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Abstract

Several new criteria for the oscillation of the functional differential equations of the form

d([ldld 1 4

di anfl(r)Eanfsz”'al(r@x(t)] )iqu (e]) =0

are established in this paper.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the functional differential equation

Lax(t)+8q(@) f(x[g(®)]) =0, (1.1; 5)
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wheren > 3,8 = +1,
Lox(t) =x(1),
Lix(t) = g5 % (Li-ax (), k=1,2,...,n—1, (1.2)

Lyx(t) = L ([Ly—1x (O]
In what follows we shall assume that

(i) ai(1) € C([to, 00), RT = (0, 00)),

o]

/a,(s)ds:oo, i=12....,n-1, (1.3)

(i) q(1) € C(lto, 00), RT),

(iii) g(t) € C([t0, 00), R = (=00, 00)), g'(t) =0 fort > 1o and lim_, o, g(¢) = o0,
(iv) feCR,R),xf(x)>0andf’(x)>0forx#0,

(v) « is a quotient of positive odd integers.

The domainD(L,,) of L, is defined to be the set of all functions[T,, co) — R such
thatL;x(¢), j =0,1,...,n, existand are continuous ¢f,, c0), T > fo. Our attention is
restricted to these solutionss D(L,,) of Eq.(1.1; §) which satisfy sufix(z)|: t > T} >0
for every T > T,. We make the standing hypothesis that Ef1; §) does possess such
solutions. A solution of Eq(1.1; §) is called oscillatory if it has arbitrarily large zeros;
otherwise, it is called nonoscillatory. Equati¢h1; §) is said to be oscillatory if all its
solutions are oscillatory.

Recently, the present authors [1-3,5—-7] and others in [9] have established many interest-
ing oscillation criteria for some special cases of EQl; §). The obtained results extend
and improve many well-known oscillation results which have appeared in the literature.
The purpose of this paper is to proceed further in this direction and establish some new
criteria for the oscillation of Eq(1.1; §).

2. Preliminaries

To formulate our results we shall use the following notation: p;@r) € C([tg, c0), R),
i=12, ..., wedefinelp =1,
t
Ii (1, s; Piapifl:uwpl)z'/]’i(u)]ifl(u:ﬂ pi-1,-..,pDdu, i=12....
N

It is easy to verify from the definition af; that

Li(t,s5 p1s - pi) = (=D Li(s, 15 pis ..., p1)

and
t

Ii (t,s; Pl,...,pi)=/pi(u)1i71(t,u;Pl,...,pifl)du.

N
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We shall need the following two lemmas.

Lemma2.1. If x e D(L,), whereL, is L, defined by(1.2) with & = 1, then the following
formulas hold fol0 <i <k <n —1ands,s € [, o0):

k—1
Lix(ty =) _1j—i(t,s; ait1, ..., a;)L;x(s)
j=i
13
+ / T—i—a(t,us @iy, ... axg—1)ag () Lpx (u) du (2.1)
N
and
k-1 .
Lix() =Y (-1 i(s.t:aj.....ai41) Ljx(s)
j=i
N
+ (—Dk / De—i—1(u, t;ak—1, ..., aiv)ar(w) Lix (u) du. (2.2)

t

This lemma is a generalization of Taylor's formula with remainder encountered in cal-
culus. The proof is immediate.

Lemma 2.2. Suppose conditio(lL.3) holds. Ifx € D(L,), whereL, is as in Lemm&.1 is
eventually of one sign, then there exist 1o > 0 and an integel, 0 < ¢ < n, withn +¢
even forx(¢) L,x(¢t) nonnegative, on + ¢ odd for x(¢) L, x(t) honpositive and such that
for everyr > 1y,

{e >0 implies x(t)Lyx(t)>0, k=0,1,...,¢,

. _ (2.3)
e<n—1 implies (-1 *x()Lix(1)>0, k=+¢,0+1,...,n.

This lemma generalizes a well-known lemma of Kiguradze and can be proved similarly.
For a functiong € C ([0, o0), R) we put

o (1) =min{g(1), 1},

Ay = {1 €10, 00): g(r) > t}, Rg = {t € [0, 00): g(1) <1t}.
For simplicity, we put
Ji(t,s) =L (t,s;a1,...,ar), Ki(t,s) =an-1)Ix (2, s; an—2, ..., Gn—i),

k=12,...,n—2ands,s € [T, oo) forsomeT >y > 0.

3. Main results

In this section, we shall study the conditions under which th&sef all nonoscillatory
solutions of Eq(1.1; §) become empty. By Lemma 2.2 and because of conditions (i)—(v),
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we shall consider the decomposition/8f based on the integérin Lemma 2.2. So, we
shall consider the following three cases:

(1) 1<e<n—1,

(2) =0,
3) £=n

3.1. Thecasé<e<n—-1

We denoteV; the subset of\" consisting of allx satisfying (2.3). We shall provide the
conditions under whiciV, = ¥, 1 < £ < n — 1. We shall assume that

—f(=xy) = fxy) = f(x) f(y) forxy>0. (3.1)

Theorem 3.1. Let conditiongi)—(v) and(3.1) holdandletl < ¢ <n —1, (-1)"¢s = —1.
If, for everyT >t ando () > T,

oo 00 1/«
/K,,,H(t, T)(/q(u)du) FY(Je—a(o (), T)) dt = 0,
13
¢=12,...,n-2, (3.2, ¢)
/q(t)f(fn_z(o(t), T))dt = oo, (3.2:n—1)
thenA; = 0.

Proof. Assume that\V; has an element. We may suppose that?) is eventually positive.
SinceL,x(¢) is eventually of one sign and because of (v) one can easily seé& fhat)
(0< j < n) are eventually of one sign. By Lemma 2.2, there exists ro such that

Lix()>0 (0<i<¢) and (1) “Lix(t)>0 <i<n)
on|ry, 00). (3.3)

Assume first that < n — 1. From (2.2) withi, k and¢ replaced by, n — 1 andzy,
respectively, we obtain in view of (3.3),
n—2 ‘
Lex(t) =Y (=171 ¢(s, 1110, ..., a1 Ljx(s)
j=t
S
+ (—1)"_6_1/ In—¢—2(u,115ap-2, ..., ae+1)an—1(u)Ly—1x(u) du

1
N

>~y / K2, 11) Ln—1x () du. (3.4)

n
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Integrating Eq(1.1; §) fromu to T and lettingT — oo, we find

0 1/a 00 1/«
SLy—1x(u) > ( / q(r)dr) e lsw]) = ( / q(r)dr) (o))
forry <u<s. (3.5)
Using (3.5) in (3.4) and letting — oo, we have
s 00 1/«
00 > Lyx(f1) >/Kng2(u,t1)</q(t)dr> Y (x[o@)]) du. (3.6)
11 u

On the other hand, by integratidgx () > 0 (r > 1) £ times, we have
x[o®)] =cJe—1(o(t),11) fort > 1, for somer, > 11, (3.7)

wherec is a positive constant. Combining (3.6) with (3.7) and using condition (3.1), we
obtain

oo oo

/ Kn7€72(147 tl) (/

12 u

1/a
q(r)dr) Y (Je—a(o (w), 11)) du < oo,

which contradicts conditio3.2; ¢).
Next, supposé = n — 1. Integrating Eq(1.1; §) from #1 to u and lettingu — oo we
have
o0
00> 8Ly _1x(t1) > /q(u)f(x[cr(u)]) du. (3.8)
5%
From (3.8) and (3.7) witlk = n — 1, and by using (3.1), we get

o]

/q(u)f(fnfz(cr(u), 11)) du < oo,

7]

which again contradicts conditiaB.2; n — 1). This completes the proof.O
We note that a nontrivial solution(z) of Eq. (1.1; §) is said to be strongly decreasing
if it satisfies
(=1)7x(t)L;x(r) >0 eventually for 0< j <n —1,

i.e.,x e Np.
Also, a nontrivial solutionx(¢) of Eq. (1.1; 1) is said to be strongly increasing if it
satisfies

x(t)L;x(t)>0 eventuallyforO<j<n—1,

i.e.,x e Ny.
The following corollary is immediate.
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Corollary 3.1. Let the hypotheses of Theor& hold. Then,

() for§=1,nisevenand € {1,3,...,n — 1}, Eq.(1.1; 1) is oscillatory,

(&) for 6 =1, n is odd and? € {2,4,...,n — 1}, every nonoscillatory solution of
Eqg.(1.1; 1) is strongly decreasing,

(ag) for § = —1, n is odd and¢ € {1,3,...,n — 2}, every nonoscillatory solution of
Eqg.(1.1; —1) is strongly increasing,

(ag) for § = —1, n is even andt € {2,4,...,n — 2}, every nonoscillatory solution of
Eq. (1.1; —1) is either strongly decreasing, or strongly increasing.

In the following result, we require the following notations. Fo T > 1o, we put

o
Q@) zaj+l(t)/1n7j73(u: tan-2,...,aj+1)ap-1()
t

oo 1/a
X fl/a(lj1(g(u),cr(t);a1,...,aj1))(/q(r)dr) / du,
1<j<n-3 u (3.9 ))
On—2) =q() f(In—2(c (1), T,a1,...,an-2)), o(t)>T, (3.9n-2)
On-1(t) =q@) f(Li—2(g(®), n(®): a1. ..., an—2)) (39;n—1)
for everyg(t) > n(t) € C([tg, 0), R) and
r = q(t)f([,l_l(a(t), T,as,..., an_l)), ot)>T. (3.9 n—1)

Theorem 3.2. Let conditions(i)—(v) and (3.1) hold and letl < ¢ < n — 1 with
(—=1)"ts = —1.1f 1< £ < n — 3assume all the second order differential equations

(;tt)y’m) + e Y (y[o]) =0, 1<e<n-3, (3.10:¢)

with o (t) > T > 1g are oscillatory. If¢ = n — 2 assume all bounded solutions of the equa-
tion

1 , o/ B |
<<an_1(t)z (t)> ) — On—2) f(z[o®)]) =0 (310,n—2)

are oscillatory. If¢ = n — 1 assume eithefa) there exists;(r) € C([ty, o0), R) such that
n() <o) forr > g, lim,_ - n(t) = co and the equation

1 , o / B .
<<an1(t) w (t)) ) + Q1) f(w[n(®]) =0 (3101 —1)
is oscillatory, or(b) the first order equation
W' )+ Qf_ () f (u*[o®)]) =0 (310%n—1)

is oscillatory. Then\; = @.
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Proof. Assume that\; has an element. We may suppose that(¢) is eventually posi-
tive. SinceL,x(¢) is eventually of one sign, we see thatx(r) (0< j <n — 1) are also
eventually of constant sign. Moreover,

Lyx(t) = %(L,,,lx(t))“ =aL® 1x(t)Lyx(1), (3.11)

whereL, is defined as in Lemma 2.1, we see that the sigh,0&ndL, are the same. As
in the proof of Theorem 3.1, we obtain (3.3).
Lete<n—3. Puttingi=¢+1,k=n—1,s >t >1in(2.2) we have

n—2
Lepix(= Y (=DM a(s.tiaj, . a2 Lix(s)

j=t+1

N

(-1t / Ioet—30, 15 ne . @4 2)an—1(0) L1 ) it
t

(3.12)

Using (3.3) and letting — oo in (3.12), we obtain

o0
—Loy1x(t) > (=" ¢t / In—e—3(, t; a2, ..., ag12)an—1(u) Ly—1x () du.
t

(3.13)
Integrating Eq(1.1; §) foru >r >t to s, we find
—5L‘;;_1x(s)+5L;’;_1x(u)=/q(z)f(x[g(r)])dr.
Lettings — oo, we have
o8] 1/«
SLp—1x(u) = (/Q(t)f(X[g(t)])dT> . (3.14)

u

Substituting (3.14) in (3.13), we get

o0
—Lgy1x(t) >/In—e—3(u,t;an—2,-.-,az+2)an—1(u)
t
o0

X(/

u

1/«
q(r)f(x[g(r)])dr) du.

Sincex(t) andg(¢) are nondecreasing for> 11, we have
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o0
—Lygy1x(t) >/In—e—3(u,t;an—2,-.-,az+2)an—1(u)
t

oo

X(/

u

1/a
q(1) dr) Y (x[g@w)]) du. (3.15)

On the other hand, using (2.1) withk, r ands replaced by 0/ — 1, u andry, respectively,
and (3.3), we get

u
(W) > f To_au, v; at, ..., ag—2)a—1() Le_1x (v) dv

1
u

> (/113—2(”, U§al,-~-,a£—2)ae—l(v)dU)L€—lx(t)
t
=I_1(u,t;a1,...,ai-1)Le—1x(t) foru>t>n.

There exists, > 11 such that
x[g®] = Le—1(gw), 0 (); a1, ..., ae—1)Le—1x[o ()], t>12. (3.16)
Substituting (3.16) in (3.15) and using (3.1) we get

00 00 1/«
_L€+1x(t) > [ / In—€—3(u’ t; an—Za M a€+2)an—l(u) (/ ‘I(T) dt)

t u

x fH(L—a(g @), 0 (1) ax, ..., ae-1)) du] Y (Le—ax[o(1)]),
or
_%(L/Zx(t)) > Qu) fY*(Le—ax[o(1)]) fort > 1.
Let y(r) be given byy(r) = Ly—1x(1). Theny(r) > 0 on[rz, o) and y(r) satisfies the
differential inequality

<Tl(t)y/(t)) + Qe M (y[e]) <O forr >1o.
Theorem 2 in [10] now implies that the equation
U S

has an eventually positive solution. But this contradicts our assumptions.
Let ¢ =n — 2. This occurs whed = —1. From (2.1) withi, k, t ands replaced by 0,
n — 2,t andt; > tg, respectively, we have
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n—2
x(t)=Y_Ij(t.tr;a1,....a;)Lix(t1)
j=0
t

+ / In_3(t,u;a1,...,ay-3)ap—2(u)Ly—2x ) du

n
t

> / Li—3(t,u;ax, ..., an—3)an—2(u)Ly—_2x(u)du. (3.17)

1

Using the fact thaL,,_»x (¢) is decreasing ofr1, oo) there exists, > 11 such that
x[g(t)] > x[a(t)] > I,,,z(cr(t), f1;ai,..., a,,,z)Ln,Zx [cr(t)] fort > . (3.18)
Using (3.18) in Eq(1, 1; —1) and condition (3.1) we get
Lox() =q®) f(x[g®)]) = q@) f(In—2(0(®). 11: a1, ..., an—2)) f (La—2x[0 (D)]).
t>io.

Let y(z) be given byy(¢t) = L,—2x(t). Then, y(z) > 0 on [t2, o) and is bounded and
satisfies the inequality

1 o /
<<an_1(t))"(t)) > > q@0) f(Ii—2(c (), t1;01, ..., an-2)) f ([0 (D])-

By applying a similar argument given in [11] (see also [4]), one can easily see that the
equation

1 oN /
(5w ®) ) =007 (realeOumsianar-2)) s (oo 0))

has a positive bounded solution, which contradicts the hypothesis of the theorem.
Finally, let¢ =n — 1. This is the case wheh= 1. Assume (a) in Theorem 3.2 occurs.
From (3.17), there exigh > r1 such that

x[g®)] = Li—2(g(®), n(®); a1, ..., an—2) Ly—2x[n(@®)] fort >to. (3.19)
Using (3.19) in Eq(1.1; 1) and condition (3.1) we obtain
—Lax(t) =q@) f(x[g®)])
>q) f(Ii—2(g(®), n(®); a1, ..., an—2)) f (Lu—2x[n(@®)]) fort >t
Lety(¢) be givenbyy(t) = L,—2x(¢). Theny(z) > 0 on[#2, co) and satisfies the inequality

1 o /
(7 ®) ) + 007 (realenrian o 2) i) <o

Once again Theorem 2 in [10] implies that the equation

1 o /
<<an_1(t)u’(t)) ) +q®) f(g®),n); ax, ..., an-1) f (u[n@®)]) =0
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has an eventually positive solution. But this contradicts the hypothesis of the theorem.
Also, for the case =n — 1, if (b) in Theorem 3.2 occurs, we can proceed as follows:
From (2.1) and (3.3) we see that there exists 11 such that

x[g(t)] > x[a(t)] > I,,_l(cr(t), t;ai, ..., an_l)Ln_lx [a(t)] fort>rn. (3.20)
Using (3.20) in Eq(1.1; 1) and condition (3.1) we have

d «
—E(Ln—lxa)) > q(0) f(In-1(0 (@), 11501, ..., an-1)) f (Lu—1x[0(1)]).

Let y(r) be given byy(r) = L}, _;x(t). Then,y(¢) > 0 on[z,, co) and satisfies the inequal-
ity

YO+ Q510 f (Y [o®]) <O fort =1,
By aresultin [11] we find that the equation

V() + Qi () f (W [o1)]) =0

has an eventually positive solution. This again contradicts our assumptions and completes
the proof. O

Remark 3.1. In the case whep(r) > o (¢) for r > 1o, EQ.(3.10, n — 1) can be replaced by
1 , aN /
<<an_1(r)w m) ) + On-1(0) f(w[o(®]) =0.

The following corollary is immediate.

Corollary 3.2. Let TheorenB.1 in Corollary 3.1 be replaced by Theore®2. Then the
conclusion of Corollans.1 holds.

We introduce the notation
t(t) =max{min{s, g(s)}: 0<s <t} and p(r) =min{max{s, g(s)}: s > 1}.
Note that the following inequalities hold:
gs)<t(t) forr(r) <s <t and g(s)>p() forr<s<p(r).

In Theorem 3.2 for the cage=n — 1 one can replace E@3.10%; n — 1) is oscillatory
by the first order advanced equation

V(1) = QX1 () [ (v[p(1)]) =0 (3.21)
is oscillatory, where

1/a

p(1)
;:i]_(t) = an—l(t)|: / Q(S)f(In—Z(g(S)’ p);at, ..., an—Z)) dsj|
t

To show this, we proceed as in Theorem 3.2, dase: — 1, and obtain (3.17),
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x[8()] = Li—2(g(s). p(1); a1, ..., an—2) Ln—2x[p(1)]
for g(s) = p(t) > na. (3.22)
Substituting (3.22) in Eq1.1; 1), we have
—Lyx(s) =q(s) f(x[g(5)])
> q(s) f(In-2(8(s). p(1); a1, ..., an—2)) f (Ln—2x[p(1)]).
Integrating this inequality fromto p(¢) we have
(Ln—1x(®)* = (Lu-1x[p(®)])"
p(t)
> [ 400 (1h-ae). P st 2)) ds F(Lo2x (o).

t
Thus,
p(1) 1/a
Lnlx(r)>[ / q(s)f(lnz(g(s),ms);al,...,anz))ds] SV (La-2x[p(®)]).
t

Lety(+) = L,—2x(¢). Theny(¢) > 0 fort > r1 and satisfies the inequality
Y = 0 0 Y ([pw)]) fore>n.

By a similar result in [11], we see that the equation
20— 0% ) fY ([ p®)]) =0

has an eventually positive solution, a contradiction.

3.2. Thecasé =0

Here we present some sufficient conditions which ensure\fhat @. It is easy to check
that the case whefi= 0 occurs for Eq(1.1; 1) with n odd and Eq(1.1; —1) with n even.
Now, we present the following results.

Theorem 3.3. Let(—1)"8§ = -1 and
Ffx)=xP forx+#0, (3.23)
whereg is a quotient of positive odd integers. If

t

limsup q(s)I,‘z‘il(r(t), g(s);an-1,..., al) ds>1 ifa=8, (3.24)
t— 00 £
t
limsup | ¢)17 ,(z(t), g(s); an-1,...,a1)ds >0 ifa >, (3.25)
11— 00

(1)
thenNy = 4.
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Proof. Assume that € N and suppose that(z) > 0 for > #p. Then there existg > 19

such thatinfg(z): t > 11} > tp and

(=D)Lix(r) >0 (0<i<n)on[t, o).

Replacing, k, r ands by 0,n — 1, o andz, respectively, in (2.2), we get

n—2
x(o) = Z(—l)jlj(t,cr; aj,...,a1)Ljx(t)
j=0

+ (—1)"71/ Lio(u,0;an-2,...,a1)an—1(u) Ly—1x (1) du.

o

(3.26)

Using (3.26) and the fact that-1)"—1L,_1x(¢) is decreasing ofr1, co), we obtain

4

x(o) > (—1)”71/ Iy—2(u,05an-2,...,a1)ap—1(u)du L,_1x(1)

o

=I-1(r,0;ap-1, ..., al)((—l)"_an_lx(r)), T>02>1.

Substitutingg (s) andz (¢) for o andz, respectively, in (3.27), we have

x[8()] = Li—a(t(®), 8(): an—1. - .., a1) (D" Ly—1x [t (1)])
fort(r) <s <t.

Using (3.23) and (3.28) in Eq1.1; 3), fort > s > t1, we get

d o
—£(<—1)"*1Lnflx(s>) =q() f(x[g(®)]) = q(5)xP[g(s)]

> g1 (1), g(); an-1, ..., a1) (=1 L,_1x [t (1)]).
Integrating both sides of inequality (3.29) frank) to ¢, we obtain

—((D"  Lyp1x @) + (D" Lp—ax [t (0)])”

t

> (-1 Lyoax [t ()]) / g1 (t(0).g(s) an 1. ... a1) ds.

(1)

Now, we consider two cases.
Casel: a = B. In this case (3.30) is reduced to

t

(3.27)

(3.28)

(3.29)

(3.30)

((—1)"‘1Ln_1x[r(r)])“[ / a4 (t(0), 8(5)s an-1, ..., a1) ds — 1] <0

(1)
fort>n.

But this is inconsistent with (3.24).
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Case2: o > g. It follows from (3.30) that

!
((—1)"71Ln,1x[t(t)])a7ﬂ > / q(s)Iffl(t(t),g(s); a,,,l,...,al) ds. (3.31)
(1)

Taking lim sup of both sides of (3.31) as> oo, we see that the left-hand side approaches
zero, which contradicts (3.25). This completes the proaf.

The following corollary is immediate.

Corollary 3.3. Letg(¢) <t fort > 1g, (—1)"6 = —1 and condition(3.23) hold. If

t

limsup | g(s)I 1(g(t) g(s); an—1,..., )ds >1 whenha =g, (3.32)
e 8(1)
t
limsup q(s)Iffl(g(t), g(s);an-1, ..., al) ds >0 whena > 8, (3.33)
e 8(0)
thenNp = 4.

Theorem 3.4. Let (—1)"8 = —1, condition(3.1) hold and

du
f(ul/a)<oo and /f(ul/“) 0. (3.34)
If
/Q(S)f(ln—l(sag(s)Qan—l ..... a1))ds = oo, (3.35)
Ré’
thenNp = 4.

Proof. Let x € Ng and assume that(r) > O for ¢ > tg. Then there exists > rg such that
(3.26) holds forr > r1. ChooseT: so large thaffy > 11 and infg(¢): ¢ > T1} > 11. Asin
the proof of Theorem 3.3, we obtain (3.27) foe> o > Ty. Substitutingg () andt for o
andr, respectively, in inequality (3.27) we get

x[g®)] = Li—a(t. g0 an—1. ..., a1) (D" L,_1x (1))

fort € Rg N[T1, 00). (3.36)

Using (3.1) and (3.36) in Eq1.1; §) and lettingy(r) = ((—1)*"1L,_1x(1))* > 0 onRgN
[T1, 00), we have

—Y') = q@O f (Ii-1(t, g(0); an—1, ..., a1)) fF (YY), t€RgN[T1,00).

ChooseT» (> Ty) arbitrarily. Dividing both sides of the above inequality lyyY/(r))
and integrating the result 6R, N [T1, T2], we find
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/ q(s) f (In-1(s. g(s); an-1. ..., a1))ds

ReNIT1,T2]
T, , y(T1) 4
[ g [
FOYe(s) f(ut/e)
T2 y(T2)
Letting T» — oo, we conclude that
y(T1)
q(s)f([ 1(s g(s); an—1 al))ds< dfu < 00
n— ) s UN—Ly »+ o> X f(ul/“) )
Rgm[Tl,OO) 0

which contradicts condition (3.35). This completes the proaf.

Remark 3.2. It is easy to see that the conclusioviy = @’ can be replaced by ‘all bounded
solutions of Eq(1.1; §) are oscillatory.

3.3. Thecasé=n

Here, we shall present some sufficient conditions which ensure\that ¢. It is easy
to check that the case whén=n occurs for Eq(1, 1; —1). Now, we present the following
results.

Theorem 3.5. Let§ = —1 and condition(3.23) hold. If

p(t)

lim Sup/ q(s)I,f‘fl(g(s), p@®);an,..., an_l) ds >1 whena =8, (3.37)
11— 00
t
p(t)
lim sup/ a1’ 1 (g(s), p(1);a1,...,a,-1)ds >0 whena < B, (3.38)
11— 00
t
then\,, = 0.

Proof. Assume thak € N, and assume that(r) > O for ¢ > 1. Then there existg > 1o
such that

Lix(t)>0 (0<i<n)on[t, 0o). (3.39)
From (2.1) withi, k, t ands replaced by On — 1, g(s) andp(t), respectively,
n—2
x[g@] =) _"1(e(), p(); ar,...,a;)L;x[p®)]
j=0
8(s)

+ / In—2(g(s),us a1, ..., an—2)an—1(u) Ly—1x(u) du.

p(t)
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Using (3.39) and noting thdt,,_1x is increasing, we easily get

x[g()] = Ii—1(g(s), p(1); a1, ..., an—1)Lu—1x[p(1)] forr<s<p@). (3.40)
Using (3.40) and (3.23) in E@1.1; —1), we have forry <t <s < p(¢),

d
—(LY_1x(9)) = q(s) f (x[8(9)]) = g (5)xP[g(s)]

ds
> g 1)1 (8(). p(0):iar.....an1) LE_1x[p(0)]. (3.41)
Integrating both sides of inequality (3.41) franto p(¢) we obtain
Ly 1x[p(®] = Ly _1x(1)
p(1)
> / a()1)_1(8(5), p(1); a1, an-1)ds L) _yx[p(®)]. (3.42)

t

Now, we consider two cases.
Casel: o = B. In this case (3.42) becomes

p(1)
L‘,’l‘lx[p(t)][ / g1 1(g(9), p(1); a1, ..., ap-1)ds — 1:| <0.
t

But this is inconsistent with (3.37).
Case2: o < g. It follows from (3.42) that

p(t)
Ly Px[p(0] > / a()I)_1(8(s), p(1); a1, ..., ap-1) ds. (3.43)

t

Taking limsup of both sides of inequality (3.43) as> oo, one can easily see that the
left-hand side approaches zero, which contradicts (3.38). This completes the proof.

The following corollary is immediate.

Corollary 3.4. Letg(¢) > ¢ fort > 19, § = —1 and condition(3.23) hold. If

g(1)

lim Sup/ q(s)I,f‘_l(g(s), gt);ay,..., an_l) ds >1 whena =8, (3.44)
11— 00
t
8(n)
lim sup/ a1’ (g(s),g(0);at,...,an-1)ds >0 whena < B, (3.45)
11— 00
t
thenN, = 0.

Theorem 3.6. Let§ = —1, condition(3.1) hold and

—00 +00
du du
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If
/q(s)f(l,,,l(g(s), S at, ..., a,,)) ds = 00, (3.47)
Ag

then\, = 0.

Proof. Let x € NV, and assume that(z) > O for r > f9. Then there exists; > o such
that (3.39) holds for > 1. Replacing, k, r ands in (2.1) by O,n — 1, g(¢) ands, respec-
tively, we get
n—2
x[g®]=)"1;(g(0). t1a1.....a;)Ljx(t)
j=0
g(1)
+ / L2(g(0). s . .. an—2)an—1(u) Ly_1x(0) du
t
8(1)
> / Li—2(g(),u; a1, ..., an—2)an—1(u)Ly—1x(u) du
t
for t € Ag N[11, 00) which in view of the increasing nature &f,_1x implies

x[g(t)] 2 Ii’l—l(g(t)a t7 a17 M) an—l)Ln—lx (t)a t e Ag m [tla OO)
Setu(t) = L% _,x(t). Thenu(r) satisfies

d
d_I: =Lax()=q®) f(x[g®]) = g0 f (Ii-1(g(0), t; a1, ..., an—1)) f (u™*(@))

fort e AN[ty, 00).

Dividing the above inequality by («1/%) and integrating o, N[r1, T1], whereTy (= 11)
is arbitrary, we obtain

q(s)f(lnfl(g(s), s;at, ..., anfl)) ds

AgNty,T1]
T, u(Ty)
u'(s) du
< | ———ds= —— <
f@l(s)) f @)
i u(ty)

This contradicts (3.47). This completes the proofi

Theorem 3.7. Letg(t) >t fort > 19, § = —1 and (3.23) hold. If

8(1) u 1/a
limsup In_z(g(t), u;ay, . ..,an_z)an_l(u)</q(s) ds) du>1

—00
t

t
whena = 8, (3.48)
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g(1)

1/a
limsup Infz(g(t), u;ai, ...,anz)anl(u)</q(s) ds) du>0
t

t—00

u

t

whena < 8, (3.49)
then\, = 0.

Proof. Assume thatx € A, say x(¢) > 0 for ¢t > f5. Then there exists; > t9 such
that (3.39) holds orjr1, 00). Let T1 > 11 be such that iffg(?): r > T1} > 1. As in the
proof of Theorem 3.5, one can easily find
g(1)
x[g®)] = / Li—2(g(),us a1, ..., an—2)an—1()Ly—1x(w)du, t>Ti.  (3.50)
t
Integrating Eq(1.1; §) from ¢ to u, we have
LY x(u)— LY jx(t) = /q(s)f(x[g(s)])ds, u>t>Ti,
t

or

u

1/«
Ly_1x(u) > (/ q(s)f(x[g(s)]) ds) foru>t>T. (3.52)
t

Substituting (3.51) in (3.50), we get
g(®) u

1/«
x[g®] = / Inz(g(t),u;al,...,anz)anl(u)(/q(s)ds)

t t
X fl/a(x[g(t)])du.
The rest of the proof is similar to that of Theorem 3.5 and hence omittad.

3.4. Oscillation criteria

In this subsection, we combine the results of Sections 3.1-3.3 and obtain the following
interesting criteria for the oscillation of E¢lL.1; §).

Theorem 3.8. Let§ =1 andn be even.

(i) Assume that conditior(®—(v) and (3.1) hold. If for all large T with o (t) > T condi-
tion(3.2,¢) (¢ =1,3,...,n—3)and(3.2; n — 1) hold, then Eq(1.1; 1) is oscillatory.

(i) Assume that condition@)—(v) and (3.1) hold. For all large ¢, suppose the second
order equationg3.10; ¢) (¢ =1,3,...,n — 3) are oscillatory and eitheila) there
existsn(r) € C([tg, o0), R) such thatn(r) < o(¢) for 1 > 1o, lim;coo n(t) = 00 such
that the second order equati@B.10; n — 1) is oscillatory, or(b) the first order delay
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equation(3.10%; n — 1) is oscillatory, or(c) the first order advanced equati@B.21)
is oscillatory. Then Eq(1.1; 1) is oscillatory.

Remark 3.3. We note that Theorem 3.8 is applicable to equations of {pk §) with
f(x)=xP, say, wheres is the quotient of positive odd integeps> o, f =« andg < «
and with general deviating argument.

Theorem 3.9. Let§ =1 andn be odd.

(i) Assume that condition®—(v) and (3.1) hold. If for all large T > ro ando (¢t) > T,
condition(3.2;¢) (¢ =2,4,...,n —3), (3.2;n — 1), (3.34) and (3.35) are satisfied,
then Eq.(1.1; 1) is oscillatory.

(i) Assume that condition@)—(v) and (3.1) hold. For all large ¢, suppose the second
order equationg3.10; ¢) (¢ =2,4,...,n — 3) are oscillatory and eitheila) there
existsn (1) € C([tg, 00), R) such thatn(r) < o (¢) for t > 1o, lim;_. o n(t) = oo such
that the second order equatid@B.10; n — 1) is oscillatory, or(b) the first order delay
equation(3.10%; n — 1) is oscillatory and conditiong3.34) and (3.35) hold. Then
Eq.(1.1; 1) is oscillatory.

Corollary 3.5. Lets = 1 andn be odd.

(i) Assume that conditio®—(v) and(3.23) hold. If, for all largeT > g witho (1) > T,

00 oo 1/«
[ K-satt.1) ( [aw du) I G0, Ty dt = o,
t
te(2.4,... n—3) (3.52: 1)
/ g0’ (0(1), T)dr = o0, (352 n—1)

and either condition(3.24) whena = 8, or condition(3.25) whena > g is satisfied,
then Eq.(1.1; 1) is oscillatory.

(i) Assume that condition®)—(v) and (3.23) hold. For all large, suppose the second
order equations

(iy’(t)> + 0y lo)] =0, tef2,4,....n—-3}, (3.53; ¢)
ag(t)

are oscillatory and eithe(a) there exists;(t) € C([tg, o0), R) such thaty(t) < o (¢)
fort > 1o andlim;_, . n(¢) = co and the equation

1 o /
/ ﬁ _ . B
((anl(t)w (t)) > + On1 (W’ [n(0] =0 (353 n— 1)

is oscillatory, or(b) the first order delay equation
u'(t) + QF_ (P[] =0 (353 n—1)
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is oscillatory and either conditio(8.24) whena = 8, or condition(3.25) whena > 8
holds. Then Eq(1.1; 1) is oscillatory.

Remark 3.4. We note that Theorem 3.9 and Corollary 3.5 are applicable to odd order
equations of typ&l.1; 1) with retarded as well as general deviating arguments.

Theorem 3.10. Lets = —1 andrn be odd.

(i) Assume that condition®—(v) and (3.1) hold. If for all large T > o witho (t) > T
conditions(3.2;¢) (¢ =1,3,...,n—2), (3.46) and(3.47) hold, then Eq(1.1; —1) is
oscillatory.

(i) Assume that conditionf)—(v) and (3.1) hold. If for all large ¢ the second or-
der equations(3.10; ¢) (¢ =1,3,...,n — 4) are oscillatory, all bounded solutions
of Eq. (3.10;n — 2) are oscillatory and conditiong3.46) and (3.47) hold, then
Eq.(1.1; —1) is oscillatory.

Corollary 3.6. Lets =1 andn be odd.

(i) Assume that condition®—(v) and (3.23) hold. If for all large T > g witho () > T
conditions(3.52; ¢) (¢=1,3,...,n — 2) and either condition(3.37) whena = 8, or
condition(3.38) whena < 8 are satisfied, then Eq1.1; —1) is oscillatory.

(i) Assume that condition@)—(v) and (3.23) hold. If for all large ¢ the second order
equations(3.53;¢) (¢ =1, 3,...,n — 3) are oscillatory, all bounded solutions of the
equation

1 o /
/ _ /3 _ . B
((anlmz(r)) ) On—2()z"[o(1)] =0 (353, n—2)

are oscillatory and either conditioni3.37) whena = g8 or condition (3.38) when
a < B is satisfied, then Eq1.1; —1) is oscillatory.

Theorem 3.11. Lets = —1 andn be even.

(i) Assume that condition@)—(v) and (3.1) hold. If for all large T > 1o with o (t) > T
conditions(3.2;¢) (( =2,4,...,n — 2),

+o0
du
+0

and conditiong3.35) and (3.47) hold, then Eq(1.1; —1) is oscillatory.

(i) Assume that condition®)—(v) and (3.1) hold. If for all large ¢ Eqgs. (3.10; ¢) (¢ =
2,4,...,n—4) are oscillatory, all bounded solutions of E.10; n — 2) are oscilla-
tory and conditiong3.54), (3.35) and(3.47) hold, then Eq(1.1; —1) is oscillatory.

Corollary 3.7. Lets = —1 andn be even.
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(i) Assume that condition@)—(v) and (3.23) with « = g hold. If for all large T > 1o
with o (¢) > T conditions(3.52,¢) (¢ =2,4,...,n—2), (3.24) and(3.37) hold, then
Eq. (1.1; —1) is oscillatory.

(i) Assume that condition@)—(v) and (3.23) with « = 8 hold. Assume for all large
EQgs.(3.53,¢) (¢ =2,4,...,n—4) are oscillatory. Also assume for largall bounded
solutions of Eq(3.53; n — 2) are oscillatory, and condition€3.24) and (3.37) hold,
then Eq.(1.1; —1) is oscillatory.

Remark 3.5. We note that the results for the case whes —1 andn is odd may be
applied to equations of typd.1; —1) with g(¢) is either advanced or of mixed type argu-
ment, while for the case wheh= —1 andn is even, the obtained results can be applied
to equations of typ€l.1; —1) with g(¢) is a general argument (i.e., of mixed type, e.g.,
g(t) =t +sint).

3.5. Oscillation of equatiol.1; §) witha =1

We shall consider Eq1.1; §) witha =1, i.e.,
L,x(1) +8q(t) f (x[g(0)]) =0, (3.55; )

where
Lox(t) =x(1) Lyx(t) = ——(L — (I)) k=1,2 n
— x — x , =1,2,...,n,

anda, (t) =1,n > 3,8 = +£1 and conditions (i)—(iv) hold.
Here, we shall present some criteria for the nonoscillation of(B&5; ¢) which are
different then those obtained from our earlier results by settingl.

Theorem 3.12. Let conditiongi)—(iv) and (3.1) hold and letl < ¢ < n with (—1)"~¢s =
—1. Ifforalllarge T >y ando () > T,

/ Kn—e—1(t, T)q(0) f (Je-1(o' (1), T)) dt = o0, (3.56; ¢)
thenA; = 0.

Proof. Letx € Ay and assume that(r) > 0 for ¢ > t9. There exists; > g such that (3.3)
holds fort > t1. Suppose < n — 1. From formula (2.2) with = ¢, k=n —1,t =11 and
s > 11, it follows that

n—1
Lex(t) =) (=1 ~1j¢(s,11;aj, ..., apy1) L jx(s)
j=t
N

+ (—1)”78/1,,,@,1(14, 1 ap—1, ...,a¢+1) Lyx(u) du. (3.57)

n
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Using Eq.(3.55; §) and (3.3) in (3.57), we have
s
Lex(t1) >/In—£—1(”’tl§ an-1, ..., apy1)q ) f (x[gw)]) du,
4
which gives in the limit as — oo,

8]

[ Keeatt e f Glso] e < oc. (3.58)
5%
As in the proof of Theorem 3.1, we have (3.7) fog 2 > 1. Combining (3.58) with (3.7)
and using condition (3.1), we obtain

o0
/anefl(t, 11)q @) f (Je-1(o (1), 11)) dt < o0,
7]

which contradict$3.56; ¢).

Next, suppos€ = n — 1. The proof of this case is similar to that of Theorem 3.1 and
hence omitted. O

For simplicity, we let for all large,

Qjt)=aj;1(t) / Ky j_o(u, t)q(u)f(.]j_l(g(u), a(t)))du,
t

and
On-1() =q(t)f(Jn—2(g(t), U(I)))-

Theorem 3.13. Let conditions(i)—(iv) and (3.1) hold and letl < ¢ < n — 1 with
(—=1)"~ts = —1. If for all large T > 1o with g(r) > o(¢) > T all of the second order
equations

<iy’(t)) + 0 f(y[e])=0 (359 0)

ag(t)
are oscillatory, thenV, = @.

Proof. Letx € Ny and suppose that(r) > 0 fort > rg. There exists; > g such that (3.3)
holds fort > 1. Leté <n — 1. Puttingi =¢+ 1, k=n—1,5s >t > in (2.2), we have
n—1
Lepix(= Y (=177 a(s.tiaj, . a2 Lix(s)
j=t+1
N
+ (—1)”_6_1/ In—¢2(u,t;ay-1,...,ae42)Lpx(u)du.

t
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Lettings — oo in the above equality, we obtain
o
—Lyax(t) > / In—g—2(u, t; an-1, ..., as2)q ) f (x[gw)]) du
13
fort > 1. (3.60)
As in the proof of Theorem 3.2, we obtain (3.16) foe> 2 > 1. Combining (3.60)
with (3.16) and using condition (3.1), we have
o
—Loy1x(1) = f(Le—1x[o(1)]) / Li—g—2(u, t; ap-1, ..., as+2)q (u)
13
x f(Ie-1(g@w), o (t); a1, ..., ap—1))du.
The rest of the proof is similar to that of Theorem 3.2 and hence omitted.
Let¢=n — 1. An integration of Eq(3.55; §) yields
o
Lp_1x(t) > /q(u)f(x [¢)])du fort>n. (3.61)
13
Settingi =0,k =n—3,t >s >t in (2.1), we have
n—3
x(t)=)_Ij(t.tr;a1,....a;)Lix(t1)
j=0
t
+ / In_3(t,u;a1,...,ap,-3)ap—2u)Ly—2x ) du.
141
From this we easily see that
t
x(1) > / I,_3(t,u;an,...,an_3)an_2w)L,_ox(u)du fort>1.
41
There exists, > 11 such that
8(1)
x[g(0)] = / In—3(g(t), us a1, ..., an-3)an—2(u)du L,_2x[o (1)]
o(t)
=I,—2(g(t),0(t); a1, ..., an—2)Ly—2x[c(t)] fort>1. (3.62)
Combining (3.62) with (3.61) and using (3.1), we have
o
Ly_1x(t) > /q(u)f(lnfz(g(u), o(t):a1,...,an-2)) f(Ln—2x[o(w)])du
t
fort > 1.
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Integrating this inequality fromp to ¢ we see thatv () = L,—2x(¢) > 0 satisfies
t o0
w(t) > w(r) +/a,1_1(s)/ Qn_l(u)f(w[a(u)]) duds fort>nm. (3.63)
12 N

Denoting the right-hand side of (3.63) byr), it is easy to see that

< 40! )+Qn_1(t)f(1[6(f)])<° fors > 1.

an—1(t)
The rest of the proof is similar to that of Theorem 3.2 and hence omitted. This completes
the proof. O

Remark 3.6. In Eq. (3.55;8) if f(x) =x and g(t) <t for t > t9, then Q,(r) in
Eq. (3.59, ¢) takes the form

Q¢(1) =ae+1(t)/1<nfe72(u, Dgu)Je-1(gw),o®))du, j=1,2,....n—2,
t
and

Qn—l(t)zan—Z(t) / Jn—3(g(u)7t)‘I(”)dM~
al(t)

Now, we have the following immediate result.

Corollary 3.8. Consider Eq(3.55; §) with f(x) = x. Let conditiongi)—(iii) hold,g(¢) <t
fort > 19, and letl < £ < n — 1 with (—=1)"~¢§ = —1. If for all large ¢, the equations

1, S _ )
<my (t)) + 0e)y[o ()] =0 (364 ¢)

are oscillatory, thenV; = #.

Remark 3.7. We note that we can obtain many oscillation criteria which are similar to
those given in Section 3.4 for E(B.55; §). The formulations of these results are left to the
reader. As an example, we give the following oscillation criterion for@d5; 1) whenn

is odd.

Corollary 3.9. Let § = 1,n be odd, conditiongi)—(iii) hold, g(t) < ¢ for ¢t > #, and
f(x)=x. Iffor all large ¢, Eqs.(3.64; ¢) (¢ =2,4,...,n — 1) are oscillatory and condi-
tion (3.23) holds witha = 1, then Eq.(3.55; 1) is oscillatory.

Remark 3.8. In the case when condition (3.1) fails to apply to some functiinge may
employ (as an alternative) the following condition on the functi@n):

inf{ fnx)

) n;so} >0 foranyx > 0.
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For this purpose we need the function defined by

ins [ S(alxD . .
vt = {Sgn.x'”f{w- px >0} if x 0,
0 Ifx:O

Itis easy to check that[ f] has the following propertieso[ ] is nondecreasing dR and
xw[ f](x) > 0 forx #0;

|f(lx1)| = | f ) |[wlf1x)|  for x> 0.
For more details of the functiom[ /], see [8].
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