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Abstract

In this paper, variational iteration method (VIM) is used to obtain numerical and analytical solutions for the Zakharov–Kuznetsov
equations with fully nonlinear dispersion. Comparisons with exact solution show that the VIM is a powerful method for the solution
of nonlinear equations.
© 2007 Published by Elsevier B.V.
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1. Introduction

The investigation of the traveling wave solutions play an important role in nonlinear science. These solutions may
well describe various phenomena in nature, such as vibrations, solitons and propagation with a finite speed. Recently,
directly searching for exact solutions of nonlinear differential equations has become more and more attractive partly
due to the availability of computer symbolic systems like Maple which allow us to perform some complicated algebraic
calculation on a computer, as well as help us to find new exact solutions of these kinds of equations.

The Zakharov–Kuznetsov equations (shortly called ZK(m, n, k)) of the form

ut + a(um)x + b(un)xxx + c(uk)yyx = 0, m, n, k �= 0, (1)

where a, b and c are arbitrary constants and m, n and k are integers, governs the behavior of weakly nonlinear ion-
acoustic waves in a plasma comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic
field [21,22]. The Zakharov–Kuznetsov equation (ZK) was first derived for describing weakly nonlinear ion-acoustic
waves in a strongly magnetized lossless plasma in two dimensions [28].

Wazwaz [25] used extended tanh method for analytic treatment of the ZK equation, the modified ZK equation, and
the generalized forms of these equations. Huang [15] applied the polynomial expansion method to solve the coupled
ZK equations. Zhao et al. [29] obtained numbers of solitary waves, periodic waves and kink waves using the theory
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of bifurcations of dynamical systems for the modified ZK equation. Inc [16] solved nonlinear dispersive ZK equations
using the Adomian decomposition method (ADM).

Another powerful analytical method is called the variational iteration method (VIM), which was first envisioned by
He [6] (see also [7–14]). The VIM has successfully been applied to many situations. For example, He [7] solved the
classical Blasius’ equation using VIM. He [8] used VIM to give approximate solutions for some well-known non-linear
problems. He [9] used VIM to solve autonomous ordinary differential systems. He [10] coupled the iteration method
with the perturbation method to solve the well-known Blasius’ equation. He [11] solved strongly nonlinear equations
using VIM. Soliman [24] applied the VIM to solve the KdV-Burger’s and Lax’s seventh-order KdV equations. The
VIM has recently been applied for solving nonlinear coagulation problem with mass loss by Abulwafa et al. [3].
Momani et al. [20] applied VIM to Helmholtz equation. The VIM has been applied for solving nonlinear differential
equations of fractional order by Odibat et al. [23]. Bildik et al. [4] used VIM for solving different types of nonlinear
partial differential equations. Wazwaz [26] used VIM to determine rational solutions for the KdV, the K(2, 2), the
Burgers, and the cubic Boussinesq equations. Wazwaz [27] presented a comparative study between the VIM and ADM.
Tamer et al. [5] introduced a modification of VIM. Abbasbandy [1] solved the quadratic Riccati differential equation
by He’s VIM with considering Adomian’s polynomials. Junfeng [18] introduced VIM to solve two-point boundary
value problems.

The purpose of this paper is to obtain approximate analytical solutions of the ZK equations, and to determine the
accuracy of VIM in solving these kind of problems.

2. Variational iteration method

This method, which is a modified general Lagrange’s multiplier method [17], has been shown to solve effectively,
easily and accurately a large class of nonlinear problems [2–4,6–14,19,20,23,24]. The main feature of the method is that
the solution of a mathematical problem with linearization assumption is used as initial approximation or trial function.
Then a more highly precise approximation at some special point can be obtained. This approximation converges
rapidly to an accurate solution. To illustrate the basic concepts of the VIM, we consider the following nonlinear
differential equation:

Lu + Nu = g(x), (2)

where L is a linear operator, N is a nonlinear operator, and g(x) is an inhomogeneous term. According to the VIM
[8–14], we can construct a correction functional as follows:

un+1(x) = un(x) +
∫ x

0
�{Lun(�) + Nũn(�) − g(�)} d�, (3)

where � is a general Lagrangian multiplier [17], which can be identified optimally via the variational theory, the
subscript n denotes the nth-order approximation, ũn is considered as a restricted variation [8–10,14], i.e., �ũn = 0.

3. Analysis of ZK equations

In this paper, we present numerical and analytical solutions for the ZK equations:

ut + a(um)x + b(un)xxx + c(uk)yyx = 0, m, n, k �= 0. (4)

To solve Eq. (4) by means of He’s VIM, we construct a correction functional,

ui+1(x, y, t) = ui(x, y, t) +
∫ t

0
�(s)[(ui)s + a(ũm

i )x + b(ũn
i )xxx + c(ũk

i )yyx] ds,

�ui+1(x, y, t) = �ui(x, y, t) + �
∫ t

0
�(s)[(ui)s + a(ũm

i )x + b(ũn
i )xxx + c(ũk

i )yyx] ds,
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�ui+1(x, y, t) = �ui(x, y, t) + �
∫ t

0
�(s)(ui)s ds,

�ui+1(x, y, t) = �ui(x, y, t) + �(s)�ui(x, y, s) −
∫ t

0
�ui(x, y, s)�′(s) ds,

where ũi is considered as restricted variations, which mean �ũi =0. Its stationary conditions can be obtained as follows:

�′(s) = 0, 1 + �(s)|s=t = 0. (5)

The Lagrange multipliers, therefore, can be identified as � = −1, and the following variational iteration formula
is obtained:

ui+1(x, y, t) = ui(x, y, t) −
∫ t

0
[(ui)s + a(um

i )x + b(un
i )xxx + c(uk

i )yyx] ds. (6)

For simplicity, we can take an initial approximation u0 = u(x, y, 0). The next iterates are easily obtained from (6) and
are given by

u1(x, y, t) = u0(x, y, t) −
∫ t

0
[(u0)s + a(um

0 )x + b(un
0)xxx + c(uk

0)yyx] ds,

u2(x, y, t) = u1(x, y, t) −
∫ t

0
[(u1)s + a(um

1 )x + b(un
1)xxx + c(uk

1)yyx] ds.

...

4. Applications

We will choose two special equations, namely ZK(2, 2, 2) and ZK(3, 3, 3) with specific initial conditions to illustrate
the concrete scheme.

4.1. Example 1

First we consider the following ZK(2, 2, 2) equation:

ut + (u2)x + 1
8 (u2)xxx + 1

8 (u2)yyx = 0, (7)

the exact solution to Eq. (7) subject to the initial condition

u(x, y, 0) = 4
3� sinh2(x + y), (8)

where � is an arbitrary constant, was derived by Inc [16] using ADM and is given by

u(x, y, t) = 4
3� sinh2(x + y − �t). (9)

To solve Eq. (7) by means of He’s VIM, we construct a correction functional (see (6)),

ui+1(x, y, t) = ui(x, y, t) −
∫ t

0

[
(ui)s + (u2

i )x + 1

8
(u2

i )xxx + 1

8
(u2

i )yyx

]
ds. (10)

For simplicity, we can take an initial approximation u0 = u(x, y, 0) as given by (8). The next iterate is easily obtained
from (10) and is given by

u1(x, y, t) = 4
3� sinh2(x + y) − 224

9 �2 sinh3(x + y) cosh(x + y)t

− 32
3 �2 sinh(x + y) cosh3(x + y)t .

In the same manner, the rest of the components of the iteration formulae (10) can be obtained using the Maple Package.
In Table 1 we present the absolute error between the 3-iterate of VIM and the exact solution. Fig. 1 shows the comparison
between the 3-iterate of VIM and the exact solution.
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Table 1
Absolute errors between the 3-iterate of VIM, and the exact solutions for Examples 1–4

x y t Example 1 Example 2 Example 3 Example 4

0.1 0.1 0.2 3.85217E − 07 1.20265E − 06 4.99520E − 08 1.65433E − 09
0.3 5.75911E − 07 1.81281E − 06 7.49279E − 08 2.48087E − 09
0.4 7.65350E − 07 2.42896E − 06 9.99039E − 08 3.30699E − 09

0.6 0.6 0.2 4.66337E − 05 6.21444E − 05 5.08988E − 08 9.99177E − 09
0.3 6.86056E − 05 9.55665E − 05 7.63480E − 08 1.49870E − 08
0.4 8.98243E − 05 1.30793E − 04 1.01797E − 07 1.99818E − 08

0.9 0.9 0.2 5.12131E − 04 7.28468E − 04 5.21228E − 08 1.51072E − 08
0.3 7.38186E − 04 1.21342E − 03 7.81841E − 08 2.26602E − 08
0.4 9.57942E − 04 1.81646E − 03 1.04245E − 07 3.02127E − 08

Where � = 0.001.
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Fig. 1. Comparison between the 3-iterate of VIM and the exact solutions for Example 1. Where � = 0.001 and y = 0.9.

4.2. Example 2

Now we consider the ZK(2, 2, 2) equation:

ut + (u2)x + 1
8 (u2)xxx + 1

8 (u2)yyx = 0, (11)

the exact solution to Eq. (11) subject to the initial condition

u(x, y, 0) = − 4
3� cosh2(x + y), (12)

where � is an arbitrary constant, was derived by Inc [16] using ADM and is given by

u(x, y, t) = − 4
3� cosh2(x + y − �t). (13)

In VIM we construct a correction functional for Eq. (11) as follows (see (6)):

ui+1(x, y, t) = ui(x, y, t) −
∫ t

0

[
(ui)s + (u2

i )x + 1

8
(u2

i )xxx + 1

8
(u2

i )yyx

]
ds. (14)

Again, we can take an initial approximation u0 = u(x, y, 0) as given by (12). The next iterate is easily obtained from
(14) and is given by

u1(x, y, t) = − 4
3� cosh2(x + y) − 224

9 �2 cosh3(x + y) sinh(x + y)t

− 32
3 �2 cosh(x + y) sinh3(x + y)t .
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Fig. 2. Comparison between the 3-iterate of VIM and the exact solutions for Example 2. Where � = 0.001 and y = 0.9.

Again, the rest of the components of the iteration formulae (14) can be obtained using the Maple Package. In Table 1
we present the absolute error between the 3-iterate of VIM and the exact solution. Fig. 2 shows the comparison between
the 3-iterate of VIM and the exact solution.

4.3. Example 3

Next we exam the following ZK(3, 3, 3) equation:

ut + (u3)x + 2(u3)xxx + 2(u3)yyx = 0, (15)

subject to the initial condition

u(x, y, 0) = 3
2� sinh[ 1

6 (x + y)], (16)

where � is an arbitrary constant, the exact solution to Eq. (15) was derived by Inc [16] using ADM and is given by

u(x, y, t) = 3
2� sinh[ 1

6 (x + y − �t)]. (17)

By using the VIM, the correction functionals for Eq. (15) is (see (6)),

ui+1(x, y, t) = ui(x, y, t) −
∫ t

0
[(ui)s + (u3

i )x + 2(u3
i )xxx + 2(u3

i )yyx] ds. (18)

As before, we can take an initial approximation u0 = u(x, y, 0) as given by (16). The next iterate is easily obtained
from (18) and is given as follows:

u1(x, y, t) = 3
2� sinh[ 1

6 (x + y)] − 3�3 sinh2[ 1
6 (x + y)] cosh[ 1

6 (x + y)]t
− 3

8�3 cosh3[ 1
6 (x + y)]t .

As before, the rest of the components of the iteration formulae (18) can be obtained using the Maple Package. In Table 1
we present the absolute error between the 3-iterate of VIM and the exact solution. Fig. 3 shows the comparison between
the 3-iterate of VIM and the exact solution.

4.4. Example 4

Finally, we exam the following ZK(3, 3, 3) equation:

ut + (u3)x + 1
8 (u3)xxx + 1

8 (u3)yyx = 0, (19)

with initial condition

u(x, y, 0) = 3
2� cosh[ 1

6 (x + y)], (20)
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Fig. 3. Comparison between the 3-iterate of VIM and the exact solutions for Example 3. Where � = 0.001 and y = 0.9.
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Fig. 4. Comparison between the 3-iterate of VIM and the exact solutions for Example 4. Where � = 0.001 and y = 0.9.

and exact solution [17]

u(x, y, t) = 3
2� cosh[ 1

6 (x + y − �t)]. (21)

Proceeding as before, we can obtain the iterate of VIM as follows:

u1(x, y, t) = 3
2� cosh[ 1

6 (x + y)] − 453
256�3 cosh2[ 1

6 (x + y)] sinh[ 1
6 (x + y)]t

− 3
128�3 sinh3[ 1

6 (x + y)]t .
And the rest of the components of the iteration can be obtained using the Maple Package. In Table 1 we present the
absolute error between the 3-iterate of VIM and the exact solution. Fig. 4 shows the comparison between the 3-iterate
of VIM and the exact solution.

5. Conclusions

In this paper, variational iteration method (VIM) has been successfully applied to finde approximate solution of the
ZK equations. The method was used in a direct way without using linearization or perturbation . It provides more
realistic series solutions that converge very rapidly in real physical problems. It may be concluded that VIM is very
powerful and efficient in finding analytical as well as numerical solutions for wide classes of nonlinear differential
equations.
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