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This paper scrutinises the Large Eddy Simulation (LES) approach to simulate the behaviour of inter-acting
particles in a turbulent channel flow. A series of simulations that are fully (four-way), two-way and one-
way coupled are performed in order to investigate the importance of the individual physical phenomena
occurring in particle-laden flows. Moreover, the soft sphere and hard sphere models, which describe the
interaction between colliding particles, are compared with each other and the drawbacks and advantages
of each algorithm are discussed. Different models to describe the sub-grid scale stresses with LES are
compared. Finally, simulations accounting for the rough walls of the channel are compared to simulations
with smooth walls. The results of the simulations are discussed with the aid of the experimental data of
Kussin J. and Sommerfeld M., 2002, Experimental studies on particle behaviour and turbulence modification
in horizontal channel flow with different wall roughness, Exp. in Fluids, 33, pp. 143–159 of Reynolds number
42,000 based on the full channel height. The simulations are carried out in a three-dimensional domain of
0.175 m � 0.035 m � 0.035 m where the direction of gravity is perpendicular to the flow. The simulation
results demonstrate that rough walls and inter-particle collisions have an important effect in redistribut-
ing the particles across the channel, even for very dilute flows. A new roughness model is proposed which
takes into account the fact that a collision in the soft sphere model is fully resolved and it is shown that
the new model is in very good agreement with the available experimental data.

� 2013 Elsevier Ltd. Open access under CC BY license.
1. Introduction

Particle-laden turbulent flows can be found in various industrial
and environmental processes. Examples of such processes are
pneumatic transport of particles; energy conversion of fossil fuels;
movement of soot particles in the atmosphere; the flow of particles
in cyclones and many more. Understanding the effects of particle–
fluid interactions is of utmost importance because this will result
in a more accurate implementation of these processes. Addition-
ally, applications such as sediment transport, where the direction
of gravity is perpendicular to the flow, particle–particle and parti-
cle–wall collisions become very important. Therefore, the need to
understand the effects of these additional physical phenomena is
of fundamental importance. Thus robust numerical simulations
will therefore help the optimisation and better design of industrial
processes and provide a more reliable prediction of environmental
processes involving particles.

There are various frameworks in which the continuous phase
for gas–solid flows can be predicted, i.e. Direct Numerical Simula-
tion (DNS), Large Eddy Simulation (LES) and the Reynolds Averaged
Navier–Stokes (RANS) method. DNS methods offer high accuracy in
resolving all scales without ad hoc modelling at the expense of
huge computational time. Currently, DNS can only solve flows of
relatively low Reynolds (Re) numbers, which are outside of most
engineering and industrial interests. Although the computational
effort for LES is still very high, it is considerably lower than for
DNS and it has therefore become very fashionable for analysing
flows in academia and it is also an emerging tool in industry.

LES solves the Navier–Stokes equations up to a particular
length-scale due to the application of a filter. Length-scales smaller
than the cut-off filter width (D) are modelled with a so-called sub-
grid scale (SGS) model. The cut-off width is an indication of the
smallest size eddies that are retained in the computations and ed-
dies smaller than D, are filtered out. Due to the filtering of the Na-
vier–Stokes equations, models are required to provide closure for
the SGS stresses, which account for the effect of the unresolved
scales on the convective momentum transport. In this paper, the
well known model proposed by Smagorinsky (1963) with van Dri-
est damping near the wall is used to model the SGS stresses. More-
over, the model proposed by Germano et al. (1991) and Lilly (1992)
is also adopted. The results of the two LES models are compared
with each other in order to verify that the solutions are indepen-
dent from the SGS models.

There are various frameworks to model the collisions between
particles; via stochastic or deterministic methods. Stochastic
methods, such as the one proposed by Sommerfeld (2001), gener-
ate fictitious collision partners with a given size and velocity and as
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a result no information regarding the real position and velocity of
the particles and the corresponding fluid environment is required.
Stochastic collisions are therefore performed via the use of a prob-
ability density function which is based on kinetic theory. The ben-
efit of this method is the speed of computation of the collisions
because no collision pairs are searched within the domain. How-
ever, the downside of these methods is that the particle and fluid
velocity fluctuations need to be assumed (e.g. Gaussian) and this
may prevent the prediction of clustering. Deterministic methods
on the other hand, determine collision pairs by using the particles
actual position and velocity. The actual collisions can be performed
either by the soft sphere or hard sphere model. In this work the
particle interactions are modelled according to the soft sphere
and the hard sphere models, which are both deterministic meth-
ods, in order to investigate their main differences.

In the soft sphere model, first applied by Cundall and Strack
(1979), the collisions are approximated by the elastic and plastic
deformation on the particle–particle contact area occurring during
a collision. Such a deformation can be mathematically described by
a spring-dashpot-slider model (Tsuji et al., 1992). On the other
hand, the hard sphere model, which was first proposed by Maw
et al. (1976) and further developed by Louge (1994), uses the con-
servation of momentum of the particles and approximates the col-
lisions as instantaneous and binary. In other words, the hard
sphere collisions are event-driven, as opposed to the soft sphere
model which uses a fixed time-step, and hence this makes the large
scale simulations potentially faster. Note, however, this is only va-
lid for fast flowing dilute flows where the errors of the hard sphere
model approximations are negligible. In addition, in these type of
simulations, a large number of particles are required. The soft
sphere approach is computationally more intensive compared to
the hard sphere model because the collision of each particle is fully
resolved. On the other hand, the soft sphere model potentially has
a higher accuracy as no empirical data, besides the material prop-
erties, are required to compute the collisions.

In this work, the point-particle or point-mass approach is used
to approximate the presence of particles as seen by the fluid. The
effect of the particles on the fluid phase is modelled as an inter-
phase momentum exchange source term. Elghobashi and Truesdell
(1992) mention that the point-particle approach is valid if the par-
ticle diameter (dp) is smaller than the Kolmogorov scale (gj). This
implies that dp must be smaller than the grid size (Dx). Although
accounting for the volume fraction effects on the drag force is
probably not of large importance in the test-cases simulated in
the current research work, it might have an effect on the parti-
cle-clustering. Individual particles are tracked by solving Newton’s
second law. Moreover, the drag force of the fluid acting on the par-
ticles is added via the correlation proposed by Wen and Yu (1966).
Therefore the simulations performed in this work are fully coupled,
or four-way coupled.

The purpose of this paper is to examine the particle behaviour
in a horizontal channel flow with the gravity acting perpendicular
to the main flow direction. This paper first compares the hard
sphere and soft sphere methodologies and evaluates their differ-
ences as opposed to other studies that primarily use the hard
sphere methodology, such as Sommerfeld (2003). The results of
the two models are compared to the experiment of Kussin and
Sommerfeld (2002), who investigate the particle behaviour and
turbulence modification of a horizontal channel flow. Finally, this
article investigates the differences and effects of simulations that
are one-way coupled, two-way coupled and four-way coupled on
the particle statistics. Moreover, the effect of the wall roughness
on the particle statistics is investigated and compared to the avail-
able experimental data and a novel wall roughness model that is
used in conjunction with the soft sphere methodology is proposed.
This paper is organised in six sections. Section 2 describes how
the fluid-phase is solved and how the fluid sub-grid scales are
modelled. Section 3 describes how the equation of motion for each
particle is solved, the method used for particle tracking and
the models used for the wall roughness for both the soft sphere
and hard sphere models are discussed. Section 4 describes the
simulation set-up and Section 5 compares and discusses the
numerical results with the available experimental data and various
set-up conditions. Section 6 summarises the main conclusions of
this work.

2. Fluid-phase modelling

2.1. Large Eddy Simulation

The filtered momentum equation for the fluid phase is
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where af is the fluid volume fraction, qf is the fluid density and ~v f ;i is
the filtered fluid velocity. The last two terms on the right hand side
of Eq. (1) are source terms; Sf,j is an additional source term; andPphases–f

p¼1 bðf ;pÞ½~v f @p;j � vp;j� is the inter-phase momentum exchange
between the two phases respectively; the subscript f@p indicates
the undisturbed fluid at the location of the particle. For more details
and validation see Electronic Annex A in the online version of this
article.

2.1.1. Periodic conditions and driving pressure drop
As the domain is periodic in the direction of the flow an addi-

tional source term is required to drive it. This source term is equal
to the integrated wall shear stress. This additional source term is
added in the filtered momentum equation, analogously to the pres-
sure drop. Furthermore, there are two ways to implement this: (a)
by fixing the mass flow rate _m, which will be corrected by adjust-
ing the forcing term in the momentum equation at every time-
step; and (b) by specifying a constant pressure gradient (dp/dx),
which can be applied when the required wall shear stress is
known.

The former has been used in the current simulation which re-
sults in

Sf ;1 ¼
_mo � _mn

AcrossDtn
ð2Þ

where _mo is the specified mass flow rate at a given cross-section; _mn

is the computed mass flow rate at current time step; Across is the
cross-sectional area; and Dtn is the current time-step. Sf,1 has the
units of pressure gradient; i.e. kg

m2s2. Note that this is only imple-
mented in the x-direction, Sf,2 and Sf,3 are zero, as there is no net
flow in these directions.

3. Particle-phase modelling

3.1. Particle forces

Newton’s 2nd law for a particle in a gas is

mp
dvp;i

dt
¼ b

Vp

ap
ðv f @p;i � vp;iÞ þmpgi þ Fpw;i þ Fpp;i ð3Þ

where mp is the mass of the particle, vf@p,i is the undisturbed fluid
velocity along the particle, vp,i is the particle translational velocity
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and b is the drag function as proposed by Wen and Yu (1966), where
the reciprocal of the Eulerian fluid-particle timescale is given by

b ¼ 3
4

CD
apaf qf jv f @p;i � vp;ij

dp
a�2:65

f ð4Þ

and CD represents the coefficient of drag for an individual particle
and af represents the fluid volume fraction. The detailed equation
of motion of a particle is provided in Electronic Annex B in the on-
line verison of this article. The coefficient of drag, CD, is defined as
(Rowe, 1961)

CD ¼
24 1þ0:15ðð1�apÞRepÞ0:687½ �

Repð1�apÞ ; if ð1� apÞRep < 1000

0:44; if ð1� apÞRep P 1000

8<
: ð5Þ
3.2. Particle tracking

Modelling the particle motion in the Lagrangian framework in-
volves tracking the properties of individual particles and the fluid
properties at the particle’s location. MultiFlow (van Wachem
et al., 2012), which is an in-house multiphase code, achieves this
by creating a particle mesh. This mesh is isotropic and homoge-
neous in all Cartesian directions and completely overlaps with
the corresponding fluid mesh, see Fig. 1. The particle grid spacing
is directly proportional to the mean particle diameter (constant C
in Fig. 1, where dp is the particle diameter). The particle mesh is
used to determine the interpolation properties from the fluid phase
to the particle phase, as well as to enable collision-neighbour find-
ing lists.

The fluid effects on the particles are modelled using Eq. (3).
Including only this effect and neglecting the effect of particles on
the fluid and particle–particle interactions is referred to in the lit-
erature as one-way coupling. Note that the fluid velocity in Eq. (3)
strictly represents the undisturbed fluid velocity of a particle’s cen-
tre along its trajectory. Strictly speaking this velocity does not exist
because of the particle’s presence at that point. In the point-parti-
cle approach, the fluid velocity at the location of the particle is sim-
Fig. 1. 2D visualisation of individual particle and fluid meshes.
ply found by interpolation. Note that the fluid velocity is in the
Eulerian framework and the particles are in the Lagrangian frame-
work. Therefore, it is required to transform the Eulerian fluid prop-
erties to Lagrangian at the particle’s centre by an interpolation
technique. In this work, spline interpolation has been used to inter-
polate the fluid properties from the fluid mesh to the particle
mesh. Yeung and Pope (1988) perform a study on the interpolation
schemes in homogeneous turbulence and report that spline (or
third order Lagrangian polynomial) interpolation has the least ef-
fect (or minimum error) on the fluid energy spectrum. Balachandar
and Maxey (1989) investigate the effect of interpolation methods
on one-particle and two-particle dispersion in homogeneous tur-
bulence. They also report that spline interpolation offers the high-
est accuracy and least computational time when compared to
other methods, which is important for two-particle dispersion (or
coagulation).

The particle effects are included in the fluid momentum equa-
tion (Eq. (1)) as a source term approximated by the Wen and Yu
(1966) drag function (Eq. (4)). The inclusion of this source term
is referred to as two-way coupling. For two-way coupling, the
Lagrangian particle properties must be transformed to Eulerian be-
cause all properties must be continuous. Interpolation from the
particle centres to the particle mesh (and consequently to the fluid
mesh) is performed on a volume basis. This is because one particle
cell might have several particles and/or several fractions of parti-
cles and this leads to different weighting of each particle within
each particle cell. The contribution of each particle to the particle
mesh (and vice versa) is determined by the fraction of the volume
of the particle present in each particle cell and, consequently, in
each fluid cell. Therefore, the two-way coupling is the total contri-
bution of all particles and fractions of particles in the fluid cell. The
model has two distinct timesteps, corresponding to the particle
and the fluid. The two-way coupling term is determined at every
particle timestep which is always smaller than the fluid timestep.
Thus, the total contribution of the two-way coupling term at the
fluid timestep is updated by the cumulative contribution at each
particle timestep. When collisions are neglected, the particle
time-step is set to a small and fixed value, so it is much smaller
than the fluid time-step. Loth (2000) discusses the assumptions
required for this approach. Eaton (2009) discusses the relevant
difficulties of the point-mass approach in the LES framework. The
main assumption of the point-particle approach is that the particle
diameter must be smaller than the Kolmogorov micro-scale
(gj) and smaller than the grid size. Bagchi and Balachandar
(2003) investigate the effect of turbulence on the drag and lift of
a particle via DNS of an isotropic field. They report that when the
particle diameter is within the range 1.5gj < dp < 10gj, the drag
law is accurately predicted. Moreover, Vreman et al. (2009)
mentions that the drag force acting on the particles is reasonably
predicted when dp < 4gj. Based on the experimental data concern-
ing this study, the Kolmogorov length scale at the centre of the
channel and near the wall are gj,centre = 9.35 � 10�5 m and
gj,wall = 2.911 � 10�5 m. Therefore, throughout the channel in this
study this ratio does not exceed dp/gj < 7. Furthermore, Yamamoto
et al. (2001) show that for large particle Stokes numbers (St� 1)
the dispersion of particles is not affected by the subgrid scales.
Hence, in this study it is not expected that the particle statistics
to be affected significantly by the unresolved scales. Moreover,
because Dy P gj everywhere in the domain, including in the
near-wall region, the assumption that the particle is much smaller
than the mesh spacing is also satisfied in this study.

The particle source terms have a different impact on the flow
since interpolation is also performed between the particles (their
centres) and the particle mesh. Cubic spline interpolation is used
to interpolate properties from the vertexes of the particle mesh
to the particle centres. The particle mesh also enables the efficient



Fig. 2. An illustration of the virtual wall approach, in which the macroscopic wall is
locally replaced by a virtual wall, which is obtained by rotation under a
stochastically sampled angle, c. The particle pre-collision angle, c, and post-
collision angle, c0 are shown as well.
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tracking of inter-particle and particle–wall collision pairs (or four-
way coupling). The particle mesh significantly reduces the search
of possible collision pairs, either between particles or between par-
ticles and wall-segments, and hence the computational run-time.

3.3. Inter-particle and particle–wall interactions (four-way coupling)

The interactions of particles with other particles and walls are
of dynamic nature. This is because the particle movements are
essentially defined by the particle–particle interactions, particle–
wall interactions, particle–fluid interactions and/or body forces.
Newton’s 2nd law is solved for each particle, accounting for these
interactions and thus obtaining the individual trajectories (i.e.
Lagrangian framework). The integral for the soft sphere model is
approximated with the Verlet algorithm (Allen and Tildesley,
1989), whereas for the hard sphere model with an explicit scheme.

The major distinction between the soft sphere and hard sphere
models is that the soft sphere collisions are fully resolved. The
deformation of the particles undergoing a collision is approxi-
mated and the resulting repellent force is determined. This implies
that the soft sphere model needs a very small time-step, much
smaller than the fluid time-step. In other words, the soft sphere
model computes the actual deformation of the particles and the
corresponding contact forces which depend on the contact time
of the collision. On the other hand, the hard sphere algorithm per-
forms each collision only once since it is approximated as instanta-
neous. Collisions are treated by evaluating the potential collision
time between each pair. Therefore, this framework is so-called
event-driven. The hard sphere collisions are resolved by satisfying
the global conservation of momentum and only depend on the
direction of motion of each particle and their corresponding
elapsed collision time. Hence, the operation of the hard sphere
algorithm is significantly faster compared to the soft sphere algo-
rithm in fast flowing dilute flows.

3.4. Rough wall modelling

The effect of rough walls has shown to be important in a num-
ber of gas-particle flows (Sommerfeld and Kussin, 2004) because
the particles that collide with a rough wall have a tendency to be
suspended into the flow. In horizontal channel flow simulations,
neglecting the effect of wall roughness, a large number of particles
grazing the wall are predicted. It was shown experimentally by
Kussin and Sommerfeld (2002) that the wall roughness strongly
enhances the transverse dispersion of the particles and their fluc-
tuating velocities throughout the channel. The measurements have
also revealed that the wall roughness causes a significant reduction
of the mean horizontal velocity of the particles.

The most obvious approach to model a rough wall is a deter-
ministic approach, where the wall roughness is resolved. However,
because of the rapidly changing normal of the wall or the small
length scale required to describe the wall roughness, a fully deter-
ministic approach is very costly. Therefore, a stochastic approach
to model wall roughness is adopted. There are a number of sto-
chastic approaches described in the literature (for example see
Tsuji et al., 1987), the most applied model is of Sommerfeld
(1992) and later corrected by Sommerfeld and Huber (1999) for
the so-called shadow effect. A stochastic model usually works with
a virtual wall concept, which changes the orientation of the wall
with a randomly chosen angle roughness c, see Fig. 2.

The angle c is sampled according to the following algorithm
(Sommerfeld and Huber, 1999):

1. Sample a roughness angle, c, from a normal distribution. The
standard deviation for this distribution is given by the actual
roughness of the wall as experienced by the particle.
2. If a negative roughness angle with an absolute value larger than
the pre-collision angle, a is sampled, the roughness angle is
rejected, as this is a non-physical collision; the so-called sha-
dow-effect.

3. Rotate the local solid wall with the random roughness angle, c
and so it has normal nc. This fictitious wall replaces the actual
solid wall in determining the collision dynamics.

The above algorithm has been further refined by Konan et al.
(2009), by realising that the above algorithm only accounts for a
single collision with a rough wall. In the original algorithm of
Sommerfeld and Huber (1999), when the post collision angle is
very small, a so-called grazing particle is predicted, e.g. a particle
which remains close to the wall. However, in reality it is very
likely that such a particle will endure a second wall collision very
soon after the first collision. This effect decreases the likelihood
of random rough wall angles leading to very small post collision
angles.

So far, all the employed rough wall models from the literature
have dealt with hard sphere type collision models, where the ac-
tual collision is assumed instantaneous. The rough wall model can
then be used as a black box; using a direct probability density
function using the pre-collision angle to predict a post-collision
angle. In this work the roughness model of Sommerfeld (1992)
with the shadow wall effect is used for the simulations were
the particles are considered as hard spheres. However, the algo-
rithm needs to be refined when the particles are considered as
soft spheres. This is because the collisions are fully resolved,
allowing for a realistic collision time and multiple collisions to
occur at the same time.

The important consequence from resolving the collision as it oc-
curs, is the assumption that walls have an infinite size. For in-
stance, a particle colliding with the virtual wall depicted in Fig. 2
might leave the domain at the bottom. In reality, this would not oc-
cur because of two reasons. The first reason is that a real rough
wall has an amplitude, which is assumed zero in the virtual wall
method. The second reason is that a real rough wall segment is
of finite length; usually small compared to the particle size. To
overcome these two shortcomings in a soft sphere framework, a
variation of existing virtual wall procedure is employed:

1. When the shortest particle–wall distance is the wall roughness
amplitude (taken to be 10% of the particle diameter) one virtual
wall is generated at the point of the particle which is closest to
the wall. The virtual wall is generated with the original algorithm
(Konan et al., 2009; Sommerfeld and Huber, 1999) as outlined
above.



Fig. 3. An illustration of the newly proposed multiple virtual wall approach. A first
virtual wall is introduced when the particle reaches the amplitude of the wall
roughness added to the actual smooth wall. Additional virtual walls are added
randomly every time the particle moves half of this amplitude closer to the wall.
One such additional virtual wall is depicted.
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2. If the shortest particle–wall distance becomes half of the dis-
tance at which the virtual wall was inserted, i.e. the particle
has moved closer to the wall, a second virtual wall is intro-
duced, with a newly randomly sampled angle. This is shown
in Fig. 3.

3. The addition of new virtual walls is repeated until the particle is
moving away from the wall.

The required standard deviation for the normal distribution is
taken from the experimental data provided by Kussin and Som-
merfeld (2002). In the analysed flow, up to three virtual walls are
required to deal with the rough wall collision, although almost
all collisions are dealt with by application of the first rough wall.
4. Simulation set-up

4.1. Set-up

The large-scale simulations are performed in the Eulerian–
Lagrangian framework and the predictions are compared to the
experimental work of Kussin and Sommerfeld (2002). In their
work, a horizontal channel with a height of 35 mm, a width of
175 mm and a length of 6 m, corresponding to approximately
170 channel heights, is used. A flow of an air-particle mixture with
various particle sizes and mass loadings is introduced in the hori-
zontal direction.

This paper focuses on the results obtained for the single phase
flow and the two-phase flow with mass loading / = 1.0, which is
based on the experimental conditions. At this mass loading both
fluid-particle as well as particle–particle interactions are expected
to be important. The experimental Reynolds number considered
based on the channel height is 42,585, arising from the average
air velocity of Uav = 19.7 m/s, air density of qf = 1.15 kg/m3 and a
viscosity of lf = 18.62 Pa s. The friction Reynolds number based
on the half channel height is Res = 600. The particles considered
are glass beads, qp = 2500 kg/m3, with an average diameter of
195 lm and a narrow particle size distribution as described in Kus-
Fig. 4. The geometry of the channel as used in the simulations. The mean flow is in the X d
for the flow and the particles. The solid walls of the channel are indicated in grey.
sin and Sommerfeld (2002). In the simulations, particles are
tracked for 47 TL, where TL is the integral time scale of turbulence
at the centre of the channel. In the Electronic Annex C in the online
version of this article the various particle properties and Stokes
numbers based different fluid timescales are presented. It is impor-
tant to note that the Stokes number of the particles for all defini-
tions is greater than one.

The domain used for the simulations is sketched in Fig. 4. The
simulations are carried out with our in-house code MultiFlow
(van Wachem et al., 2012; Bruchmüller et al., 2011), which is a
fully coupled parallel computational fluid dynamics code based
on finite volume discretisation. The simulations are carried out in
a three-dimensional domain of 0.175 m � 0.035 m � 0.035 m,
where the X direction corresponds to the direction of the flow
and the negative Y direction is the direction of gravity. The X and
Z directions are taken to be periodic.
4.2. Initial and boundary conditions

The flow is initialised by setting a mean velocity corresponding
to the mass flow rate of the experimental data provided by Kussin
and Sommerfeld (2002). On top of the mean, synthesised turbu-
lence is added as randomly sampled from a von Karman spectrum,
using the Fourier modes of a fully developed turbulent spectrum.
The initial condition does not impose a flow profile; the flow pro-
file is formed as a result of solving the Navier–Stokes equations and
enforcing the no-slip condition for velocity at the wall. The bound-
ary conditions at the wall are set as no-slip.

For the simulations involving particles, the particles are intro-
duced uniformly in the domain with a small random slip velocity
compared to the local fluid velocity. The number of particles in
the domain, which is determined from the mass loading of /
= 1.0, given in the experimental set-up, is 24,500, leading to a par-
ticle volume fraction of ap = 4.7977 � 10�4. The experimental data
provided by Kussin and Sommerfeld (2002) have a slightly differ-
ent mass flow rates for the single phase and particle laden cases.
The forcing term (see Eq. (2)) keeps a constant mass flow rate of
_m ¼ 0:028175 kg=s for the single phase and _m ¼ 0:027044 kg=s

for the particle laden cases, computed from the data provided by
Kussin and Sommerfeld (2002). The resulting pressure drop equals
the integrated wall shear stress in the channel. In addition, the
pressure is fixed to a reference value on one arbitrary cell face in-
side the domain. In the Electronic Annex A, spectra for the one
dimensional spanwise and streamwise velocities are included in
order to ensure that the LES simulations in this study resolve most
of the energetic lengthscales.
4.3. Computational mesh

Two computational meshes are used to carry out the single-
phase simulations in order to show that the solution is grid inde-
pendent. The coarse geometry is then used to carry out the gas-
irection and the gravity is in the Y direction. Both the X and Z directions are periodic
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particle simulations. The coarse mesh contains a total of 870,000
computational cells and the finer mesh contains a total of
1,299,000 computational cells. The refinement is achieved by refin-
ing the nodal spacing equally in all directions. Both meshes resolve
the wall boundary layer, and contain 5 and 12 mesh points within
the y+ = 10 layer, respectively. Near the wall a DNS resolution is ob-
tained by using

y ¼ ymax
1
2

1þ tanh R y
ymax
� 1

2

� �

tanh 1
2 R
� �

2
4

3
5

2
4

3
5 ð6Þ

where R is a constant set to 7.0 and defines the amount of refine-
ment near the wall. ymax = 35.0 mm, is the channel height. In addi-
tion, in every x+ = 50 and z+ = 30, 1 mesh point is uniformly added.
4.4. Discretisation

The discretisation of the Navier–Stokes equations is done using
a finite volume approach, combined with a second order accurate
three point backward Euler time discretisation for the temporal
terms and a second order accurate central differencing scheme
for the advection term. The pressure velocity coupling is done in
a fully coupled framework, using one outer iteration per time-step
(van Wachem et al., 2007).
5. Results and discussion

Single-phase simulations are performed in order to validate the
performance of the LES models. The Smagorinsly model with van
Driest dampening and the dynamic model are compared with the
experimental data. The single-phase results are in very good agree-
ment with the corresponding experimental data. Additionally, in
order to verify that the numerical solution is grid independent,
mesh refinement is performed. The results show that the solution
is indeed grid independent. The interested reader is refered to the
Electronic Annex A in the online version of this article.
Fig. 6. The horizontal fluid velocity fluctuations for the single phase fluid and
particle-laden fluid as a function of dimensionless channel height for the Dynamic
Germano and Smagorinsky LES models compared to the experiments.
5.1. Particle laden simulations

Particle laden simulations are carried out and compared to the
experimental work of Kussin and Sommerfeld (2002). The effects
of wall roughness, one-way, two-way and four-way coupling are
investigated and compared.
Fig. 5. The horizontal mean fluid velocity for the single phase fluid and particle-
laden fluid as a function of dimensionless channel height for the Dynamic Germano
and Smagorinsky LES models compared to the experiments.
5.2. Choice of LES model for fully coupled particle laden simulations

The purpose of this section is to investigate the effect of the sub-
grid scale models when used in conjunction with the fully coupled
simulations. Fully coupled simulations with the Smagorinsky mod-
el with van Driest dampening and the Dynamic Germano model
are performed and compared to the particle-laden experimental
data. Yamamoto et al. (2001), who perform LES simulations of a
vertical particle-laden channel flow, question the suitability of
the Dynamic Germano model. The Dynamic Germano model,
which utilises plane averaging in order to be numerically stable,
can be affected erroneously by the anisotropy caused by the parti-
cles. This violates the assumptions of the model.

Fig. 5 compares the mean horizontal velocity predicted by the
two subgrid scale models. Fig. 5 shows that the Smagorinsky model
with van Driest dampening is closer to the experimental particle-
laden mean horizontal velocity. Additionally, the Dynamic Ger-
mano model modulates turbulence by a higher percentage com-
pared to the Smagorinsky model with van Driest dampening, see
Fig. 6. Note that Kuerten (2006) investigates the effects of subgrid
scale models on the particle statistics and reports that the mean
particle wall-normal (i.e. horizontal) velocity is least accurate com-
pared to the DNS results. Based on these results, the Smagorinsky
model is chosen for the remaining sections of this paper.
5.2.1. Effect of wall roughness
Fig. 7 compares the horizontal mean fluid velocity with the

experimental data both for smooth and rough walls. Similarly to
the single phase simulations the results for the rough walls are
Fig. 7. The horizontal mean fluid velocity for the particle-laden fluid as a function of
dimensionless channel height for the hard sphere model with rough walls and
smooth walls compared to the experiments.



Fig. 8. The dimensionless horizontal mean fluid velocity for the particle-laden fluid
as a function of dimensionless channel height for the hard sphere model with rough
walls and smooth walls compared to the experiments.

Fig. 10. The shear stress for the particle-laden fluid as a function of dimensionless
channel height for the hard sphere model with rough walls and smooth walls
compared to the experiments.

Fig. 11. The particle concentration as a function of dimensionless channel height
for the hard sphere and soft sphere models with rough walls and smooth walls
compared to the experiments.
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slightly over-predicted at the centre of the channel compared to
the experimental data. One possibility for this small discrepancy
is that the experimental data have a small mean velocity in the ver-
tical direction, which implies that the flow in the experiment is not
fully developed. The mean vertical velocity is small, on the order of
1.6% compared to the mean horizontal velocity. Another possibility
is that the effect of the sub-grid scales is ignored and this may have
a small effect on the flow as well. It is interesting to note that when
the walls are treated as rough the mean fluid velocity is similar to
the particle-free experimental results. Fig. 8 shows the dimension-
less mean horizontal velocities as a function of dimensionless
height. This means that the average mean fluid velocity shape is
not influenced by the presence of the particles, although the simu-
lations predict a small effect of the particles on the flow.

Additionally, the simulated flow profile for the particle laden
cases without wall roughness shows a slight asymmetry. This is
because more particles are found in the bottom half of the channel,
lowering the fluid velocity in this region due to the effect of two-
way coupling. Although there is no experimental data for this pre-
cise case, a similar observation was made by Lain et al. (2002), who
experimentally and numerically investigate the four-way coupling
of a particle-laden horizontal channel flow for similar experimen-
tal conditions.

The experimental particle-free and particle-laden RMS veloci-
ties have small differences between them, as shown in Fig. 9, which
compares the fluid horizontal velocity fluctuations. On the other
hand, the simulation results show larger differences in RMS veloc-
ities. The simulations predict a large attenuation of the turbulence
in the channel flow due to the addition of particles. Therefore, the
predicted particle-laden velocity fluctuations are lower compared
Fig. 9. The horizontal rms fluid velocity for the particle-laden fluid as a function of
dimensionless channel height for the hard sphere model with rough walls and
smooth walls compared to the experiments.
to the corresponding experimental results. This shows that the
two-way coupling over-dampens turbulence by 25% at the centre
of the channel.

This is opposite to the findings of Eaton (2009), who reports that
the two-way coupled simulations do not attenuate turbulence suf-
ficiently. In fact, Eaton (2009) mentions that by ten-folding the
mass loading (i.e. by adding more particles) the correct turbulence
attenuation is achieved. Eaton (2009) has not provided a physical
explanation for this. Yamamoto et al. (2001), who perform LES sim-
ulations on a vertical channel, mention that for large Stokes num-
bers their computations for turbulence attenuation do not agree
with the experimental results. For small Stokes numbers, however,
Yamamoto et al. (2001) mention that the predicted turbulence
attenuation is in good agreement with the experimental results.

The shape of the predicted horizontal RMS velocity of the parti-
cle-laden case compared to the single phase case is also somewhat
different. The shape of the single-phase horizontal RMS velocity, as
predicted by the simulations, are symmetric. On the other hand,
the corresponding particle-laden case shows a slight asymmetry
in the RMS fluid velocity. This is because without the wall rough-
ness more particles tend to remain near the bottom of the channel,
and most graze in a layer near the bottom. This influences the fluid
RMS velocity profile due to the two-way coupling, which makes it
asymmetric as opposed to the symmetric profile as predicted for
the rough wall case. In the smooth wall case, the rebound angle
of the particles is smaller compared to the rough wall case. Thus
less particles are found at the centre of the channel which would
then be dispersed by the turbulence to other parts of the channel,



Fig. 13. Instantaneous distribution of particles for simulations when the statistics
have reached steady state, (a) with particle–particle collisions and wall roughness,
(b) with no particle–particle collisions and wall roughness (c) with particle–particle
collisions and smooth walls, and (d) with no particle–particle collisions and smooth
walls.
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e.g. the top wall. The smooth walls fail to do this and due to the ac-
tion of gravity, the particles tend to remain near the bottom wall.
Turbulence is more suppressed at the bottom half of the channel
due to the high particle volume fraction and two-way coupling,
thus creating an asymmetric RMS velocity profile. As also men-
tioned by Lain et al. (2002), this effect is more pronounced with
increasing mass loading. Additionally, this behaviour has impor-
tant consequences on the shear stresses, which are plotted in
Fig. 10. The shear stresses on the wall for the smooth wall case
are asymmetric, opposed to the rough wall case and the single
phase case, e.g. at y/H = 0.05, uf,rmsvf,rms = �0.45 but at y/H = 0.95,
uf,rmsvf,rms = 0.65.

This is also illustrated in Fig. 11, which compares the particle
concentration obtained by the simulation with the rough and
smooth walls with the experimental data. For both the soft and
hard sphere models simulating smooth walls, the concentration
of the particles is much higher at the bottom wall. However, when
the walls are treated as rough, the particle concentration is almost
homogeneous and is in very good agreement with the experimen-
tal data. The wall roughness, therefore, is important as it helps to
redistribute the particles into the main flow.

The redistribution of particles is also driven by particle–particle
collisions, even in this dilute case; where the particle volume frac-
tion is ap = 4.7977 � 10�4. To illustrate this, Fig. 12 compares the
particle concentration for rough walls with and without inter-par-
ticle collisions. When inter-particle collisions are not taken into ac-
count, the particle concentration at the bottom wall is 16.6%
higher, despite accounting for wall roughness. In addition, the par-
ticle concentration gradient without particle–particle collisions at
the centre of the channel is steeper by about 37%. This illustrates
the importance of particle–particle collisions even at very low par-
ticle volume fractions.

Fig. 13 shows the instantaneous distribution of particles for
simulations with: (a) with particle–particle collisions and wall
roughness, (b) with no particle–particle collisions and wall rough-
ness (c) with particle–particle collisions and smooth walls, and (d)
with no particle–particle collisions and smooth walls. Fig. 13a–c
illustrate that the particles remain suspended in the channel, how-
ever with a different concentration profile. On the other hand,
when particle–particle collisions are ignored and the walls are
treated as smooth, particles with time slowly migrate to the bot-
tom wall and remain there. In fact the flow now resembles sedi-
ment transport because the particles are now sliding across the
bottom wall. The importance of the inter-particle collisions in
redistributing the particles in the channel becomes apparent. Vre-
man et al. (2009) numerically investigate the effect of particle–par-
ticle collisions for a vertical channel, but at a much lower Re
Fig. 12. The particle concentration as a function of dimensionless channel height
for the hard sphere model with and without inter-particle collisions (with rough
walls) compared to the experiments.
number and much higher mass loading. They report that the colli-
sions affect the statistics of both the fluid and the particles. They
conclude that it is important to include the particle–particle colli-
sions in order to correctly predict the modification of the fluid and
particle statistics. Yamamoto et al. (2001) investigate the particle–
particle collisions at lower mass loadings and reach similar
conclusions.

On the other hand, particles remain distributed across the chan-
nel when inter-particles collisions are taken into account even for
the smooth walls (see Fig. 11), whereas this is not true when inter-
particle collisions are ignored. Therefore, inter-particle collisions
act as an extra distributive mechanism, even for dilute flows. This
is an important finding because many simulations in the literature
ignore inter-particle collisions because of the low mass loading.
Lain and Sommerfeld (2010) investigate the transport of particles
in a cylindrical elbow of mass loading ratio 0.7 and illustrate that
by ignoring the particle–particle collisions, particles do not prefer-
entially concentrate at the exit of the elbow. Therefore the roping
effect is not observed, however, when Lain and Sommerfeld
(2010) perform fully coupled simulations indeed observe this ef-
fect. This indicates that particle–particle collisions are especially
important in all wall-bounded flows.
5.2.2. Effect of hard sphere and soft sphere models on the particle
statistics

As already discussed, in dilute flows the choice between the
hard sphere and soft sphere models largely depends on the compu-



Fig. 14. The horizontal mean particle velocity as a function of dimensionless
channel height for the hard sphere and soft sphere models with rough walls and
smooth walls compared to the experiments.

Fig. 15. The horizontal RMS particle velocity as a function of dimensionless channel
height for the hard sphere and soft sphere models with rough walls and smooth
walls compared to the experiments.

Fig. 16. The horizontal mean particle velocity as a function of dimensionless
channel height for the hard sphere model with rough walls and smooth walls with
different tangential coefficients of restitution compared to the experiments.

Fig. 17. The horizontal RMS particle velocity as a function of dimensionless channel
height for the hard sphere model with rough walls and smooth walls with different
tangential coefficients of restitution compared to the experiments.
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tational time spent to solve the particle equation of motion. For
very dilute flows, the hard sphere model is the most natural choice.
However, when the collisions can no longer be assumed as binary
and instantaneous, the soft sphere model is the only realistic op-
tion. It is interesting to know whether the choice of the collision
model affects the statistics. Fig. 14 compares the mean velocity ob-
tained from both models with the experimental data. The same
comparison is performed for the smooth walls. The differences be-
tween the hard and soft sphere models for the smooth walls are al-
most negligible. However, the differences between the hard and
soft sphere models for the rough walls are minor. This is because
the rough wall treatment in the soft sphere implementation adds
extra virtual walls during the collision of a particle with a wall,
which is a more realistic representation of a rough wall compared
to the hard sphere rough wall treatment where one random wall is
considered. This is because, a soft sphere collision is not instanta-
neous and occurs over a finite amount of time. Similarly, the same
effects are observed on the fluid statistics. However, Fig. 15, which
compares the particle velocity fluctuations, shows that the differ-
ences are somewhat larger. Additionally, the differences in both
particle mean and RMS velocity profiles are because the hard
sphere collisions are unfortunately heavily dependent on the
tangential coefficient of restitution (w); the effects by varying this
quantity are shown in Figs. 16 and 17.

This tangential coefficient of restitution is empirical and diffi-
cult to evaluate experimentally. Therefore, a sensitivity analysis
is essential to determine an appropriate value of w in order to ob-
tain good agreement with the experimental data. Konan et al.
(2011), who perform an investigation based on DES; use particles
with a diameter of 100l m with similar flow settings, report that
similar results can be obtained by increasing the experimental
roughness angle (c) from 5.3 to 6.5. This is another way of changing
the effect of w because it affects the particle rebound angle di-
rectly. Konan et al. (2011), however, neglect the effect of the rota-
tion of particles and use the collision model proposed by
Sommerfeld and Huber (1999). This model does not split the coef-
ficient of restitution into normal and tangential coefficients but has
a single coefficient of restitution which depends only on the impact
angle of the particles and it is this relationship that is determined
empirically. Moreover, the coefficient of friction is treated the same
way, i.e. it is a function of impact angle. In this work the roughness
angle used is c = 5.02o estimated from the experimental measure-
ments and reported by Sommerfeld and Huber (1999) and Lain
et al. (2002). The soft sphere parameters rely on the properties of
the solids and no empiricism is required. Most importantly, the
coefficient of restitution is related to the parameter a (see Tsuji
et al., 1992) and automatically depends on impact velocity and an-
gle. Tsuji et al. (1992) heuristically find a relation for the coefficient
of restitution which is independent of the constants used in the
soft sphere model, which is not required to be empirically
specified.
5.2.3. Effect of one-way coupling
To investigate the effect of one-way coupling on the fluid and

particle statistics the particle sources in the fluid momentum equa-
tion are ‘‘turned off’’; i.e. by making the last term on Eq. (1) equal to
zero and setting the fluid volume fraction as af = 1.0. One-way cou-
pled simulations are performed under the same conditions for both



Fig. 18. The horizontal mean particle velocity as a function of dimensionless
channel height for the four-way and one-way coupled simulations with rough walls
and smooth walls to the experiments.

Fig. 19. The horizontal RMS particle velocity as a function of dimensionless channel
height for the four-way and one-way coupled simulations with rough walls and
smooth walls to the experiments.
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rough and smooth walls. The particle mean velocity profile, pre-
sented in Fig. 18, is not affected. The differences are statistically
insignificant because the difference, for example, of the mean cen-
tre-line particle velocity is less than 0.8%. This is because the par-
ticle volume fraction is very low, so the two-way coupling force
does not affect the average particle velocity. Therefore, the absence
of the two-way coupling does not significantly affect the average
particle statistics. The particle concentration profiles, not pre-
sented, are almost identical compared to the four-way coupled
simulation. On the other hand, the particle velocity fluctuations ex-
hibit different trends. Fig. 19 compares the particle RMS velocity
fluctuations in one-way coupled simulations and fully coupled
simulations, for both types of walls. The one-way coupled RMS
velocity values are higher compared to the respective fully-coupled
simulations. In particular, the fluctuations predicted by the one-
way coupled simulations and by considering the walls as rough
are 10% higher.

6. Conclusions

This work compares different models and their implications in
the framework of LES and compares the findings to the experimen-
tal results for turbulent particle-laden channel flow of Kussin and
Sommerfeld (2002). The Reynolds number of the simulations is
approximately 42,000 based on the full channel height and the
mass loading of the simulations is 1.0, as set by the experiment,
corresponding to about 24,500 particles. Mesh refinement studies
show that the fully converged solutions are in very good agree-
ment with the single-phase experiments. Also, the results obtained
from employing the standard Smagorinsky LES model are very sim-
ilar to the dynamic Germano-Lilly model. For the multiphase cases,
the results of fully-coupled simulations are compared to one-way
coupled and two-way coupled simulations and their differences
are physically interpreted. In addition, the soft sphere and hard
sphere particle collision algorithms are compared. The effect of
the wall roughness on the particle statistics is also investigated
and a new roughness model is proposed in order to be used with
the soft sphere methodology.

The predicted particle-laden results for average fluid and parti-
cle velocity are in very good agreement with the experimental
findings. The predicted particle-laden fluid fluctuations are slightly
lower compared to the particle-laden fluid fluctuations of the
experimental data. Although the gas–solid flow is relatively dilute,
there is a major difference between the results obtained by the
one-way coupled and the two-way coupled models, having a par-
ticularly large effect on the particle velocity fluctuations. The par-
ticle velocity fluctuations show an almost 10% difference between
the one-way and two-way coupled approach.

The results obtained with the soft sphere (discrete element
model) and hard sphere (event-driven) models are also compared.
The simulation results show that the two models yield almost
identical fluid velocity statistics. The particle mean and RMS veloc-
ity profiles are somewhat different, which is attributed to the
dependence of the hard sphere model on empirical properties. In
particular, a parameter sensitivity analysis on the tangential coef-
ficient of restitution for the hard sphere model is performed in or-
der to obtain good agreement with the available experimental
data. On the other hand, the soft sphere model, which is indepen-
dent of empirical parameters, does not require a sensitivity analy-
sis. Additionally, the particle statistics may be different due to the
treatment of the rough walls in the two models. In the soft sphere
methodology, a new model is proposed to account for the wall
roughness, as the collision of a particle occurs over a finite amount
of time. The results show that the newly proposed model for treat-
ing the rough walls in the soft sphere methodology are in very
good agreement with the experimental data.

The wall roughness in the case researched has a very big effect
on the gas-particle flow. In cases where wall roughness is ac-
counted for, the average rebound angle of the particles colliding
with the bottom wall is slightly larger than in the case considering
fully smooth walls. This slightly larger angle enables the particles
to re-entrain the bulk of the flow, instead of remaining near the
bottom; a so-called grazing particle. Simulations without consider-
ing the rough walls show a much steeper particle concentration
profile compared to particles in the channel including the effect
of rough walls. Due to two-way coupling, the fluid velocity fluctu-
ations and shear stresses are strongly affected because of the large
number of particles in the lower part of the channel. In particular,
the fluid RMS velocity profiles are asymmetric for the simulations
without considering wall roughness, as opposed to the simulations
with rough walls. The latter show almost symmetrical flow pro-
files. Moreover, the large concentration of particles in the bottom
half of the channel suppresses the turbulence.

This paper also shows the importance of particle–particle colli-
sions in the relatively dilute gas-particle laden flow. Including the
effect of particle–particle collisions increases the re-distribution of
particles into the flow, having a similar, although slightly less pro-
nounced, effect as the rough walls. The simulations results in this
paper show the importance of four-way coupling and including a
model to account for the wall roughness. The overall comparison
with the experimental results is very good.
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