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Background: Lung cancer (LC) is the dominant cause of death by
cancer in the world, being responsible for more than a million deaths
annually. It is a highly lethal common tumor that is frequently diag-
nosed in advanced stages for which effective alternative therapeutics do
not exist. In view of this, there is an urgent need to improve the
diagnostic, prognostic, and therapeutic classification systems, currently
based on clinicopathological criteria that do not adequately translate the
enormous biologic complexity of this disease.
Methods: The advent of the human genome sequencing project and the
concurrent development of many genomic-based technologies have
allowed scientists to explore the possibility of using expression profiles
to identify homogenous tumor subtypes, new prognostic factors of
human cancer, response to a particular treatment, etc. and thereby select
the best possible therapies while decreasing the risk of toxicities for the
patients. Therefore, it is becoming increasingly important to identify the
complete catalog of genes that are altered in cancer and to discriminate
tumors accurately on the basis of their genetic background.
Results and Discussion: In this article, we present some of the
works that has applied high-throughput technologies to LC research.
In addition, we will give an overview of recent results in the field of
LC genomics, with their effect on patient care, and discuss chal-
lenges and the potential future developments of this area.
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Lung cancer (LC) constitutes an outstanding public health
problem. The most recent World Health Organization

(WHO) projections for the period 2002 to 2030 report that LC
will take on a health problem of increasing importance in the
coming decades.1 In 2030, LC will occupy the sixth place and
will account for 3.1% of global mortality. The small differ-
ence between the number of prevalent and incident cases

reflects the high lethality of this tumor. Primary pulmonary
neoplasias are classified into two large histologic subgroups
with different prognoses and therapeutic approaches: the
small cell lung carcinoma (SCLC) and the non-small cell lung
carcinoma (NSCLC). The NSCLC constitutes 80% of the
cases, and it is also subclassified into different morphologic
mainstay varieties (squamous cell carcinoma [SCC], adeno-
carcinoma [AC], and large cell carcinoma). The fundamental
treatment of early-stage NSCLC is surgical resection. Nev-
ertheless, only 15 to 25% of cases are resectable on diagnosis,
and of those, 30 to 70% eventually recurs after surgery.
NSCLC is a heterogeneous disease; even in patients with
similar clinical and pathologic features, the outcome varies:
some are cured, whereas in others, the cancer recurs. Once
recurred or metastasized, the disease is essentially incurable
with survival rates at 5 years of less than 5%, and this has
improved only marginally during the past 25 years.2 The poor
early detection of LC coupled with ineffective treatments for
advanced disease is responsible for the low survival rate. In view
of this, there is an urgent need to improve our diagnostic,
prognostic, and therapeutic classification systems, currently based
on crude clinicopathological criteria that do not adequately translate
the enormous biologic complexity of this disease.

The complete sequencing of the human genome and the
concurrent development of technologies that allow for high-
throughput generation of genomic data have opened avenues
for a systematic approach to understanding the complex
biology of LC.3,4 A greater knowledge of the molecular
mechanisms involved in the genesis, progression, and dis-
semination of LC is essential for the development of diag-
nostic methods that allow an earlier detection of the disease
and for the design of more suitable, individualized, and
effective therapeutic strategies. Precise global analyses will
be necessary, based on the genome, transcriptome, or pro-
teome to explain the complexity of the clinically important
phenotypes that determine the failure or the success of any
therapeutic intervention. Staging systems for LC that are
based on clinical and pathologic findings may have reached
their limit of usefulness for predicting outcomes, but molec-
ular methods add value. Gene-expression profiling with the
use of microarrays or real-time reverse transcription polymer-
ase chain reaction (RT-PCR) has been shown to estimate the
prognosis for patients with LC accurately.

This review will focus on major recent advances in the
genomic approaches to the study of LC biology. These
advances have been facilitated by the development of molec-
ular techniques and biomarkers for defining cancer risk,
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prognosis, and optimal therapy aimed at prevention and
personalized treatment of LC.

GENE-EXPRESSION SIGNATURES
Gene expression is the technical term to describe how

active a particular gene is, that is, how many times it is
expressed, or transcribed, to produce the protein it encodes.
Gene-expression signature is a specific gene-expression pro-
file, often a subset of expressed genes usually associated with
a specific phenotype.

High-throughput technologies, such as RNA microar-
ray and RT-PCR, allow simultaneous counting of many gene
transcriptions. This creates a snapshot of a tissue’s global
gene activity, called the transcriptome. Gene-expression mea-
surements have been used to develop new biologic concepts,
refine disease classification, improve diagnostic and prognos-
tic accuracy, and identify new molecular targets for drugs,
especially in cancer research. Results are commonly reported
in the form of a list of genes that are differentially expressed
between normal and diseased patients or that correlate with
different prognoses or phenotypes. These lists are called
gene-expression profiles or signatures.

The tumor-node-metastasis (TNM) staging system for
LC is the standard for prediction of survival.5 For NSCLC,
TNM stage, age, sex, and histologic cell type are well-
established prognostic factors. Nevertheless, these factors
have reached their limit in the prognostic information they
provide and do not explain the large outcome variation
among patients with similar characteristics. Formidable ob-
stacles to developing effective markers include tumor heter-
ogeneity, the highly complex interplay between the environ-
ment and host and the complexity, multiplicity, and
redundancy of tumor-cell signaling networks involving ge-
netic, epigenetic, and microenvironmental effects. Tumor
molecular heterogeneity is a major reason that patients with
NSCLC with a similar clinical stage and tumor histology can
have dramatically different clinical outcomes and responses
to treatment. Microarray techniques that profile the expres-
sions of tens of thousands of genes simultaneously can
measure this tumor heterogeneity at a global level. The use of
microarray data is not simply the measurement of the expres-
sion of individual genes. Rather, the power lies in the ability
to assay many thousands of genes simultaneously and eval-
uate the multivariate patterns of change across subsets that
characterize a physiological or clinical state. This complexity
opens the way to powerful tools of statistical analysis, not
merely simple measures of reproducibility but identification
of complex patterns within the date that reflect biology. The
power of genomic technology, generating data sets of enor-
mous complexity, heralds the transformation of biology into
a quantitative science.

Developing a Useful Signature
Investigations of transcript levels on a genomic scale

using hybridization-based arrays have led to formidable ad-
vances in our understanding of the biology of many human
illnesses. At the same time, these investigations have gener-
ated controversy because of the probabilistic nature of the
conclusions and the surfacing of noticeable discrepancies

between the results of studies addressing the same biologic
question.6 The studies generally vary with the platforms used,
the tissues studied, and the populations being sampled. Nev-
ertheless, because of cost and other practical limitations, most
microarray studies have used a relatively small number of
biologic samples. As a result, cross-referencing lists of genes
found to be associated with disease phenotypes in two sepa-
rate studies usually produce relatively few genes in common,7

even when one restricts attention to genes measured in both
experiments. Although an incomplete overlap is to be ex-
pected given the small number of samples typically used and
the large number of comparisons made, discrepancies have
generated skepticism for this type of investigation. In this
scenario, three related statistical questions6 are important for
making progress toward an objective assessment of the worth
of microarray analysis results: (1) reliability, that is whether
different measuring techniques are capturing the same bio-
logic variation, (2) validation, that is whether the conclusions
of a study are supported by other similar studies, and (3)
combination, that is whether more reliable conclusions can be
reached by jointly analyzing multiple studies. Variation in
measurements of gene expression includes “technological”
variation, associated with limitations of the measuring tech-
nologies, and “biologic” variation, because of the phenotype
or experimental condition being studied, as well as natural
variation of levels of gene expression in different samples of
the same type.6

Gene-expression microarrays have been analyzed using
clustering algorithms that group genes and samples on the
basis of expression profiles and statistical methods that score
genes on the basis of their relevance to various clinical
attributes. Despite the natural caution associated with the
implementation of new technologies in the clinical field, the
utility of the results of microarray analysis as an effective
diagnostic tool at the point of care is already being assessed.
Nevertheless, simply listing genes associated with a certain
tumor type is far from identifying the biologic processes in
which these genes are involved, and clustering genes with
similar expression patterns does not identify the causal mo-
lecular mechanisms that regulate them.8

The main objectives of large-scale expression profiling
are to identify homogenous tumor subtypes based on gene-
expression patterns, to find genes that are differentially ex-
pressed in tumors with different characteristics, and to de-
velop a rule on the basis of gene expression allowing the
prediction of patient prognosis or response to a particular
treatment.9 There are a variety of statistical approaches used
with expression profiling data to achieve these aims, includ-
ing clustering to identify homogenous subgroups, rules to
define statistical significance of differential expression of
large number of genes,6 various classification methods for
developing prediction rules10 and then evaluation of the
performance of the classification rule, and, finally, replication
of the results in an independent population.9

Meta-analysis is a broad area consisting of techniques
for analyzing data obtained from different studies. Because of
the availability of large LC data sets, several statistical
research groups have performed meta-analysis in which they
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searched for commonalities among the large expression stud-
ies. One of these studies7 compared both complementary
DNA (cDNA) and oligonucleotide array analyses of lung
carcinoma,11–13 whereas another study14 compared two dif-
ferent oligonucleotide analyses of lung AC.11,13 Both of these
meta-analyses have identified a high degree of reproducibility
among the primary data-gathering studies. Gene-expression
levels across samples were found to correlate between the
independent studies, even across the different experimental
platforms. Each of the analyses was also able to identify
genes across the data sets that predicted patient outcome in
both data sets. Nevertheless, the predictive gene sets were not
overlapping, suggesting that the true predictive gene sets may
be large and might be discovered effectively by a method
such as gene set enrichment analysis.15

Nevertheless, despite many publications reporting pos-
itive results, we have to take some issues into consideration:
clustering is overused10; the choice of analysis methods
should be made according to the objective of the study.
Microarray study objectives are often categorized as class
comparison (or gene finding), class prediction (prediction of
clinical outcome), or class discovery (grouping samples or
genes with similar expression profiles).16 The sample size
should be as large as possible and composed of patients
representative of the set of patients for which the classifier
might be used in the future.17 Further, clinical samples are
relatively heterogeneous and they contain a variable percent-
age of cancer cells and other infiltrating cells. In cancer
studies, selecting a heterogeneous group of patients present-
ing with different stages of disease and receiving a variety of
treatments usually leads to substantial difficulties in interpret-
ing the results of outcome-related analyses. The main prob-
lem lies in the possibility of confounding patient outcome by
stage and treatment.17,18 Validation of mRNA expression
differences using another technique such as quantitative RT-
PCR (qRT-PCR) are worthwhile but only confirm the RNA
expression differences and not whether the signatures are
predictive or useful.9 The test validation must come on
samples other than those used to develop the prediction rule;
and the use of the gene signature needs to give more infor-
mation than already available (e.g., clinical parameters).9,16,17

Similarly, we need to learn whether this approach is repro-
ducible and robust, particularly with prior specification. The
characterization of cancer processes in terms of transcrip-
tional changes in genes or modules is only a step toward the
goal of obtaining a detailed mechanistic model of the pro-
cesses leading to malignancy.8 A key limitation of such
approaches is that many regulators are regulated posttran-
scriptionally, and their activity is undetectable in gene-ex-
pression data.

The use of microarray technology has generated great
excitement for its potential to identify biomarkers for cancer
outcomes, but the reproducibility and validity of findings
based on microarray data have come under widespread chal-
lenge. A proposal of guidelines for statistical analysis and
reporting for clinical microarray studies presented as a check-
list of “Do’s and Don’ts” is provided by Dupuy and Simon.18

Technologies Used for Gene-Signature
Development

Broadly, experimental platforms for expression arrays
include oligonucleotide arrays synthesized by photolithogra-
phy, oligonucleotide arrays synthesized by ink-jet printing,
spotted oligonucleotide arrays, and spotted cDNA arrays.
After hybridizing a given sample on the array, signal inten-
sities can be determined by scanning it. These signal inten-
sities are directly correlated to the amount of a given tran-
script within the sample. The number of interrogated
transcripts varies between 5000 and 20,000.

Two basic strategies have been described for the anal-
ysis of microarray data. One involves the discovery of struc-
ture in a given data set without regard for prior knowledge of
the underlying biology. This approach often referred to as
“unsupervised analysis” uses the gene-expression data to find
structure in the data that can then be used to infer biologically
meaningful structure. This approach can be an effective tool
in classifying biologic samples into categories that were not
previously known to exist. By contrast, “supervised analysis”
strategies do consider existing information and, indeed, use it
to guide the analysis of the gene-expression data. The power
of the supervised analysis lies in the ability to specifically
drive the analysis to the phenotype of interest, taking advan-
tage of the relevant information as a guide.19

Systematic microarray gene-expression profiling has
proven to be a powerful and versatile tool for analysis of
cancer classification. Analysis of purified RNA samples,
frozen cell pellets, and frozen tumor tissues across differ-
ent institutions and even different experimental platforms
has revealed a high degree of correlation between institu-
tions, and hierarchical clustering likewise correctly classi-
fied the samples across institutions.7,15,20 Nevertheless,
although we can often identify function associated with
some of the genes in a signature, the challenge is to put this
information into perspective with respect to the entire
genomic profile.

qRT-PCR has emerged as a preferred method for
independent validation of microarray-based results be-
cause it has equivalent or superior technical characteris-
tics. The qRT-PCR assay is convenient in terms of labo-
ratory work load and applicable for large-scale routine use,
making it a viable alternative to more complex microar-
rays. qRT-PCR is a molecular biology technique that
allows amplification and quantification in real time of
defined RNA molecules from specific specimens. In brief,
in the first step, DNA copies of the investigated RNA
molecules are obtained by a process called reverse tran-
scription, and DNA amplification is then obtained by using
PCR. The quantification of the target RNA molecule is
based on the analysis of the accumulation curve of the
cDNA, as measured by the fluorescence detected at each
cycle of the reaction. Two common methods of quantifi-
cation are the use of fluorescent dyes that intercalate with
double-stranded DNA and modified DNA oligonucleotide
probes that fluoresce when hybridized with a cDNA. An
example of these technologies is shown in Figure 1.
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FIGURE 1. Microarrays and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) are the molecu-
lar biology techniques enabling gene-expression analysis. A, Lung cancer tumors are sampled and shipped to the laboratory,
where pathologic review is done to assess cancer cell contents, followed by RNA preparation and integrity evaluation. B, RNA
is labeled with fluorescent dye and hybridized against thousands of different nucleotide sequences corresponding to different
genes and arrayed on a solid surface. On hybridization, fluorescence emitted by single locations on the microarray is used to
estimate gene-expression levels. C, qRT-PCR is based on reverse transcription of a specific mRNA into the complementary
DNA (cDNA) molecule, which is used as a template in PCR. The production of double-stranded DNA is accompanied by emis-
sion of light, which is recorded throughout the process and correlates to the amount of the initial amount of RNA in the sam-
ple. D, Gene-expression levels are mathematically transformed into indexes predicting.
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LC-RELEVANT EXPRESSION SIGNATURES

Correlation between Lung Carcinoma
Expression Profiles and Histopathology

The current staging system for LC has remained largely
unchanged and continues to be based on histopathology and
extent of disease at presentation. Thus, tumor classification
systems provide the foundation for tumor diagnosis and,
more importantly yet, a critical basis for patient therapy
election. The heterogeneity of LC patients at each disease
stage with respect to outcome and treatment response sug-
gests that additional subclassification and substaging remain
possible.21 In the field of LC, genetic analysis by independent
investigators has demonstrated a wide variety of potentially
clinically important uses, including the ability to distinguish
morphologic variants reliably, which might affect the treat-
ment election and predict prognosis. The first results in this
area were the findings of close correlations between gene-
expression patterns and known histologic categories of lung
carcinoma (Table 1). Thus, the histopathologic phenotypes of
LC correspond to particular gene-expression patterns. Fur-
thermore, novel subtypes had been identified within the

histologic subtype of AC. This is particularly important
because this category comprises patients with markedly dif-
fering outcomes, for example, the bronchioloalveolar carci-
noma (BAC) subtype, which is histopathologically difficult to
determine but is characterized by a more favorable prognosis.
Nevertheless, to date, just a few systematic studies have been
reported comparing detailed histopathologic examination, in-
cluding immunohistochemistry of selected markers, with sub-
classes of carcinoma-defined gene-expression profiles.

Interestingly, in the study by Garber et al.,12 the AC
samples formed subclusters, whereas SCCs and SCLC sam-
ples clustered tightly together within their respective groups.
Some degree of overlap in these subcategories with those
identified by Bhattacharjee et al.11 underline the reproducibil-
ity of the results across the two different experimental plat-
forms used, namely, oligonucleotide arrays in the study by
Bhattacharjee et al. and cDNA arrays in the study by Garber
et al. The hypothesis tested in the work by Hayes et al.30 is
that lung AC subtypes defined by gene array analysis are
reproducible and clinically relevant. Tumor subtypes were
named according to overall similarity of gene-expression

TABLE 1. Signatures Define Distinct Histological Subtypes of Lung Cancer

References Disease
No. of
Genes

Methods of
Analysis

No. of LC
Samples Findings

Bhattacharjee et al.11 LC 18 Microarray 186 Signature define distinct subclasses of LC

Garber et al.12 LC 30 Microarray 67 Subclassification of AC into subgroups

Nacht et al.22 NSCLC 115 SAGE
Microarray

9 SAGE libraries Distinctive signature among types of LC

Beer et al.13 AC 50 Microarray 86 Signature differ between stage I and stage III tumors

Sugita et al.23 LC 20 Microarray
RT-PCR

4 cell lines Cancer/testis antigens as biomarkers in LC

Fujii et al.24 NSCLC SAGE 9 SAGE libraries Identification of novel genetic changes among
NSCLC

Wang et al.25 NSCLC 6 RDA 5 Signature represents novel candidate tumor
biomarker genes for NSCLC and its histological
subtypes.

Pedersen et al.26 SCLC Several Microarray
RT-PCR
Xenografts

21 cell lines Genes with differential expression between variants
of SCLC

Yamagata et al.27 NSCLC Several Microarray 31
6 cell lines

Clustering identify histological subgroups of NSCLC

Kikuchi et al.28 NSCLC Several Microarray 37 Clustering distinguish two major histological types
of NSCLC

Jiang et al.14 AC 10–13 Microarray
Meta-analysis

Expression patterns differentiate diseased from
normal samples

Takeuchi et al.29 NSCLC 30 Microarray
GO analysis

149 Expression profile define two major types of AC

Hayes et al.30 AC Several Microarray
Meta-analysis

231 Tumor subtypes correlate with clinically relevant
covariates

Motoi et al.31 AC Several Microarray 100 Gene profiling clusters correlate with AC subtypes
and EGFR mutations

Angulo et al.32 NSCLC 23 Microarray
IH

69 Cluster analysis segregate tumors by histology and
the presence of EGFR mutations

Kuner et al.33 NSCLC 30 Microarray
RT-PCR

60 AC and SCC are characterized by distinct sets of
cell adhesion molecules

LC, lung cancer; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; AC, adenocarcinoma; RT-PCR, real-time reverse transcriptase polymerase chain reaction;
SAGE, serial analysis of gene expression; RDA, representational difference analysis technique; GO, gene ontology; IH, immunohistochemistry; EGFR, epidermal growth factor
receptor.
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patterns across hundreds or thousands of genes to easily
recognizable morphologic LC variants. This naming choice
emphasizes the view that the tumor subtypes are not depen-
dent on identification of a fixed set of genes, specific analytic
method, or microarray platform and allows future investiga-
tors to establish a common reference point lacking in this
heterogeneous disease. Although unrecognized technical ar-
tifacts can drive clustering patterns in a single data set, it is
unlikely that similar effects would be present in multiple
cohorts using different assay platforms. The main focus of the
analysis is the validation of AC subtypes derived from clus-
tering of expression profiles, but they do not exclude the
possibility that additional tumor subtypes might be described
if the sample set were larger or of a different composition. In
attempt to address AC subclassification comprehensively in
the context of genetic data, Motoi et al.31 report an analysis of
100 lung AC with correlation between detailed histologic
subclassification and epidermal growth factor receptor
(EGFR) mutation, chromogenic in situ hybridization, and
protein expression and cDNA gene-expression profiles. They
found several distinctive clinical, pathologic, and molecular
subsets of lung AC using the 2004 WHO histologic classifi-
cation and further classifying the mixed subtype AC accord-
ing to the major histologic subtype. Their comprehensive
approach examining all histologic subtypes has allowed them
for identification of additional genetic-histologic correlation.

In recent years, there has been a great expectation of the
potential of microRNAs (miRNAs). miRNA form a class of
endogenously expressed, small noncoding RNA gene prod-
ucts about 22-nt long, with a recently established key role in
the posttranscriptional regulation of gene expression.34,35 To
date, more than 900 human miRNAs have been experi-
mentally identified (available at: http://www.sanger.ac.uk/
Software/Rfam/mirna/), and it has been estimated they reg-
ulate more than one third of cellular messenger RNAs,36 but
only a handful of specific targets have been experimentally
validated.37,38 From several studies, it is now clear that many
miRNAs are associated with primary human tumors.39–43

More than 50% of human miRNAs genes are located in
cancer-associated genomic regions, such as common break-
point regions and fragile sites, in minimal regions of loss of
heterozygosity, or minimal regions of amplification,44–46 sug-
gesting that miRNAs may play an important role in the
pathogenesis of human cancers. Similar to mRNA-encoding
genes, several miRNA-encoding genes have been meanwhile
classified as oncogenic (“oncomiRs”)47,48 or tumor-suppres-
sive genes according to their function in cellular transforma-
tion and expression in tumors.37,49 Furthermore, tumor cells
seem to undergo a general loss of miRNA expression, and
forced reduction of global miRNA expression promotes trans-
formation.50 Recent advances in classification of NSCLC have
identified differences in miRNA expression between SCC
and AC.51–54 Lebanony et al.,54 have identified hsa-miR-205
as a biomarker for SCC that exhibit the most significant and
strongest difference in expression between SCC and AC. A
previous study identified hsa-miR-205 as one of a set of six
miRNAs, which were differentially expressed in SCC com-
pared with lung AC51 (Table 2). Similarly, Yanaihara et al.51

studied more than 100 patient-matched pairs of primary
malignant and normal adjacent lung tissue and found that the
expression of 43 miRNAs was significantly different in the
tumor tissues compared with the normal adjacent tissues. Of
these miRNAs, 28 were down-regulated, and 15 were up-
regulated in the malignant tissue. Although miR-34b/c is
mainly expressed in lung tissues, the expression level of
miR-34b is decreased by more than 90% in LC cells.53,63

Raponi et al.62 have identified 15 miRNAs that were differ-
entially expressed between normal lung and SCC, including
members of the mirR-17-92 cluster and its paralogs, miR-155
and let-7, which had previously been shown to have prog-
nostic value in AC. Also, miR-146b alone was found to have

TABLE 2. Lung Cancer-Related miRNAs

miRNAs Events References

hsa-miRNA let-7 family Lung cancer development Takamizawa et al.39

Cell growth Johnson et al.40

Survival Calin and Croce55

Prognosis Yanaihara et al.51

Resistance to cytotoxic
therapy

Johnson et al.56

Brueckner et al.57

Weidhaas et al.58

Yu et al.59

hsa-miR-17–92 cluster Cell growth Hayashita et al.60

Overexpression He et al.41

O’Donnell et al.61

Raponi et al.62

hsa-miR-34 family p53 targets Bommer et al.63

Raver-Shapira et al.64

Tarasov et al.65

hsa-miR-34 b/c Diagnostic Bommer et al.63

Liang53

hsa-miR-449 Diagnostic Liang53

hsa-miR-205 Subclassification of
NSCLC

Yanaihara et al.51

Lebanony et al.54

hsa-miR-155 Prognosis and Diagnosis Yanaihara et al.51

Volinia et al.66

Raponi et al.62

hsa-miR-21 Subclassification Volinia et al.66

Lebanony et al.54

hsa-miR-99b Subclassification Yanaihara et al.51

has-miR-202

hsa-miR-203

hsa-miR-102

hsa-miR-204

hsa-miR-191 Differential expression Volinia et al.66

hsa-miR-128b

hsa-miR-199a-1

hsa-miR-196 Survival Hu et al.67

hsa-miR-106 family Cell cycle progression Ivanovska et al.68

hsa-miR-221 Survival and relapse Yu et al.59

hsa-miR-137

hsa-miR-372

hsa-miR182

miRNA, micro RNA.
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the strongest prediction accuracy for stratifying prognostic
groups at 78%.62

The importance of tumor subtyping is clear even in the
absence of a complete biologic understanding. Thus, corre-
lations of molecular profiles from individual tumor samples
to clinical outcome data hold the promise of better classifi-
cation of LC and subsequently improved diagnostic and
prognostic information for patient management. Taken to-
gether, gene-expression analyses have led to important in-
sights into LC, such as the existence of molecularly defined
subclasses of lung AC. In an ongoing collaborative study,
these subgroups will hopefully be characterized in more
detail.

Signatures that Predict Disease-Free and
Overall Survival

Recent developments in Genomics, Proteomics, and
Bioinformatics have conditioned the approach to the discov-
ery of prognostic and predictor factors of human cancers.
Global gene-expression profiling using high-throughput tech-
nologies has identified potential biomarkers and gene signa-
tures for classifying patients with significantly different sur-
vival outcomes (Table 3). Although morphologic features and
clinical stage based on the TNM system can roughly stratify
patients for prognosis, it is often difficult to predict either
which surgically managed patients are at risk for early relapse
or which rare advanced-stage patients may experience pro-
longed survival. Patients whose early-stage tumors contain
signatures predicting short survival times would benefit from
the aggressive therapies currently given only to those with
later-stage cancers.71,94,103 Unfortunately, current methods of
classification and staging are not completely reliable or suf-
ficiently precise,104 and no reliable markers exist to predict
the outcome in patients with LC. Additionally, using clinical
covariates together with the gene-expression data improved
outcome prediction compared with using gene-expression
data alone.79,81,82,91,94

Several studies have identified expression signatures
that partition patients into prognostic groups. Furthermore,
cross-study analyses of the data sets using different statistical
approaches have generated additional prognostic gene sets.
Nevertheless, Lau et al.84 have shown a Venn diagram with
158 candidate prognostic genes from several studies showing
minimal overlaps, but prognostic genes from some of these
studies seem to share partially common protein-protein inter-
action pathways.84 This discordance has been attributed to
insufficiently powered studies105 and variability in patient
cohorts, arbitrary selection of a different time point for
performance evaluation, expression profiling platforms, or
statistical methodologies.

Beer et al.13 have identified a gene-expression signature
predictive of patients at high risk for poor overall survival.
They built a 50-gene predictor using leave-one-out cross-
validation to predict the survival of patients. Notably, in this
study, some of the gene-expression results were confirmed by
Northern blot and immunohistochemistry, validating the re-
sults of microarray analysis and representing a first step to the
development of a clinically feasible test for predicting sur-
vival. Hopefully, in the near future, the results of all gene-

expression studies in LC will translate into a clinically widely
applicable test (e.g., immunohistochemistry or PCR) to allow
for early identification of patients at high risk. Guo et al.80

present a model system to identify important marker genes,
which could improve the prognosis for individual patients
with lung AC. They used several standard feature selection
algorithms, random forests, correlation-based feature selec-
tion, and gain ratio attribute evaluation to identify novel
molecular signatures with respect to the interactions among
genes. Chen et al.83 derived their five-gene signature from a
global analysis of major subtypes of NSCLC (both SCC and
AC) and identified only five genes (STAT1, DUSP6, ERBB3,
MMD, and LCK) that were found to be capable of separating
patients into two distinct prognostic groups. Lau et al.84 have
identified a three-gene mRNA expression-based classifier
(STX1A, HIF1A, and CCR7) that can partition patients with
early-stage NSCLC into subgroups with significantly differ-
ent prognoses, and they show that gene-expression patterns
are both independent and additive to the predictive ability of
clinical parameters such as stage and histology. Nevertheless,
Raz et al.,93 show a four-gene model that predicts mortality
better than clinical stage or tumor size (WNT3a, RND3, LCK,
and ERBB3 genes). Two genes of them overlap with the
signature from Chen et al. Guo et al.106 have used published
microarray data sets to evaluate their previously identified
cancer prognostic gene signature,80 and their results indicate
that the signature is an accurate predictor of survival in
NSCLC. This signature was compared with the five-gene
signature from Chen et al.83 and the 133-gene signature from
Potti et al.79 The signature from Chen et al. was not validated
in any of the three validation cohorts used, and they sug-
gested that the gene signature from Potti et al contains
correlated and/or redundant biomarkers. Shedden et al.94

conducted a large retrospective, training-testing, multisite,
blinded validation study to characterize the performance of
several prognostic models based on gene expression for 442
lung AC, the specific type of LC that is increasing in inci-
dence. The hypotheses proposed examined whether microar-
ray measurements of gene expression either alone or com-
bined with basic clinical covariates (stage, age, and sex)
could be used to predict overall survival in LC subjects. The
consideration of clinical covariates is highly relevant as
gene-expression-based prediction is important in practice
only if it provides more information than these measures.
They show that using clinical covariates together with the
gene-expression data improved outcome prediction compared
with using gene-expression data alone, and thus, lung AC can
be divided into groups with different survival rates. Sun et
al.91 described two gene signatures for AC and SCC suggest-
ing that a prognostic signature may not be cell type specific,
and a universal signature reflecting tumor aggressiveness and
subsequent clinical outcome may exist across histologic cell
types. This agrees with the studies by Raponi et al.82 and,
more recently, Roepman et al.97 This would be clinically
important because a unified gene signature would dramati-
cally simplify the outcome evaluation process for different or
unspecified types of carcinoma. Nevertheless, although
unique prognostic signatures are more attractive because of
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TABLE 3. Signatures Predicting Disease-Free, Overall Survival, and Metastatic Status

References Disease
No. of
Genes Methods of Analysis

No. of LC
Samples Findings Accuracy

Chen et al.69 AC Several Microarray
Northern-blot
Flow cytometry

4 cell lines Clusters correlated with invasiveness

Beer et al.13 AC 50 Microarray
Northern-blot
IH

86 Signature predict survival

Wigle et al.21 NSCLC 16 Microarray 39 Signature correlated with disease free survival
Ramaswamy

et al.70

AC 17 Microarray 64 Signature predictive of metastasis

Kikuchi et al.28 AC 40 Microarray 18 Molecular marker predict metastasis
Endoh et al.71 AC 8 qRT-PCR 85 Stratification of patients according to their prognosis
Sun et al.72 SCC 27 Microarray 15 Difference between high and low aggressiveness 80%

Takada et al.73 SCC 23 Microarray 92 Stratification of patients 100%
AC 43 94%

Tomida et al.74 NSCLC 40 Microarray 50 Subclasses of SCC with different prognosis and
invasiveness

82%

Diederichs et al.75 NSCLC 39 Microarray
qRT-PCR

14 Expression of 2 proteins is associated with metastasis
and predicts survival

Müller-Tidow
et al.76

NSCLC 10 qRT-PCR 70 RTKs predict metastasis and survival

Xi et al.77 AC 50 Microarray Meta-analysis Expression profiles from primary tumor may predict
lymph node status

88%

Inamura et al.78 SCC 50 Microarray 48 Two groups of SCC with different survival to 6 yr 68%
Potti et al.79 NSCLC 133 Microarray Lung metagene

model
Signature predict the risk of recurrence 79%

Guo et al.80 AC 37 Microarray 86 Signature predict tumor stage and differentiation 96%
12 Computacional model 94%
18 system 84%

Lu et al.81 NSCLC 64 qRT-PCR
Tisuee microarray

Meta-analysis Signature segregated patients into high- and low-risk
groups

90%

Raponi et al.82 NSCLC 50 Microarray
qRT-PCR
IH

129 Stratification of high- and low-risk patients 71%

Chen et al.83 NSCLC 5 Microarray
qRT-PCR

125 Predictor of relapse-free and overall survival 96%

Lau et al.84 NSCLC 3 qRT-PCR 147 Stratification stage I and II patients

Larsen et al.85 SCC 71 Microarray 51 Signature predict outcome 72%
79

Larsen et al.86 AC 54 Microarray 48 Signature predict recurrence
Bianchi et al.87 AC 10 qRT-PCR Meta-analysis Signature predict survival 75%
Rosell et al.88 NSCLC 9 qRT-PCR 126 Overexpression of BRCA1 mRNA associated with poor

survival
Seike et al.89 AC 11 qRT-PCR 80 Signature classified patients according to risk of

recurrence
75%

Skrzypski et al.90 SCC 3 qRT-PCR 66 Signature associate with prognosis 70%
Sun et al.91 NSCLC 50 Microarray Meta-analysis Two signatures predict survival regardless of histologic

cell type
Landi et al.92 AC 12 Microarray

qRT-PCR
135 Smoking-associated gene-expression signature

Raz et al.93 AC 4 qRT-PCR 107 Prediction of overall and disease-free survival
Shedden et al.94 AC Several Microarray 256 Several classifiers stratifying subjects according to risk
Vicent et al.95 NSCLC 4 Microarray Xenograft model Signature associated with bone metastasis
Landemaine

et al.96

Breast
cancer

6 Microarray
qRT-PCR

72 Signature predict breast cancer lung metastasis

Roepman et al.97 NSCLC 72 Microarray 103 Signature predict risk of recurrence
Boutros et al.98 NSCLC 6 qRT-PCR 147 Signature stratify patients into groups with different

prognosis
Bröet et al.99 NSCLC BAC array-CGH

Tech.
85 Copy number alterations linked to relapse-free survival

Hsu et al.100 NSCLC 4 Microarray databases
qRT-PCR

9 NCI-60 cell
lines

Identification of invasion-associated genes

Showe et al.101 NSCLC 29 Peripheral blood
samples

228 Signature in peripheral blood mononuclear cells
identified presence of disease

Tomida et al.102 AC 46 Microarray 60 Signature associated with relapse and death.

LC, lung cancer; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; AC, adenocarcinoma; SCC, squamous cell carcinoma; qRT-PCR, real-time quantitative
reverse transcriptase polymerase chain reaction; RTK, receptor tyrosine kinases; IH, immunohistochemistry.
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their wider applicability, using independent prognostic sig-
natures for different carcinomas may be more biologically
significant and less influenced by genetic heterogeneity.87

Boutros et al.98 use a nonlinear algorithm that learned patient
grouping (i.e., a semisupervised algorithm). The six-gene
signature identified by this algorithm was validated in mul-
tiple testing data sets and with permutation analysis. This
permutation analysis suggests a rationale for the number and
diversity of distinct NSCLC prognostic markers identified.
The nonoverlapping yet equally predictive gene signatures
suggest the possibility that multiple sets of gene-expression
biomarkers may exist in tumors that could be useful for
outcome prediction. These genes may participate in similar
molecular processes related to tumor aggressiveness. This
may explain some of the heterogeneity of NSCLC gene-
expression profiles observed to date in the literature.

Yu et al.59 have shown that a five-miRNA signature
(Table 2) can distinguish high-risk versus low-risk patients
within stage and histologic subgroups of patients with
NSCLC. Moreover, Hu et al.67 provide evidence that com-
mon SNPs in miRNAs might play an important role in
prediction of NSCLC survival. This finding may potentially
identify and select high-risk patients for effective adjuvant
therapy in addition to standard surgery, to improve the treat-
ment outcome of NSCLC. Takamizawa et al.,39 observed that
the expression levels of let-7 were frequently reduced in both
in vitro and in vivo LC studies, and reduced let-7 expression
was significantly associated with shortened postoperative
survival, independent of disease stage.39,51 They also ob-
served that overexpression of miRNA let-7 in A549 lung AC
cell lines inhibited cancer cell growth. let-7 negatively regu-
lates the expression of RAS and MYC by targeting their
mRNAs for translation repression.40 On the other hand, let-7g
levels are up-regulated after irradiation in LC cell lines.58

These findings suggest that miRNA let-7 may be a tumor
suppressor gene.40,56 Moreover, in humans, let-7 is located at
a chromosome region that is usually deleted in human can-
cers.44 The miR-17-92 cluster also enhances LC cell growth.60

It has been demonstrated recently that the members of the
miR-34 family are direct TP53 targets, which induce apopto-
sis, cell cycle arrest, and senescence.63–65

Based on the reports so far, it is possible that multiple
LC genes classifiers provide similar prognostic capabilities,
especially when they include genes that belong to the com-
monly deregulated pathways in lung carcinogenesis. For
example, prognostic genes identified in four71,83,84,88 qRT-PCR-
based studies interact with proteins that are often implicated in
cancer such as TP53, ERBB3, BRCA1, and EGFR.

Signatures in Metastatic Status Prediction
Metastasis is a complicated multistep process that in-

volves interactions between cancer cells and their surround-
ing microenvironments. It is the principal event leading to
death in individuals with cancer, but its molecular basis is
poorly understood. The metastatic phenotype includes the
ability to migrate from the primary tumor, survive in blood or
lymphatic circulation, invade distant tissues, induct angiogen-
esis, and proliferate establishing distant metastatic nodules.107

The ability to detect postoperative residual tumor cells,
occult metastases, or early tumor recurrence potentially may
improve survival by early aggressive adjuvant therapy. In
these situations, the availability of cancer cell-specific bi-
omarkers is essential for the development of effective screen-
ing modalities. Recently, gene-expression profiling studies in
several cancer tissue types have reported molecular signa-
tures that are associated with metastasis (Table 3) and have a
potential use for diagnostic purposes. No reliable clinical or
molecular predictors of recurrent disease are currently avail-
able. Because of heterogeneity in recurrence rates among
patients with the same stage of cancer, it is critical to isolate
a reliable molecular signature in tumors that could be used to
identify those who are likely to develop recurrent disease.
Nevertheless, early-stage tumors have better clinical outcome
and tumor staging aids treatment planning, but there are
instances where patients unexpectedly develop recurrent dis-
ease, illustrating the limitations of current clinical staging
techniques in accurately predicting tumor recurrence.85 It is
unclear whether the metastasis potential of individual tumors
develops over time or whether the basic genetic program of
the primary tumor predetermines the metastasis capability.76

Although both concepts seem reasonable, recent data indicate
that a metastatic program is inherent to tumors that do
metastasize early.70,75,76,89,102

Potti et al.79 identified groups of metagenes that can
stratify patients with stages I to III NSCLC based on their risk
of recurrence using a decision tree model that incorporates
clinical data. The model seemed to be predictive in stage IA
patients and was validated in two independent patient co-
horts. Nevertheless, the precise components of the metagenes
were not provided, and the histologic influences of lung
tumors were not considered. Seike et al.89 describe a novel
approach to identify metastasis-related genes and their poten-
tial use for diagnostic purposes based on the knowledge that
a few receptor tyrosine kinases are known to play an impor-
tant role in solid tumor metastasis. In addition to the known
metastasis-associated genes EGFR and ERBB2, several re-
ceptor tyrosine kinases previously not known to be associated
with the metastatic process were identified as strong predic-
tors for the development of metastasis in early-stage NSCLC.

Patients whose early-stage tumors contain signatures
predicting short survival may benefit from more aggressive
therapies and assign less aggressive treatments to patients at
low risk for recurrence. Moreover, identification of genes
critical for development of metastasis could lead to advances
in therapeutics.

Signatures of Oncogenic Signaling Pathways
The study of oncogenic signaling pathways has pro-

gressed remarkably over the past few decades, resulting in the
identification of a large collection of activated receptors,
receptor-coupled activators, kinases, phosphatases, transcrip-
tion factors, and various negative regulators of these activi-
ties. By using gene-expression signatures rather than specific
gene mutations, we may detect the consequence of the mu-
tation in the form of pathway deregulation. Various studies
have also demonstrated the potential for using gene-expres-
sion profiles for the analysis of oncogenic pathways.32,108–115
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Combining signature-based predictions across several path-
ways identifies coordinated patterns of pathway deregulation
that distinguish between specific cancers and tumor subtypes.
Linking pathway deregulation with sensitivity to therapeutics
that target components of the pathway provides an opportu-
nity to make use of these oncogenic pathway signatures to
guide the use of targeted therapeutics.

A 2006 study by Bild et al.109 describes a novel ap-
proach to targeted therapeutics in LC, relying on the principle
that assay of gene-expression profiles provides a measure of
the consequence of the oncogenic process, irrespective of
how the pathway might have been altered. Thus, even if the
known oncogene is not mutated but another component of the
pathway is altered, the gene-expression profile will still detect
the alteration. These authors used gene-expression profiling
to investigate the coordination of these oncogenic pathways
in driving tumor phenotype through examining the resulting
probabilities of a tumor having deregulation of the signaling
pathways. Angulo et al.32 have shown that EGFR-mutant
tumors clustered together in an unsupervised analysis, indi-
cating that the presence of EGFR mutations confers very
specific patterns of gene expression. This statement agrees
with Motoi et al.31 Thus, it is likely that EGFR-mutant lung
tumors constitute a very closely defined disease entity. Also,
studies involving the combination of mutation and gene-
expression data116 will hopefully help to model in more detail
the oncogenic pathways that are active in the different sub-
types of LC.

The RAS proteins are pivotal regulators of cellular
proliferation, differentiation, motility, and apoptosis. K-ras
oncogenes are frequently detected in mouse lung tumors. To
analyze profiling of genes regulated by K-ras oncogene, Lee
et al.117 generated K-rasG12D Tg mice expressing mutant type
K-ras gene in lung tissue by the regulation of SPC promoter
sequence. Gene-expression profiles of normal lungs and AC
showed a distinct pattern in hierarchical clustering. These
studies suggest that genes related to cancer development and
inflammation were up-regulated, whereas genes related to the
tumor suppression were down-regulated by K-ras, resulting
in the tumor growth. By exploring the gene-expression cor-
relates of a mouse model for lung AC, dependent of K-ras2
activation, Sweet-Cordero et al.118 were able to identify a
signature of KRAS2 mutation in human lung AC. The KRAS2
mutation-associated genes were validated by qRT-PCR anal-
ysis in the setting of RNA interference directed against
K-ras2.

The signaling pathway mediated by transforming
growth factor-� (TGF-�) participates in various biologic
processes, including cell growth, differentiation, angiogene-
sis, apoptosis, and extracellular matrix remodeling. In the
context of cancer, TGF-� signaling can inhibit tumor growth
in early-stage tumors. Nevertheless, in late-stage tumors, the
very same pathway promotes tumor invasiveness and metas-
tasis. Because a major role for TGF-� has been established in
several pathologic conditions, this pathway is a very attrac-
tive target for therapeutic intervention.119–122 Ranganathan et
al.119 found that 267 genes were regulated in several LC cell
lines in a similar manner but with different kinetics. Most

actions of TGF-� are brought about by regulation of gene
expression. The genes that are regulated and the way they are
regulated are largely dependent on the cell type under con-
sideration. They have shown that signaling pathways such as
MAP kinase, focal adhesion, Wnt signaling, and Integrin �V
are regulated by TGF-�. Borczuk et al.123 identified a lung
AC signature that segregated tumors into three subtypes
distinguished by histologic invasiveness. Among the genes,
differentially expressed was the type II TGF-� receptor
(TGF�RII), which was lower in AC-mixed and solid invasive
tumors compared with BAC. This finding, which suggested
that TGF�RII repression was required for lung AC invasion,
was confirmed using qRT-PCR and immnunohistochemistry,
and by in vitro studies indicating that TGF�RII expression
was inversely correlated with LC invasion. They used a
tumor cell invasion system to identify and characterize down-
stream mediator in TGF�RII-repressed cells important for
lung AC invasion. Candidate targets were identified using
DNA microarray gene-expression signatures of AC tumor
specimens and of TGF�RII knockdown cell in vitro. After-
ward, they have focused on characterizing the molecular
mechanisms important for invasion. In lung AC, loss of
TGF�RII expression with concomitant altered TGF-� signal-
ing is an important initiating event of invasion. To determine
these events in lung AC tumor cells, they used genomics and
in vitro-based invasion assay. Among the genes identified
was CCL5, which encodes the CC chemokine RANTES.124

Microarray data indicating CCL5 expression was increased in
TGF�RII-deficient cells were confirmed by qRT-PCR and by
enzyme-linked immunosorbent assay. These studies provide
insights into the molecular pathways that mediate progression
of AC from noninvasive BAC to invasive AC and, thus, are
of high clinical significance.

Understanding the molecular underpinnings of cancer
may be of critical importance to the development of targeted
intervention strategies. Identification of such targets, how-
ever, is notoriously difficult and unpredictable. Malignant cell
transformation requires the cooperation of a few oncogenic
mutations that cause substantial reorganization of many cell
features and induce complex changes in gene-expression
patterns.107 Critical genes to this multifaceted cellular pheno-
type have, therefore, only been identified after signaling
pathway analysis. Synergistic control of gene expression by
oncogenic mutations thus emerges as an underlying key to
malignancy and provides an attractive rationale for identify-
ing intervention targets in gene networks downstream of
oncogenic gain- and loss-of-function mutations. On the other
hand, current efforts are concentrated on developing drugs
that specifically target abnormal regulatory pathways of can-
cer cells. Alterations in these cell processes are driven by the
activation/inactivation of key genes, essential point control-
lers, which constitute the molecular targets for the design of
such specific therapies.

Signatures that Predict Responses to
Chemotherapy

Various gene signatures and sequence alteration in
target genes have been obtained for prediction of drug re-
sponse in patients (Table 4) with remarkable clinical suc-
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cesses. Improving our ability to manage the disease by
optimizing the use of existing drugs and/or developing new
agents is essential in this endeavor. To this end, individual-
izing treatments by identifying patients who will or will not
respond to specific agents will potentially increase the overall
effectiveness of these drugs and limit the incidence and
severity of toxicities that impair the functional status of
patients and their ability to tolerate further therapies.134 The
therapeutic improvement resulting from the new generation
of cytotoxic chemotherapeutic agents seems to have reached
a plateau because the mortality associated with metastatic LC
has not changed for the past two decades. The major cause of
failure of successful cancer treatment is resistance to cur-
rently available antineoplastic agents. Resistance can occur to
individual anticancer drugs or more broadly to multiple drugs
with different chemical structures and different mechanisms
of action. From the clinician’s point of view, the aim of drug
resistance research is to improve treatment outcome by de-
vising strategies that are able to circumvent primary drug
resistance or to prevent the development of secondary anti-
neoplastic drug resistance. Moreover, the detailed knowledge
about the drug resistance status of a given patient with cancer
can provide the basis for an individual patient-tailored che-
motherapy regiment in the future. To achieve this aim, an
exact prediction of the resistance status of a tumor patient is
necessary.131

Of greatest importance will be to learn whether the
human tumor cell lines can be used to generate signatures
predictive (at least in part) of what goes on in the patient. If

this is true then their use in preclinical studies will be greatly
validated and increased; if not then great emphasis should be
placed on study of tumor samples directly from patients.136

Nevertheless, the use of cultured cell lines has the advantage
to minimize the influences of sampling methods, although
cell lines differ from tumors and should, therefore, be con-
sidered as surrogates that may contain information on the
molecular cell biology and molecular pharmacology of can-
cer.135 Many groups have been using preclinical models that
make use of human tumor cell lines and/or xenografts to
investigate gene-expression profiles associated with in vitro
sensitivity (drug response phenotypes) to hundreds or even
thousands of drugs. This approach was pioneered by John
Weinstein and his team at the National Cancer Institute (NCI;
Bethesda, MD) using data on the panel of 60 human tumor
cell lines of various tissue origins (NCI-60 panel), which
have been tested for sensitivity to more than 100,000 agents,
and they correlated these drug response phenotypes with their
gene-expression profiles.137,138 Miyanaga et al.135 with a view
toward developing predictive markers for determining re-
sponse to histone deacetylase inhibitor treatment in the con-
text of individualized therapy for NSCLC related the cyto-
toxic activity of trichostatin A (TSA) and suberoylanilide
hydroxamic acid (vorinostat) to corresponding gene-expres-
sion patterns using a modified NCI program. In this study,
these two histone deacetylase inhibitors had distinct and
differential activities in the panel of NSCLC cell lines tested.
These results suggested that clinical studies in selected pa-

TABLE 4. Use of Gene-Expression Signatures to Predict Response to Chemotherapy

References Disease
No. of
Genes Drugs

Methods of
Analysis

No. of LC or
Tumor Lines Accuracy

Kikuchi et al.28 NSCLC 29–92 6 drugs CD-DST 37 samples

Szakacs et al.125 48 Human ABC transporters qRT-PCR NCI-60

Oshita et al.126 NSCLC 9 Multiple Microarray 29 samples

SCLC 18 samples

Kakiuchi et al.127 NSCLC 12 Gefitinib Microarray
sqRT-PCR
IH

33 biopsy samples

Yauch et al.128 NSCLC Several Erlotinib Microarray 42 cell lines

Gemma et al.129 LC Several 8 drugs Microarray 29 cell lines

Potti et al.108 50 Docetaxel and others drugs Microarray NCI-60 panel �80%

Coldren et al.130 NSCLC 8 Gefitinib Microarray
qRT-PCR
Flow cytom.
IH

11 cell lines

Gÿorffy et al.131 42–297 11 drugs Microarray
qRT-PCR

30 cell lines

Balko et al.132 NSCLC 180 EGFR TKIs Microarray 10 cell lines 90%

50

McDermott et al.133 LC Several 14 TKIs Microarray 7 cell lines

Hsu et al.134 NSCLC 46 Cisplatin Microarrays 17 cell lines 83%

95 Pemetrexed

Miyanaga et al.135 NSCLC 9 HDAC inhibitors Microarray 16 cell lines

LC, lung cancer; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; CD-DST, collagen gel droplet embedded culture-drug sensitivity test; qRT-PCR, real-time
quantitative reverse transcriptase polymerase chain reaction; TKI, tyrosine kinases inhibitors; IH, immunohistochemistry; HDAC, histone deacetylase; EGFR, epidermal growth factor
receptor.
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tients with NSCLC would be required for a more refined
evaluation of these drugs.

Using in vitro drug sensitivity data coupled with mi-
croarray data, Potti el al.108 developed gene-expression sig-
natures that predict sensitivity to individual chemotherapeutic
drugs. Each signature was validated with response data from
an independent set of cell line studies. They show that many
of these signatures can accurately predict clinical response in
individuals treated with the drugs tested and with combina-
tion of those. Hsu et al.134 described a novel approach to
rationalized drug therapy in NSCLC, by developing predic-
tors of cisplatin (a first-line agent) and pemetrexed (a second-
line agent) sensitivity and demonstrating the clinical value of
identifying the most appropriate drug on the basis of sensi-
tivity profile for the treatment regimen of each individual
patients, thus moving beyond empirical therapeutic choices
that are now in current practice. They have made use of in
vitro drug sensitivity data in cancer cell lines, coupled with
microarray expression data, to develop gene-expression sig-
natures reflecting sensitivity to cisplatin and pemetrexed. The
capacity of these signatures to predict response in indepen-
dent sets of cell lines and patient studies begins to define a
strategy that addresses the potential to identify cytotoxic
agents that best match individual patients with advanced
NSCLC. In addition, it can potentially be applied to patients
with early-stage NSCLC to predict who may benefit from
adjuvant cisplatin-based therapy.

Kinase inhibitors constitute an important new class of
cancer drugs, whose selective efficacy is largely determined
by underlying tumor cell genetics.133 Increased focus sur-
rounds identifying patients with advanced NSCLC who will
benefit from treatment with EGFR tyrosine kinase inhibitors
(TKIs). Nevertheless, individual markers do not encompass
all potential responders because of high levels of interpatient
and intertumor variability. A multivariate predictor of EGFR
TKI sensitivity based on gene-expression data would offer a
clinically useful method of accounting for the increased
variability inherent in predicting response to EGFR TKI and
for elucidation of mechanisms of aberrant EGFR signal-
ing.127,128,130,132,139 Signatures which predict response to ki-
nase inhibitors provide an important preclinical model to
guide early clinical applications of novel targeted inhibi-
tors.133 Indeed, the development of targeted therapies ap-
proaches has experienced an increase in the last years.140–146

The goal of developing new prognostic and predictive
signatures is to improve adjuvant treatment. Recent advances
in biologically directed therapies for NSCLC require more
accurate subclassification, as treatment may be dictated by
histologic subtype. Differences in EGFR mutation rates and
response to specific TKIs between histologic subtypes and
serious hemorrhagic complications with vascular endothelial
growth factor (VEGF) inhibitors in SCC may affect thera-
peutic choices. Hence, the importance of a single genetic
profile determination in the treatment election. In conclusion,
the development of signatures of drug sensitivity provides an
opportunity to optimize therapy for patients with LC and
perhaps other patients with advanced cancer where some
drug-based therapy is considered the standard of care.

Analysis of Gene Expression in a
Developmental Context

In recent years, the molecular underpinnings of the
long-observed resemblance between neoplastic and imma-
ture tissue have begun to emerge. Genome-wide transcrip-
tional profiling has revealed similar gene-expression sig-
natures in several tumor types and early developmental
stages of their tissue of origin. Nevertheless, it remains
unclear whether such a relationship is a universal feature
of malignancy, whether heterogeneities exist in the devel-
opmental component of different tumor types, and to
which degree the resemblance between cancer and devel-
opment is a tissue-specific phenomenon.147 The similari-
ties between cancer and development are evident on many
levels of observation: microscopically, cancerous tissues
appear as undifferentiated masses, with some tumor types
even exhibiting embryonic tissue organization. The reca-
pitulation of embryonal pulmonary gene expression in LC
has been reported in several articles. Progresses have been
made in our understanding of the embryological develop-
ment of the lung and in the characterization of the putative
LC stem cells. Nevertheless, in contrast with hematology,
a hierarchical distribution of lung epithelial cells in lin-
eages according to their degree of “stemness,” commit-
ment and differentiation have not been defined.

Naxerova et al.147 have demonstrated a clear imprint
of developmental gene expression in a wide range of
tumors and with respect to different, even noncognate
developmental backgrounds. They identified a set of genes
that are up-regulated in most cancers and shown that this
signature is active in early development. Genes that are
active in lung AC are preferentially expressed in early lung
development; the pattern is inversed for down-regulated
genes, meaning that genes that are characteristic for the
mature, differentiated stage of the lung are suppressed in
LC. Hassan et al.148 showed that an increased expression of
the embryonic stem cells (ESCs) gene set and a decreased
expression of the polycomb target gene set identify poorly
differentiated lung AC. In addition, this gene-expression
signature was associated with markers of poor prognosis
and worse overall survival in lung AC. Nevertheless, there
was no correlation between this ESC gene signature and
any histologic or clinical variable assessed in lung SCC.
Furthermore, lung AC that share a common gene-expres-
sion pattern with normal human ESCs were associated
with decreased survival, increase biologic complexity, and
increased likelihood of resistance to cisplatin.149 In the
study by Borczuk et al.,150 the authors compared gene-
expression analysis between LCs and a mouse study of
early development. They found that genes expressed at
highest levels in large cell carcinoma were generally
correlated with early stages of lung development, in par-
ticular the pseudoglandular and canalicular stages of de-
velopment. These include a variety of proliferation-related
genes such as CDK4, PCNA, and E2F3. In contrast, the
genes expressed at highest levels in lung AC were associ-
ated with later stages of normal lung development, in
particular with terminal branching and the formation of
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alveolar structures such as surfactant protein genes and
their major regulatory factor, thyroid transcription factor 1.
It should be noted that these same marker genes for
alveolar differentiation have also been noted as the hall-
marks of specific AC subtypes, in particular, gene-expres-
sion classes that correlate with the presence of bronchioal-
veolar carcinoma features.11,12

Expression studies suggest that miRNA let-7 may con-
trol a variety of processes both during development and in the
maintenance of adult tissue homeostasis or at least play a
critical role in the pathogenesis of LC.56 In contrast to
miRNA let-7, the expression of miRNA cluster miR-17-92 is
remarkably increased in LC, especially in the most aggressive
form, SCLC,60 when compared with miRNA expression in
normal cells. More detailed understanding of the stages and
cell types during lung development, and their associated
expression profiles, will be valuable to identify more com-
pletely the relationship between LC cell types and lung
development.15

CHALLENGES OF USING EXPRESSION
SIGNATURES

The application of high-throughput technologies to
identify genes that are expressed differentially in tumor cells
and normal tissues seems to be promising. Gene-expression
profiling is considered a standard procedure for these analy-
ses. Nevertheless, the levels of mRNA do not always reflect
accurately the levels of the corresponding proteins nor do
they reveal changes in epigenetic posttranscriptional modu-
lation of proteins (e.g., phosphorylation, acetylation, methyl-
ation, ubiquitination, ADP ribosylation, glycosylation, and
myristoylation) or changes in protein degradation rates.
Therefore, analysis of differences in protein levels or modi-
fications is important to complement studies on mRNA ex-
pression.151 The reported lack of correlation between mRNA
and protein expression has highlighted the importance of
conducting parallel proteomics studies to complement cDNA
or oligonucleotide array data. On the other hand, a change in
protein level could be the result of increased gene expression
or stabilization of mRNA or protein. Also, discrepancy could
be due to posttranslational changes in proteins or differences
between mRNA and protein analysis.

Signature has been variably formulated as a simple
ratio or as an index, normalized to different sets of genes or
standardized with calibration RNA, and stratified by using
thresholds optimized within each study. The consequences of
threshold decisions on the interpretation of data obtained
during microarray studies have not been elucidated.152

Threshold choice and, consequently, the number of genes in
genetic signatures, also dramatically affect the gene function
categories represented nonrandomly in signatures. There is a
need for routine assessment of the robustness of microarray-
based biologic conclusions by evaluation of the conclusion’s
statistical validity under a range of threshold parameters.152

Pan et al.152 argue that conclusions about nonrandom repre-
sentation of certain biologic processes and cellular compo-
nents in gene signatures identified by microarray analysis can
depend significantly on the signal-to-noise threshold used to

select these genes, and the relationship between category
representation and threshold choice is neither linear nor
predicable. This effect may result from possible nonlinearity
of the ratio between the total number of genes identified and
the number of genes in a particular category.

Attempts to integrate and cross-study validate the results
of various gene-expression profiling projects are complicated by
the use of diverse microarray platforms, sample set, protocols,
and analytical approaches. Nevertheless, Parmigiani et al.7 have
developed a practical analysis for cross-study comparison, val-
idation, and integration of cancer molecular classification stud-
ies using public data. They evaluated genes for cross-plat-
form consistency of expression patterns, using integrative
correlations, which quantify cross-study reproducibility with-
out relying on direct assimilation of expression measurements
across platforms.11–13 Cross-study comparison revealed sig-
nificant, albeit incomplete, agreement of gene-expression
patterns related to LC biology and identified genes that
reproducibly predict outcomes. With respect to the question
of integrating knowledge across studies, the comparative
analysis of three data sets provides encouragement that there
is a significant level of consistency with respect to genes that
distinguish well-defined classes of LC (e.g., SCC versus AC)
and genes that are associated with LC patient survival, but
there was also significant scatter in the comparative correla-
tions of gene-expression levels with relationship to classifi-
cation of outcome. The integrative correlation analysis indi-
cated that there remains a substantial component of
unexplained variability across studies.7

It is unknown whether gene-expression profiles are
more or less likely than traditional biomarkers to be gener-
alizable across populations with varying genetic background.
Gene-expression patterns have also been associated with
specific genetic mutations (e.g., EGFR), indicating that spe-
cific DNA mutations or polymorphisms may affect the per-
formance of a signature.

Although several genome-wide expression microarray-
based prognostic models of LC have been reported, such
array-based technology may be suboptimal for clinical use
because of the need for specialized laboratory facilities and
complex statistical analysis. It is also limited by the large
number of genes in the analysis, lack of reproducibility and
independent validation of the results, and the need of fresh-
frozen tissues. Prognostic models based on gene expression
of a limited number of genes using qRT-PCR may be more
clinically practical. A limited qRT-PCR-based model has the
advantage of being more reproducible and more feasible in
the clinical setting and requires smaller quantities of tumor
tissue than microarray-based models.71

In recent years, there has been a significant interest in
developing tools and protocols that enable mRNA profiling
from more readily available formalin fixation and paraffin
embedding (FFPE) tissues. There is a huge resource of
FFPE tissues specimens held in histopathology depart-
ments around the world. These samples provide an invalu-
able resource for studying the molecular basis of disease,
making it possible to perform large retrospective studies
correlating molecular features with therapeutic response
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and clinical outcome. To date, gene-expression profiling
from FFPE tissues has been problematic, as the retrieval of
RNA from FFPE material is challenging.153 Although
tissue architecture and proteins are preserved with paraffin
embedding, this method does not preserve nucleic acids
very well, resulting in RNA that is often significantly
degraded. Moreover, formalin fixation causes cross-link-
age between nucleic acids and proteins154,155 and modifies
RNA covalently by the addition of monomethylol groups
to the bases, making subsequent RNA extraction, reverse
transcription, and quantitation problematic. Consequently,
significant efforts to improve extraction of RNA from
formalin-fixed tissue have been made by introducing var-
ious modifications to the extraction steps. These modifi-
cations have been implemented in almost all commercially
available FFPE extraction methods today (from Nugen
Technologies Inc., Ilumina Inc., Almac Diagnostic, etc.).

Successful extraction and amplification of RNA from
FFPE tissue have been reported since the late 1980s.154,156,157

Preliminary findings of Linton et al.158 suggest that reliable
microarray data could be generated using FFPE tissue and
that this could be used for the identification of prognostic
genes. The authors predicted that the sensitivity (about 50%)
would be improved in the future by using improved mRNA
extraction and amplification methods and by the use of new
microarray platforms specifically designed for the interroga-
tion of FFPE tissue. On the other hand, Specht et al.159 used
qRT-PCR to analyze the expression of a panel of cancer-
relevant genes in matched frozen and FFPE xenograft sec-
tions. The authors reported no significant differences between
gene-expression levels obtained with both approaches, and
neither fixation time nor grade adversely affected these re-
sults. In fact, miRNA are well preserved in FFPE tissue, as
has been demonstrated by Li et al.160 and Lebanony et al.54 in
their studies, making them ideal candidates for molecular
markers for use in routinely processed material.

Research published in recent years has taken us from a
point where mRNA profiling from FFPE was not possible to
a point where it is now accepted that gene-expression mea-
surements can be performed from FFPE tissue using both
qRT-PCR methods and by microarray profiling. It has be-
come clear that the implementation of a standardized ap-
proach to fixation and storage of FFPE tissues and the further
improvements in technology and techniques to interrogate
this tissue are required if we are to fully embrace the utility of
this resource.

FUTURE DIRECTIONS
Global molecular profiling of cancers has shown broad

utility in delineating pathways and processes underlying dis-
ease, in predicting prognosis and response to therapy, and in
suggesting novel treatments. To gain further insights from
such data, Rhodes et al.161 have integrated and analyzed a
comprehensive collection of “molecular concepts” represent-
ing more than 2500 cancer-related gene-expression signatures
from Oncomine and revision of the literature, drug treatment
signatures from the Connectivity Map, target gene sets from
genome-scale regulatory motif analyses, and reference gene

sets from several gene and protein annotation databases. The
Oncomine database represents a concerted effort to integrate
and analyze such data. Another genome scale analysis, the
Connectivity Map, examined hundreds of compound treat-
ment gene-expression profiles and showed that such profiles
could be used in a screen to identify compounds capable of
reversing a gene-expression program active in disease.19,162

Although gene-expression studies are the predominant
type of genome-scale molecular analyses to date, other high-
throughput experimental modalities include proteomic profil-
ing, transcription factor binding analysis, epigenetic profiling,
and sequence-based analyses. In addition, several systematic
annotation efforts have provided a variety of valuable ge-
nome-scale characterizations. Several tools are available to
compare a query gene list to a reference set of gene lists. For
example, Gene Set Enrichment Analysis allows one to com-
pare a query signature with a variety of gene sets based on
pathways, Gene Ontology terms, regulatory motifs, chromo-
somal regions, and perturbation experiments.163 Databases
with complete data on each patient are needed, including all
analysis and procedures used to produce a risk estimate from
a tumor sample. Such databases could renew and expand the
currently limited pool of validation databases. It is necessary
to do comparative effectiveness studies, oversight of test
development, or research funding should encourage contrasts
and combinations with existing expression-based predictors.

The molecular origins of LC lie in complex interactions
between the environment and host genetic susceptibility. LC
then evolves through genetic and epigenetic changes, includ-
ing deregulated signaling pathways, which are potential tar-
gets for chemoprevention and therapy. So far, all the work
that have dealt with diagnostic and prognostic markers of LC
have focused on genes expressed in tumors. Nevertheless, a
key challenge with LC is the early detection of the primary
tumor or of its recurrence. Clearly, the tumor interacts with its
microenvironment through a variety of autocrine and para-
crine mechanisms, and there undoubtedly will be biomarkers
of tumor response that focus on the microenvironment that
will need to be developed because that microenvironment
may properly be the therapeutic target (e.g., the tumor vas-
culature, which is targeted with the anti-VEGF monoclonal
antibody bevacizumab). The gene-expression patterns in sur-
rogate tissues are also another source of information, al-
though few data are available to support the use of microar-
rays to identify surrogate markers in peripheral tissues.89

Emerging techniques for genomic, gene expression, epige-
netic, and proteomic profiling164–166 could revolutionize clin-
ical approaches across the spectrum of LC types and sub-
types. Genome-wide and other molecular assessments are
helping elucidate germ-line variations that may contribute to
LC risk,167–169 prognosis170 (Tables 1–3), treatment sensitiv-
ity171,172 (Table 4), and somatic genetic alterations that occur
in lung carcinomas116,173 and in high-risk lung tissue associ-
ated with tumors.89

CONCLUSIONS
New gene-expression signatures based on functional

criteria may provide complementary information that will
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help to refine a patient’s prognosis and inform therapeutic
choices. Also, gene-expression profiles that can predict response
to commonly used cytotoxic agents provide opportunities to
better use these drugs, including using them in combination with
existing targeted therapies. The promise of effective targeted
therapy for LC requires rigorous identification of potential tar-
gets combined with intensive discovery and development efforts
aimed at developing effective drugs for these targets. We now
recognize that getting the right drug to the right target in the right
patient is more complicated than one could have imagined a
decade ago.174 To move toward the goal of individualizing or
personalizing the approach to LC treatment, molecular profiling
of treatment-sensitive and treatment-resistant tumor molecular
subtypes at the time of diagnosis, during treatment, and at
relapse will be essential.175

The introduction of gene-expression tests has ushered
in a new era in which many conventional clinical markers
may be seen merely as surrogates for more fundamental
genetic and physiologic processes that can be measured with
these tests. The multidimensional nature of these predictors’
demands that large numbers of clinically homogeneous pa-
tients be used in the validation process and that exceptional
rigor and discipline are be applied in evaluation. Every study
provides an opportunity to modify a genetic signature, but the
most important is to find the right balance between speed of
innovation and development of reliable tools. It will be
important to preserve genetic and clinical information from
tested patients to facilitate further evaluation and innovation
in current populations. Although these tests show great prom-
ise to improve predictions of prognosis and treatment benefit
for patients with early-stage LC, more must be learned about
the extent of that improvement, in which it is most improved,
and how the tests are best incorporated into decision making
about current LC treatment.

Lack of overlap in the composition of LC prognostic
signatures is not unexpected and likely reflects the fact that
numerous gene-expression signatures may be capable of
predicting outcome. The reconstruction of the molecular
mechanisms that underlie a complex process, such as tumor-
igenesis, is a formidable challenge. This challenge arises in
part from difficulties associated with microarray assays, in-
cluding noise in the data and limited reproducibility across
platforms and researches. Thus, there is a strong possibility
that sample collection methods, processing protocols, single-
institution subject cohorts, small sample sizes, and peculiar-
ities of the different microarray platforms are contributing
significantly to the results. On the other hand, human LC has
extensive alterations of miRNA expression that may deregu-
late cancer-related genes, and alteration in miRNA expres-
sion may play a critical role in tumorigenesis and cancer
progression. The development of new miRNA markers in the
near future will represent one of the main goals in molecular
medicine. The variety of genes found useful for classification
suggests that several mechanisms contribute to the clinical
progression of LC and that several classifiers may be equally
effective. Therefore, an integrated approach using gene ex-
pression together with associated clinical, pathologic, and
other information may be more promising for future work.

Moreover, most analyses implicitly treat mRNA expression
as a surrogate for protein activity level, an assumption that
does not account for processes such as mRNA stability,
protein degradation, and posttranslational modification. Al-
though genomic approaches are prevalent in cancer research,
we are still far from reconstructing molecular mechanisms in
human cancer. Both regulatory and signaling networks are
larger and more elaborate, and the control of many genes and
processes involves undefined epigenetic mechanisms, a
higher degree of combinatorial regulation and multiple sig-
naling pathways. Furthermore, many interactions are context
specific, as different components of the molecular network
are active in different cellular states and phenotypes. There-
fore, the critical test of prognostic signatures is validation in
independent data sets and with different assays. Only a few
profiles have been validated rigorously in independent co-
horts of patients using the qRT-PCR technique that is con-
sidered the gold standard for mRNA expression analysis.176

On the other hand, it remains to be systematically determined
which algorithms are best suited for selecting and validating
stable prognostic gene list.

Given this complexity inherent to LC, it would be
surprising if a single gene-expression pattern could effec-
tively describe and ultimately predict the clinical course of
the disease for all patients. Recognizing the importance of
addressing this difficulty, it is very important to integrate
various forms of data, including clinical variables and mul-
tiple gene-expression profiles, to build robust predictive mod-
els for the individual patient. The published information
about gene-expression patterns that are predictive of survival
in LC, the identification of new diagnostic markers, and the
new and emerging preliminary data on gene-expression pat-
terns in surrogate tissues and cells suggests that the quality of
information will drive the clinical application. The ability to
generate multiple relevant descriptions of gene-expression
data that predict oncogenic pathway activation creates a
unique opportunity to better match individual patient charac-
teristics with what may be the most appropriate therapeutic
option in advanced-stage LC. If we want to make progress,
we will need to develop better techniques for assessing the
benefits of targeted drugs (particularly combinations of
them), as well as more complete methods for molecularly
profiling each patient’s cancer. To move toward a goal of
individualized medicine with rationally targeted therapies, it
is imperative to do more molecular profiling of treatment-
sensitive and treatment-resistant tumors, to better understand
the underlying biology of specific molecular subtypes.177

One important difficulty of the signatures with high
number of genes is that the methodology used is not directly
transferable to the clinical setting. Thus, there is need to
develop strategies aimed at the identification of small signa-
tures that can be easily analyzed in the clinical laboratory.
Nevertheless, Shedden et al.94 in their multisite study argues
that the variety of probe sets showing some predictive capac-
ity suggests that information about lung AC outcomes may
not be concentrated in just a few exceptional genes and the
variety of genes found useful for AC classification into
groups with different survival rates suggests that several
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mechanisms contribute to the clinical progression of lung AC
and that several classifiers may be equally effective. So, how
many genes are enough? Many molecular markers that pre-
dict patient survival independent of the TNM staging system
have been reported in the literature. These include oncogene
(KRAS, BCL2, ERRB2, and EGFR), tumor suppressor genes
(TP53, RB, TP16, and P27KIP1), cell cycle modulators
(cyclins), molecules related to tumor invasion and metastasis
(CDRR, cathepsin B, and matrix metalloproteinase), telom-
erase, molecules involved in tumor angiogenesis (VEGF and
VEGF receptor), cyclo-oxygenase 2, etc. Nevertheless, for
the moment there is no single biomarker available that can be
routinely used for prediction of prognosis of LC. This may be
quite reasonable considering that cancer is a complex multi-
gene disease, and each new signature generated from distinct
models, platforms, or mathematical methods has the potential
of adding prognostic information. Molecular profiling of the
type described in this review has begun in clinical tri-
als79,143,178 and promises to select patients who are most
likely to benefit from therapy and to guide the development of
more effective agents that will personalize standard medicine
for LC.179

Although some of the modular approaches outlined
earlier in the text enhance our ability to analyze disease
process-relevant signatures, we are still far from understand-
ing the role that these signatures have in cancer. We may be
able to derive a more comprehensive perspective on cancer
processes by integrating existing assays with histopathologic,
clinical, and environmental information on the one hand, and
with measurements of genetic variation, such as SNPs or
DNA copy-number changes, on the other. Although there still
remain significant challenges to the use of gene-expression-
based classifiers in the clinical setting, the potential that these
tools can improve patient care and increase survival provides
a strong impetus to continue to refine these approaches for
eventual clinical use.
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