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In a recent paper D’Ambra et al. (2011) [2] we studied basic properties of partial
immersions and partially free maps, a generalization of free maps introduced first by
Gromov (1970) in [4]. In this short note we show how to build partially free maps out
of partial immersions and use this fact to prove that the partially free maps in critical
dimension introduced in Theorems 1.1–1.3 of D’Ambra et al. (2011) [2] for three important
types of distributions can actually be built out of partial immersions. Finally, we show that
the canonical contact structure on R

2n+1 admits partial immersions in critical dimension
for every n.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In a joint paper with D’Ambra and Loi [2], in analogy with the theory of Ck , k � 3, isometric immersions of Nash and
Gromov [8,5], we studied basic properties of partial isometric immersions (also called H-immersions), namely C1 maps of
a manifold M into the Euclidean space R

q which induce a metric on some vector subbundle H of T M . In particular we
proved (see Theorems 1.1–1.3 in [2]), by an explicit construction, the existence of H-free maps, the analog of free maps
for partial isometric immersions, in critical dimension for three types of distributions: 1-dimensional planar distributions
which are either Hamiltonian or of finite type; n-dimensional Lagrangian distributions of completely integrable systems in
a 2n-dimensional symplectic manifold; 1-dimensional Hamiltonian distributions in a Riemann–Poisson manifold.

In this note we show that H-free maps can be canonically built out of an H-immersion. Accordingly, we show that
Theorems 1.1–1.3 of [2] ultimately depend on the fact that those distributions admit an H-immersion in critical dimension.
Moreover, we add to the list the canonical contact distributions in R

2n+1.

2. H-immersions and H-free maps

Throughout the paper, we denote by E
q the q-dimensional Euclidean space, namely the linear space R

q endowed with
the Euclidean metric eq = δi j dyi dy j , where (yi), i = 1, . . . ,q, are linear coordinates on R

q .
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Let H be a k-dimensional distribution on a smooth m-dimensional manifold M , namely a vector subbundle of T M such
that dim Hx = k for all x ∈ M; recall that, locally, H is the span of k vector fields {ξ1, . . . , ξk} and the {ξa}a=1,...,k are called
a local trivialization of H.

Definition 1. We say that a C1 map f = ( f i) : M → E
q is an H-immersion when the restriction of its tangent map T f to H

is injective, i.e. when dim T f (H) = k.

Equivalently, f is an H-immersion when the k vectors {T f (ξa)}a=1,...,k are linearly independent (namely when the k × q
matrix

D1( f ) = (
ξa

(
f i))

is full-rank) at every point and for every local trivialization.
Before the next definition we recall that, given a C2 immersion f = ( f i) : M → E

q , a second order approximation of f is
given by the map J 2

0(R, f ) : J 2
0(R, M) → J 2

0(R,R
q), where J 2

0(R, M) denotes the space of 2-jets at 0 of maps R → M and
similarly for J 2

0(R,R
q). This map writes in coordinates as

J 2
0(R, f )

(
xα, vα,aα

) = (
f i(x), vα∂α f i(x),aα∂α f i(x) + vα vβ∂2

αβ f i(x)
)
.

The linear subspace of the q-dimensional fiber of the bundle J 2
0(R,R

q) → J 1
0(R,R

q) � T R
q containing, at a given point

x ∈ M , the graph of(
vα,aα

) �→ (
aα∂α f i(x) + vα vβ∂2

αβ f i(x)
)
,

is clearly at most n + sn dimensional, where sn = n(n + 1)/2, for it is spanned by the n + sn vectors {∂α f i∂i, ∂
2
αβ f i∂i}. This

linear subspace is called the osculating space of order 2 to f at x and f is called free when its dimension is maximal at
every x ∈ M , namely when the first and second derivatives of f are linearly independent at every point.

Now consider a distribution H ⊂ T M � J 1
0(R, M) and its prolongation J 2

0(R, M; H) ⊂ J 2
0(R, M), namely the set of all

2-jets at 0 of maps R → M whose 1-jet is contained in H. Given a local trivialization {ξa}, coordinates in J 2
0(R, M; H) are

given by (xα,μa, νa), where μa and νa are vector components with respect to the ξa . A direct calculation shows that

J 2
0(R, f )

(
xα,μa, νa) = (

f i(x),μa(ξa f i)(x), νa(ξa f i)(x) + μaμb({ξa, ξb} f i)(x)
)
,

where {ξa, ξb} f i = ξa(ξb f i) + ξb(ξa f i). At every given x ∈ M , the linear subspace containing the graph of the map(
μa, νa) → (

νa(ξa f i)(x) + μaμb({ξa, ξb} f i)(x)
)

is at most k + sk dimensional, since it is generated by the k + sk vectors {ξa f i∂i, {ξa, ξb} f i∂i}. We call this linear subspace
the H-osculating space of order 2 to f at x.

Definition 2. We say that a C2 map f = ( f i) : M → E
q is H-free when its H-osculating space of order 2 has maximal

dimension at every x ∈ M , namely when the vectors {ξa f i∂i, {ξa, ξb} f i∂i} are linearly independent at every point.

Equivalently, f is H-free when the (k + sk) × q matrix

D2( f ) =
(

ξa f i

{ξa, ξb} f i

)
is full-rank at every point of every local trivialization (the definition of H-free map was first introduced by Gromov in [4]).
Clearly T M-immersions are the usual immersions and T M-free maps are the usual free maps.

We denote by ImmH(M,R
q) and FreeH(M,R

q) the sets of H-immersions and H-free maps M → E
q and endow

C∞(M,R
q) with the strong Whitney topology. Observe that, since the matrix D1( f ) is equal to the first k lines of D2( f ),

every H-free map is also an H-immersion, namely FreeH(M,R
q) ⊂ ImmH(M,R

q).
Both ImmH(M,R

q) and FreeH(M,R
q) are open subsets of C∞(M,R

q) and are clearly empty for, respectively, q < k and
q < k + sk (we say that k and k + sk are critical dimensions for, respectively, H-immersions and H-free maps). Next theorem
shows that, independently on the topology of H and of M , both sets are non-empty if q is big enough:

Theorem 1. (See [2].) The sets ImmH(M,R
q) and FreeH(M,R

q) are dense in C∞(M,R
q) for, respectively, q � m + k and q �

m + k + sk.

What happens in general in the range k � q < m + k for H-immersions and k + sk � q < m + k + sk for H-free maps is
still an open question. When H = T M it is known that the h-principle holds for immersions (resp. free maps) for q � n
(resp. q � m + sm) when M is open and for q > m (resp. q > m + sm) when M contains a closed component (see [3] and [5]).
This means that, under those conditions, free maps arise whenever the appropriate topological obstructions vanish.
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Example 1. The set Free(Rm,R
m+sm ) is non-empty. A concrete element of that set is the polynomial map

Fm
(
x1, . . . , xm) = (

x1, . . . , xm,
(
x1)2

, x1x2, . . . ,
(
xm)2)

of all possible monic monomials of first and second degree in the coordinates.

The critical dimension case for immersions is trivial since no compact m-manifold can be immersed into R
m . The ques-

tion of the existence of free maps in critical dimension on compact sets is instead of particular interest and still open. For
example, it is still unknown whether the tori T

m , m > 1, admit free maps in critical dimension (see [5], Section 1.1.4).
When H 	= T M still no H-immersion can arise if M is compact but interesting cases arise even when M is topologically

trivial, as the next example shows:

Example 2. Let ξ be a vector field without zeros on a Riemannian manifold (M, g) and H = span{ξ}. Assume that the
1-form ξ� , obtained by “raising the index” of ξ , is intrinsically exact, namely that ξ� = λdf for some smooth functions f and
λ > 0. Then ξ f = ‖ξ‖2

g/λ > 0, so that f ∈ ImmH(M,R). For example consider

ξ(x, y) = y
(
1 − y2)∂x + (

1 − 3y2)∂y

in R
2. Then ξ� = e−x d(y(1 − y2)ex) and therefore

ξ
(

y
(
1 − y2)ex) = y2(1 − y2)2 + (

1 − 3y2)2
> 0,

namely y(1 − y2)ex ∈ ImmH(R2,R). Observe that ξ is not topologically conjugate to a constant vector field so that, in
principle, the solvability of ξ f > 0 is not a trivial matter.

Moreover, the next theorem shows that H-immersions can be used to build H-free maps:

Theorem 2. Let F ∈ Free(Rq,R
q′
) and f ∈ ImmH(M,R

q). Then F ◦ f ∈ FreeH(M,R
q′
). In particular, if H admits H-immersions in

critical dimension, then H admits H-free maps in critical dimension.

Proof. We can prove the claim without loss of generality in the critical dimension case, namely when q = k and q′ = k + sk .
Let f = ( f a) : M → R

k an H-immersion and F = (F i) : R
k → R

k+sk a free map (see Example 2).
Now observe that⎧⎪⎨

⎪⎩
ξa F i

(
f 1, . . . , f k

) = ξa f c∂c F ,

ξa(ξa F i)
(

f 1, . . . , f k
) = ξa f cξa f d∂2

cd F + ξaξa f c∂c F ,

{ξa, ξb}F i
(

f 1, . . . , f k
) = 2ξa f cξb f d∂2

cd F + {ξa, ξb} f c∂c F .

This shows that

D2(F ◦ f ) =
(

D1( f ) Ok,sk

C D

)
D2(F ),

where Ok,sk is the k × sk zero matrix,

C =

⎛
⎜⎜⎝

2ξ1(ξ1 f 1) . . . 2ξ1(ξ1 f k)

{ξ1, ξ2} f 1 . . . {ξ1, ξ2} f k

...
...

...

2ξk(ξk f 1) . . . 2ξk(ξk f k)

⎞
⎟⎟⎠

and

D =

⎛
⎜⎜⎝

(ξ1 f 1)2 2ξ1 f 1ξ1 f 2 . . . (ξ1 f k)2

ξ1 f 1ξ2 f 1 ξ1 f 1ξ2 f 1 + ξ2 f 1ξ1 f 1 . . . ξ1 f kξ2 f k

...
...

...
...

(ξk f 1)2 2ξ1 f 1ξ1 f 2 . . . (ξ1 f k)2

⎞
⎟⎟⎠ .

Clearly then det D2(F ◦ f ) = det D1( f )det D det D2(F ). It is easy to check that the matrix D can be written as ρ(D1( f )),
where ρ : GLk(R) → GLsk (R) is a linear representation of GLk(R) over R

sk , and therefore det D1( f ) 	= 0 implies det D 	= 0. In
particular it is easy to check (e.g. it is enough to consider the case of diagonal matrices) that det D = (det D1( f ))k+1, so that

det D2(F ◦ f ) = (
det D1( f )

)k+2
det D2(F ).

Hence, if f is an H-immersion and F is free, the map F ◦ f is H-free. �
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3. H-immersions in critical dimension

Thanks to Theorem 2, we can now reformulate Theorems 1.1–1.3 of [2] so that it is clear that they all depend on the
existence of an H-immersion.

Consider first the case of 1-distributions H in the plane (see Section 3.1 in [2]). Kaplan proved [6] that all 1-distributions
in the plane are orientable, so that there exists a vector field everywhere non-zero such that H = span ξ . We say that H is
Hamiltonian when it is tangent to the level sets of a regular1 function f , i.e. H = ker df . Let now F be the integral foliation
of H. Two leaves are said separatrices when they cannot be separated in the quotient topology on F . We say that H is of
finite type when the set of the separatrices of F is closed and every separatrix is inseparable from just a finite number of
other leaves; for example, if H is the span of a polynomial vector field then it is of finite type [7].

Theorem 3. Let H be a planar 1-distribution which is either Hamiltonian or of finite type. Then H admits an H-immersion in critical
dimension.

Proof. An H-immersion f : R
2 → R is a function f such that either ξ f > 0 or ξ f < 0 at every point. When H is Hamilto-

nian, the existence of such a function was proved by Weiner in its lemma in [10]. When H is of finite type, it was proved
in Lemma 3.1 of [2]. �
Example 3. Consider the distribution Hξ = span ξ ⊂ T R

2, with ξ = 2y∂x + (1 − y2)∂y . Since the components of ξ depend
only on y, only vertical straight lines can be separatrices for Hξ ; in particular only y = ±1 are separatrix leaves for Hξ .
A direct calculation shows that ker ξ is functionally generated by the regular smooth function f (x, y) = (1 − y2)ex , namely
Hξ = ker df is a Hamiltonian distribution. Now let g(x, y) = yex. It is easy to check that ξ g(x, y) = (1 + y2)ex > 0, so that
g ∈ ImmHξ

(R2,R) and, for example, F = (g, g2) ∈ FreeHξ
(R2,R

2).
Consider now the distribution Hη = spanη, with η = (3y − 1)∂x + (1 − y2)∂y . Considerations similar to the ones made

above show that y = ±1 are the only separatrices for Hη . A functional generator for kerη is given by f ′(x, y) = (1 − y)(1 +
y)2ex , whose gradient is null on the separatrix y = −1, so that Hη is not Hamiltonian; nevertheless Hη is of finite type
since η is polynomial. A direct calculation shows that ηg(x, y) = (2y2 − y + 1)ex > 0, so that g ∈ ImmHη (R

2,R) and, for

example, F = (g, g2) ∈ FreeHη (R
2,R

2).

Consider now the case of completely integral systems (Section 3.2 in [2]). Recall that, on a 2n-dimensional symplectic
manifold (M,ω), a completely integrable system is a collection of n functions {h1, . . . ,hn} in involution, i.e. such that the
Poisson bracket of every pair of hi is identically zero.

Theorem 4. Let H = ⋂n
i=1 ker dIi be the Lagrangian n-distribution of a completely integrable system {h1, . . . ,hn} on a symplectic

manifold (M2n,ω) such that:

1. the Hamiltonian vector fields ξi of the hi are all complete;
2. the (Lagrangian) leaves of H are all diffeomorphic to R

n.

Then H admits an H-immersion f : M2n → R
n.

Proof. In Lemma 3.3 of [2] we proved the existence, under the same assumptions of this theorem, of n functions f i such
that {hi, f j} = 0 for i 	= j and {hi, f i} > 0, i = 1, . . . ,n. Since H is spanned by the Hamiltonian pairwise commuting vector
fields ξi and ξi f j = {hi, f j}, this is enough to grant that the map f = ( f 1, . . . , f n) : M → R

n is an H-immersion. �
Example 4. Consider the symplectic manifold T ∗

T
n with canonical coordinates (ϕα, pα), so that the symplectic form is equal

to ω = dϕα ∧dpα . The system {Iα = epα cosϕα}α=1,...,n is completely integrable on T ∗
T

n , e.g. because each Iα depends only
on the two coordinates with index α.

The corresponding Lagrangian distribution H = ⋂n
α=1 ker dIα is generated by the pairwise commuting (Hamiltonian)

vector fields ξα = epα (sinϕα, cosϕα). This system is clearly the direct product of n independent systems on the cylinders
(ϕα, pα), α = 1, . . . ,n, in such a way that the α-th system admits, as partial immersion, the function gα = epα sinϕα ;
indeed ξα gα = e2pα > 0. Hence the map

G = (g1, . . . , gn) : T ∗
T

n → R
n

is an H-immersion and, consequently, the map

Fn ◦ G = (
g1, . . . , gn, g2

1, g1 g2, . . . , g2
n

) : T ∗
T

n → R
n+sn

(see Example 1) is an H-free map.

1 We say that a smooth function is regular when df 	= 0 at every point. Analogously, we say that a vector field is regular when it has no zeros.
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Finally, consider the case of Riemann–Poisson manifolds. These are Riemannian manifolds (M, g) on which it is defined
the Poisson structure

{ f , g}H
def= ∗[dh1 ∧ · · · ∧ dhm−2 ∧ df ∧ dg],

where the H = {h1, . . . ,hm−2} are fixed smooth (possibly multivalued) functions on M .

Example 5. Consider the flat torus T
3 with angular coordinates (θ1, θ2, θ3) and H = {h(θ i) = Biθ

i} for some constant 1-form
B = Bi dθ i . Then the Riemann–Poisson bracket is given by

{ f , g}H = ε i jk∂i f ∂i g Bk,

where ε i jk is the totally antisymmetric Levi-Civita tensor. This bracket was introduced by S.P. Novikov as an application of
his generalization of Morse theory to multivalued functions [9]. An example of the rich topological structure hidden in this
Riemann–Poisson bracket can be found in [1].

Theorem 5. Let (M, g, {, }H ) be a Riemann–Poisson manifold such that the m −2 functions in H are functionally independent at every
point and let H be a Hamiltonian 1-distribution on it. Then H admits an H-immersion f : M → R.

Proof. Let h be a Hamiltonian for H. An H-immersion f : M → R is a function f such that {h, f }H > 0 (or {h, f }H < 0).
The existence of such a function was proven in Lemma 3.4 of [2]. �
Example 6. Consider the case of E

3 with the Riemann–Poisson structure induced by the singlet H = {(1 − y2)ex}, so that

{ f , g}H = ex[(1 − y2)(∂y f ∂z g − ∂z f ∂y g) − 2y(∂x f ∂z g − ∂z f ∂x g)
]
.

Take a Hamiltonian of the form h(x, y, z) = λ(x, y)z+μ(x, y), where λ is strictly positive and μ is arbitrary. The Hamiltonian
1-dimensional distribution H corresponding to h is the span of the regular vector field ξh = {h, ·}H which, for our particular
choice of h, writes as

ξh = ex[(1 − 2y − y2)(z∂yλ(x, y) + ∂yμ(x, y)
)
∂z − λ(x, y)

((
1 − y2)∂y − 2y∂x

)]
.

Example 3 shows that f (x, y, z) = yex solves the partial differential inequality {h, f }H > 0. Indeed

{h, f }H = ξh f = exλ(x, y)
[(

1 − y2)ex + 2y2ex] = (
1 + y2)λ(x, y)e2x > 0,

so that f ∈ ImmH(R3,R) and ( f , f 2) ∈ FreeH(R3,R
2).

We add now a fourth case where it is possible to find an H-immersion in critical dimension. Recall that a contact
structure on a (2n + 1)-dimensional manifold M is a completely non-integrable codimension-1 distribution H ⊂ T M . Locally
H = ker θ for some 1-form θ , so that the non-integrability condition translates into θ ∧ (dθ)n 	= 0.

Example 7. Consider the bundle J 1(N,R) � T ∗N × R of all 1-jets of maps N → R, where N is an n-dimensional manifold.
This bundle has a canonical contact structure induced by the tautological 1-form θ , defined as the unique (modulo strictly
positive or negative smooth functions) 1-form such that a section σ : N → J 1(N,R) is holonomic (namely is the 1-jet of a
map M → R) iff σ ∗θ = 0. In canonical coordinates (xα, pα, t) a canonical contact form writes as θ = λ(x, p, t)(dt − pα dxα),
where λ(x, p, t) is never zero. For N = R

n this gives exactly the canonical contact structure on R
2n+1 � J 1(Rn,R).

Theorem 6. Let H be the canonical contact structure on R
2n+1 . Then H admits an H-immersion in critical dimension.

Proof. A trivialization for H is given by the 2n vectors

ξ1 = ∂x1 − p1∂t, . . . , ξn = ∂xn − pn∂t, ξn+1 = ∂p1 , . . . , ξ2n = ∂pn .

Hence the projection on the first 2n components

π
(
x1, p1, . . . , xn, pn, z

) = (
x1, p1, . . . , xn, pn

)
belongs to ImmH(R2n+1,R

2n) and F2n ◦ π belongs to FreeH(R2n+1,R
2n+s2n ). �
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