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1. Introduction

In a joint paper with D’Ambra and Loi [2], in analogy with the theory of C¥, k > 3, isometric immersions of Nash and
Gromov [8,5], we studied basic properties of partial isometric immersions (also called H-immersions), namely C! maps of
a manifold M into the Euclidean space R? which induce a metric on some vector subbundle H of TM. In particular we
proved (see Theorems 1.1-1.3 in [2]), by an explicit construction, the existence of H-free maps, the analog of free maps
for partial isometric immersions, in critical dimension for three types of distributions: 1-dimensional planar distributions
which are either Hamiltonian or of finite type; n-dimensional Lagrangian distributions of completely integrable systems in
a 2n-dimensional symplectic manifold; 1-dimensional Hamiltonian distributions in a Riemann-Poisson manifold.

In this note we show that H-free maps can be canonically built out of an H-immersion. Accordingly, we show that
Theorems 1.1-1.3 of [2] ultimately depend on the fact that those distributions admit an -immersion in critical dimension.
Moreover, we add to the list the canonical contact distributions in R2"*+1,

2. ‘H-immersions and 7 -free maps

Throughout the paper, we denote by E? the g-dimensional Euclidean space, namely the linear space R? endowed with
the Euclidean metric eq = §;;dy' dy’, where (y'), i=1,...,q, are linear coordinates on RY.
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Let H be a k-dimensional distribution on a smooth m-dimensional manifold M, namely a vector subbundle of TM such
that dimHy =k for all x € M; recall that, locally,  is the span of k vector fields {&1,..., &} and the {£}4=1,  k are called
a local trivialization of H.

Definition 1. We say that a C! map f = (f) : M — EY is an H-immersion when the restriction of its tangent map Tf to H
is injective, i.e. when dimTf(H) =k.

Equivalently, f is an H-immersion when the k vectors {Tf (&;)}a=1
matrix

¢ are linearly independent (namely when the k x q

,,,,,

D1(f) = (£(f"))

is full-rank) at every point and for every local trivialization.

Before the next definition we recall that, given a C2 immersion f = (f!): M — [, a second order approximation of f is
given by the map J3(R, f): J3(R, M) — J2(R,R9), where J3(R, M) denotes the space of 2-jets at 0 of maps R — M and
similarly for ]%(R, RY). This map writes in coordinates as

JE@®, F)(x, v, a%) = (F1X), v¥da f1 (), 0% [ (0) + V¥ VP2, f1 ().

The linear subspace of the g-dimensional fiber of the bundle ]g(R, R7) — ]A(R, R?) ~ TRY containing, at a given point
x € M, the graph of

(v, a%) k> (a%00 f' () + v“vﬂaéﬁfi(x)),

is clearly at most n + s, dimensional, where s, =n(n + 1)/2, for it is spanned by the n + s, vectors {00 f10;, agﬁffai}. This
linear subspace is called the osculating space of order 2 to f at x and f is called free when its dimension is maximal at
every x € M, namely when the first and second derivatives of f are linearly independent at every point.

Now consider a distribution H € TM ~ J}(R, M) and its prolongation J3(R, M;H) C J3(R, M), namely the set of all
2-jets at 0 of maps R — M whose 1-jet is contained in 7. Given a local trivialization {&,}, coordinates in ]S(R, M; H) are
given by (x%, u®, v%), where u® and v“ are vector components with respect to the &;. A direct calculation shows that

JE@®, H(*, 107 = (F10, w(Eaf) 0, v (Ea fT) ) + 1 1P ({Ea. &) 1) (0),
where (&, &) fl = £.(& f1) + & (€4 f1). At every given x € M, the linear subspace containing the graph of the map

(1) = (v (Eaf) 0 + n b ((Ea. &) ) )

is at most k + s, dimensional, since it is generated by the k + s; vectors {&; f19;, {&, &) f10;}. We call this linear subspace
the H-osculating space of order 2 to f at x.

Definition 2. We say that a C2 map f = (f)): M — E9 is H-free when its H-osculating space of order 2 has maximal
dimension at every x € M, namely when the vectors {&; f'9;, {4, &5} f'0;} are linearly independent at every point.

Equivalently, f is H-free when the (k + s;) x g matrix

Eaf'
P2(D)= ({&;@}fl)
is full-rank at every point of every local trivialization (the definition of H-free map was first introduced by Gromov in [4]).
Clearly TM-immersions are the usual immersions and T M-free maps are the usual free maps.

We denote by Immy(M,RY9) and Freey (M, RY9) the sets of H-immersions and H-free maps M — E? and endow
C>®(M,RY) with the strong Whitney topology. Observe that, since the matrix Dq(f) is equal to the first k lines of Dy (f),
every H-free map is also an H-immersion, namely Freey; (M, RY) C Immy, (M, R?).

Both Immy, (M, RY) and Frees (M, R?) are open subsets of C°°(M,R?) and are clearly empty for, respectively, g <k and
q <k + s, (we say that k and k + s are critical dimensions for, respectively, H-immersions and H-free maps). Next theorem
shows that, independently on the topology of H and of M, both sets are non-empty if q is big enough:

Theorem 1. (See [2].) The sets Immy (M, R?) and Freey; (M, R%) are dense in C°°(M, RY) for, respectively, ¢ > m + k and q >
m+k + si.

What happens in general in the range k < q <m + k for H-immersions and k + s, < q <m + k + s for H-free maps is
still an open question. When H = TM it is known that the h-principle holds for immersions (resp. free maps) for g > n
(resp. ¢ > m+ sy, ) when M is open and for ¢ > m (resp. ¢ > m+ s, ) when M contains a closed component (see [3] and [5]).
This means that, under those conditions, free maps arise whenever the appropriate topological obstructions vanish.



S54 R. De Leo / Differential Geometry and its Applications 29 (2011) S52-S57

Example 1. The set Free(R™, R™*5m) is non-empty. A concrete element of that set is the polynomial map
Fm(x', .. x™) = (x', ... X", (x])z,x]xz, s (x’")z)

of all possible monic monomials of first and second degree in the coordinates.

The critical dimension case for immersions is trivial since no compact m-manifold can be immersed into R™. The ques-
tion of the existence of free maps in critical dimension on compact sets is instead of particular interest and still open. For
example, it is still unknown whether the tori T™, m > 1, admit free maps in critical dimension (see [5], Section 1.1.4).

When H # TM still no H-immersion can arise if M is compact but interesting cases arise even when M is topologically
trivial, as the next example shows:

Example 2. Let £ be a vector field without zeros on a Riemannian manifold (M, g) and H = span{é}. Assume that the
1-form &°, obtained by “raising the index” of &, is intrinsically exact, namely that £ = Adf for some smooth functions f and
A>0.Then & f = \|.§||§/A > 0, so that f € Immy;(M, R). For example consider

Exy) =y(1-y%)ox+ (1-3y%)dy
in R2. Then £” = e *d(y(1 — y%)e*) and therefore

E(y(1-yY)e) =y2(1-y*) +(1-3y3)’ >0,

namely y(1 — y%)e* € Immy (R%, R). Observe that £ is not topologically conjugate to a constant vector field so that, in
principle, the solvability of & f > 0 is not a trivial matter.

Moreover, the next theorem shows that H-immersions can be used to build H-free maps:

Theorem 2. Let F € Free(R?, RY) and f e Ilmmyy (M, RY). Then F o f € Freey (M, RY). In particular, if H admits H-immersions in
critical dimension, then H admits H-free maps in critical dimension.

Proof. We can prove the claim without loss of generality in the critical dimension case, namely when g =k and q =k+sg.
Let f = (f%:M — R¥ an H-immersion and F = (F') : Rk — R¥*5 a free map (see Example 2).
Now observe that

;S_aFi(flv SRE) fk) =§af':35F,

a\Sa PR = Sa a asa cl,

EaGaF)(f1, ..., %) = &afEafIO%F + Eba fOF

{Ea, Ep}FI(F1, .., f¥) =280 f8p FIOLF + (Ea, &p) fCOCF .
This shows that

D Ogs
Dz(FOf)=< ]C(f) ; )Dzm,

where Oy g, is the k x s zero matrix,

26161 Y ... 2816 f5)
gL el L (&L &) fk

26ESN) . 285
and

&1 f1)? 281 f1& 2 e (Efl?
aflef! af'lafl+aflaft ... &afferk

(& f")? 261 f161 2 SN GCYRE
Clearly then detDy(F o f) =detD(f)detDdetD,(F). It is easy to check that the matrix D can be written as p(D1(f)),
where o : GLy(R) — GLs, (R) is a linear representation of GLy(R) over R%, and therefore det D{(f) # 0 implies det D # 0. In
particular it is easy to check (e.g. it is enough to consider the case of diagonal matrices) that det D = (det D1 (f))**?, so that

det Dy (F o f) = (det D1 (f))*" det D (F).

Hence, if f is an H-immersion and F is free, the map F o f is H-free. O
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3. ‘H-immersions in critical dimension

Thanks to Theorem 2, we can now reformulate Theorems 1.1-1.3 of [2] so that it is clear that they all depend on the
existence of an H-immersion.

Consider first the case of 1-distributions H in the plane (see Section 3.1 in [2]). Kaplan proved [6] that all 1-distributions
in the plane are orientable, so that there exists a vector field everywhere non-zero such that H = spané&. We say that H is
Hamiltonian when it is tangent to the level sets of a regular! function f, i.e. H = kerdf. Let now JF be the integral foliation
of H. Two leaves are said separatrices when they cannot be separated in the quotient topology on F. We say that H is of
finite type when the set of the separatrices of F is closed and every separatrix is inseparable from just a finite number of
other leaves; for example, if H is the span of a polynomial vector field then it is of finite type [7].

Theorem 3. Let H be a planar 1-distribution which is either Hamiltonian or of finite type. Then H admits an H-immersion in critical
dimension.

Proof. An H-immersion f :RR? — R is a function f such that either £f > 0 or £ f <0 at every point. When  is Hamilto-
nian, the existence of such a function was proved by Weiner in its lemma in [10]. When H is of finite type, it was proved
in Lemma 3.1 of [2]. O

Example 3. Consider the distribution He = span§ C TR2, with £ =2yd, + (1 — yz)ay. Since the components of & depend
only on y, only vertical straight lines can be separatrices for H; in particular only y = +1 are separatrix leaves for He.
A direct calculation shows that ker& is functionally generated by the regular smooth function f(x, y) = (1 — y?)e¥, namely
‘He = kerdf is a Hamiltonian distribution. Now let g(x, y) = ye*. It is easy to check that £g(x, y) = (1 + y2)eX > 0, so that
g € Immyy, (R%, R) and, for example, F = (g, g%) € Freey, (R?, R?).

Consider now the distribution M, = spann, with n =3y — 1)dx+ (1 — yz)ay. Considerations similar to the ones made
above show that y = +1 are the only separatrices for ;. A functional generator for ker7 is given by f'(x,y)=(1-y)(1+
y)2e*, whose gradient is null on the separatrix y = —1, so that ‘H;; is not Hamiltonian; nevertheless H;, is of finite type
since 7 is polynomial. A direct calculation shows that ng(x, y) = 2y%> — y + 1)e¥ > 0, so that g € Immy, (R?,R) and, for

example, F = (g, g?) € Freey;, (R?, R?).

Consider now the case of completely integral systems (Section 3.2 in [2]). Recall that, on a 2n-dimensional symplectic
manifold (M, w), a completely integrable system is a collection of n functions {hi,...,hy} in involution, i.e. such that the
Poisson bracket of every pair of h; is identically zero.

Theorem 4. Let H = ﬂ?:] kerdI; be the Lagrangian n-distribution of a completely integrable system {h1, ..., hy} on a symplectic
manifold (M?", w) such that:

1. the Hamiltonian vector fields &; of the h; are all complete;
2. the (Lagrangian) leaves of H are all diffeomorphic to R".

Then H admits an H-immersion f : M?" — R".

Proof. In Lemma 3.3 of [2] we proved the existence, under the same assumptions of this theorem, of n functions ft such
that {h;, f/} =0 for i # j and {h;, f'} >0,i=1,...,n. Since H is spanned by the Hamiltonian pairwise commuting vector
fields & and & fJ = {h;, f}, this is enough to grant that the map f = (f!,..., f"): M — R" is an H-immersion. O

Example 4. Consider the symplectic manifold T*T" with canonical coordinates (¢%, py), so that the symplectic form is equal
to @ =dp® Adpy. The system {I, = eP* cos ¢®}y=1...n is completely integrable on T*T", e.g. because each I, depends only
on the two coordinates with index «.

The corresponding Lagrangian distribution H = ﬂgzl kerdl, is generated by the pairwise commuting (Hamiltonian)
vector fields &, = ePe(singp®, cosp®). This system is clearly the direct product of n independent systems on the cylinders
(@%, pa), @ =1,...,n, in such a way that the «-th system admits, as partial immersion, the function g, = eP« sin¢?;
indeed &, g, = 2P« > 0. Hence the map

G=(g1,...,8n): T*"T" - R"
is an H-immersion and, consequently, the map

FpoG= (g1,...,gn,g%,g1g2,...,g,%) S THT" — RS
(see Example 1) is an H-free map.

,,,,,

1 We say that a smooth function is regular when df # 0 at every point. Analogously, we say that a vector field is regular when it has no zeros.



S56 R. De Leo / Differential Geometry and its Applications 29 (2011) S52-S57

Finally, consider the case of Riemann-Poisson manifolds. These are Riemannian manifolds (M, g) on which it is defined
the Poisson structure

(. g} Exldhy A--- Adhm_s Adf Adgl,

where the H = {hq, ..., hn_2} are fixed smooth (possibly multivalued) functions on M.

Example 5. Consider the flat torus T with angular coordinates (91,62, 63) and H = {h(6") = B;6'} for some constant 1-form
B = B;df'. Then the Riemann-Poisson bracket is given by

(f, ghn =€*8; foigBy,

where €Uk is the totally antisymmetric Levi-Civita tensor. This bracket was introduced by S.P. Novikov as an application of
his generalization of Morse theory to multivalued functions [9]. An example of the rich topological structure hidden in this
Riemann-Poisson bracket can be found in [1].

Theorem 5. Let (M, g, {, } ) be a Riemann-Poisson manifold such that the m — 2 functions in H are functionally independent at every
point and let H be a Hamiltonian 1-distribution on it. Then H admits an H-immersion f : M — R.

Proof. Let h be a Hamiltonian for . An H-immersion f: M — R is a function f such that {h, f}g > 0 (or {h, f}g < 0).
The existence of such a function was proven in Lemma 3.4 of [2]. O

Example 6. Consider the case of E3 with the Riemann-Poisson structure induced by the singlet H = {(1 — y2)e*}, so that

{f.gln=e[(1-y?) @y fo.8— 8:fdyg) — 2y (3:fd.g — 3, fx8)].

Take a Hamiltonian of the form h(x, y, z) = A(x, y)z+ (x, y), where A is strictly positive and u is arbitrary. The Hamiltonian
1-dimensional distribution H corresponding to h is the span of the regular vector field &, = {h, -}y which, for our particular
choice of h, writes as

&n=e*[(1 =2y — ¥*)(20yA(x. y) + dy (%, )3z — A, Y)((1 = ¥*)dy — 2y8x)].
Example 3 shows that f(x, y,z) = ye* solves the partial differential inequality {h, f}y > 0. Indeed
th, Fin =& f =, Y[ (1 — y?)e* +2y%e*] = (1+ y*)r(x, y)e** > 0,

so that f e Immy (R3,R) and (f, f?) € Freey; (R>, R?).

We add now a fourth case where it is possible to find an H-immersion in critical dimension. Recall that a contact
structure on a (2n + 1)-dimensional manifold M is a completely non-integrable codimension-1 distribution  C T M. Locally
‘H =ker6 for some 1-form 6, so that the non-integrability condition translates into 6 A (d9)" # 0.

Example 7. Consider the bundle J'(N,R) ~ T*N x R of all 1-jets of maps N — R, where N is an n-dimensional manifold.
This bundle has a canonical contact structure induced by the tautological 1-form 6, defined as the unique (modulo strictly
positive or negative smooth functions) 1-form such that a section o : N — J1(N,R) is holonomic (namely is the 1-jet of a
map M — R) iff 0*6 = 0. In canonical coordinates (x*, py,t) a canonical contact form writes as 6 = A(x, p, t)(dt — py dx%),
where A(x, p,t) is never zero. For N = R" this gives exactly the canonical contact structure on R?"+1 ~ J1(R? R).

Theorem 6. Let H be the canonical contact structure on R+, Then H admits an H-immersion in critical dimension.
Proof. A trivialization for H is given by the 2n vectors

§1=104 —p10, ..., & =0m —pnd, &nr1=0p, ..., &n=0p,.

Hence the projection on the first 2n components

7(x' p1,.. X pn,2) = (X', p1, ..., X", pn)

belongs to Immy (R?**1, R?") and F, o  belongs to Freey (RZ'1, R25m),
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