning confocal microscope (TCS SP5, Leica) with

a 500 mW Argon-Ion laser (LASOS) and a 203 air objective (Apochromat 0.7

NA, Leica).

The integrity of the BBB and extent of brain vascularization were quantified

in control and morpholino-injected fish from two dimensional (2D) maximum z

projections and three dimensional (3D) renderings of the z stacks. 2D

maximum z projections were created using ImageJ (developed by the National

Institutes of Health), and the number of DAPI positive brain parenchymal nuclei

was manually counted for each condition (n > 6 animals per condition). DAPI-

positive brain parenchymal nuclei were visually isolated using Adobe Photo-

shop CS5 subtraction blending whereby DAPI+GFP+ double-positive signal

(DAPI labeling of brain vasculature) was computationally removed from the

DAPI channel. 2D z projections were also used to quantify the fractional height

of the central arteries (CtA) penetrating into the embryo brain by normalizing

CtA height against the height of the dorsal longitudinal vein (DLV) above the

junction of the posterior communicating segment (PCS) and the basilar artery

(BA). Similarly, the fractional height of ISVs was calculated relative to the sepa-

ration of the dorsal aorta from the dorsal longitudinal anastomotic vessel.

The brain vasculature was reconstructed in 3D by first deconvolving the z

stacks using AutoQuant X (AutoQuant Imaging) and then 3D rendering with

Imaris (Bitplane). Quantification of total length and volume of CtAs in the left

hindbrain, and number of brancheswithin this network of CtAswere performed

using the Surface Tool and Filament Tracking packages in Imaris. Both surface

rendering and filament tracking were conducted using default parameters

whenever possible; however, manual correction of the filament tracking

results, using the raw fluorescence signal as a guide, was often necessary.

Vessel and branch density were subsequently calculated by normalizing

against the volume of the left hindbrain. Brain volume was approximated as

V = R1R2R3, where R1 is the length of the BA, R2 is the height of the DLV above

the junction of the PCS and BA, and R3 is the distance from to the primordial

hindbrain channel (PHBC) to the junction of the PCS and BA, measured

perpendicular to the BA (Figure 3E).

Live imaging of vascularization in the zebrafish brain was carried out as

above with a few modifications: 5–20 embryos were dechorionated at 1–3

dpf and embedded in 1% low-melt agarose in Danieau buffer containing tri-

caine and 0.03 mg/ml N-phenylthiourea (PTU; Sigma P7629) at 28.5�C. The
coordinates of each embryo were stored using a motorized stage (Märzhäuser

Wetzlar) and time-lapse images were acquired every 10–30 min for up to 12 hr.

The embryo stage and frame rate and total duration of imaging are provided

with the supplemental movies.

Primary Human Brain Microvascular Endothelial Cell Culture and

Bead Outgrowth Assay

HBMECs fromCell Systems (ACBRI 376) were maintained in Lonza EGM2 Sin-

gleQuots (CC-3162). Dharmacon ON-TARGETplus SMARTpool siRNAs were

transfected in primary cells using Dharmafect transfection reagent #1

(T-2001) according to the manufacturer’s instructions. Small molecule inhibi-
Developm
tors, including JNK inhibitor V (Calbiochem AS601245), JNK VIII inhibitor

(Calbiochem 420135), and GSK3beta inhibitor SB216763 (Tocris 1616), were

added 24 hr before cell lysis. The bead outgrowth assay was adapted from

(Nakatsu et al., 2003). In brief, hydrated collagen-coated dextran beads (Amer-

sham Cytodex-3 17-0485-01) were coated with HBMECs (300 cells/bead) by

shaking cells every 10–30 min for 3 hr and allowed to grow in a flask overnight

in 10 ml fresh media. Fibrinogen (25 mg/ml; Sigma F8630) was made in EGM2

and diluted 10-fold in bead medium. Bead medium consists of EGM2, 1:5

human skin fibroblast-conditioned media (ATCC CCL-110 in EGM2), 2 ng/ml

hVEGF, and 2 ng/ml HGF. Two hundred HBMEC-coated beads/ml released

from the flask bottom by aggressive tapping were washed and added into

fibrinogen/bead medium mixture and 1 ml pipetted into wells of 12 well plate

with 10 ml thrombin (Sigma T9549). After 20 min in 37�C incubator, 2 ml

bead media was slowly added to the fibrin gel matrix along with function-

blocking antibodies or small molecule inhibitors. Cells were fixed 1% PFA in

PBS overnight at 4�C, washed twice in PBS, and stained in PBS with

1:10,000 Hoescht and 1:250 Phalloidin-488 conjugate (Invitrogen A12379)

overnight at 4�C. After two PBS washes, confocal z stacks of the entire plate

was acquired using the ImageXpress Micro (Molecular Devices). Mean sprout

lengths were calculated by manual tracing and the number of sprouting cells

were counted automatically using ImageJ.
Animals

Mice, zebrafish, and their embryos were handled in accordance with Genen-

tech IACUC guidelines.
SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, Supplemental Experimental

Procedures, one table, and six movies and can be found with this article online

at doi:10.1016/j.devcel.2011.11.018.
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