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Abstract

For a fixed rational number g /∈ {−1, 0, 1} and integers a and d we consider the set Ng(a, d)

of primes p for which the order of g(modp) is congruent to a(mod d). It is shown, assuming the
generalized Riemann hypothesis (GRH), that this set has a natural density �g(a, d). Moreover,
�g(a, d) is computed in terms of degrees of certain Kummer extensions. Several properties of
�g(a, d) are established in case d is a power of an odd prime. The result for a =0 sheds some
new light on the well-researched case where one requires the order to be divisible by d (with
d arbitrary).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let g /∈ {−1, 0, 1} be a rational number (this assumption on g will be maintained
throughout this paper). For u a rational number, let vp(u) denote the exponent of p
in the canonical factorisation of u (throughout the letter p will be used to indicate
prime numbers). If vp(g) = 0, then there exists a smallest positive integer k such that
gk ≡ 1(modp). We put ordp(g) = k. This number is the (residual) order of g(modp).
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The index of the subgroup generated by g modp inside the multiplicative group of
residues modp,

∣∣(Z/pZ)× : 〈g(modp)〉∣∣, is denoted by rg(p) and called the (residual)
index modp of g. Note that ordg(p)rg(p) = p − 1.

We let Ng(a1, d1; a2, d2)(x) count the number of primes p�x with p ≡ a1(mod d1)

and ordg(p) ≡ a2(mod d2). For convenience denote Ng(0, 1; a, d)(x) by Ng(a, d)(x).
Although our main interest is in the behaviour of Ng(a, d)(x) it turns out that sometimes
it is fruitful to partition Ng(a, d)(x) in sets of the form Ng(a1, d1; a2, d2)(x) with a
well-chosen d1. Let r|s be positive integers. By Ks,r we denote the number field
Q(�s , g

1/r ), where �s = exp(2�i/s). The main result of this paper is as follows (for
notational convenience (a, b), [a, b] will be written for the greatest common divisor,
respectively, lowest common multiple of a and b and by (GRH) we indicate that GRH
is assumed).

Theorem 1 (GRH). Let (a1, d1) = 1. Then

Ng(a1, d1; a2, d2)(x) = �g(a1, d1; a2, d2)
x

log x
+ Od1,d2,g

(
x

log3/2 x

)
,

for a number �g(a1, d1; a2, d2) that is given by (14).

Specialising to a1 = 0 and d1 = 1 the following result is obtained.

Theorem 2 (GRH). We have

Ng(a, d)(x) = �g(a, d)
x

log x
+ Od,g

(
x

log3/2 x

)
,

with

�g(a, d) =
∞∑
t=1

(1+ta,d)=1

∞∑
n=1

(n,d)|a

�(n)cg(1 + ta, dt, nt)

[K[d,n]t,nt : Q] , (1)

where, for (b, f ) = 1,

cg(b, f, v) =
{

1 if �b|Q(�f )∩Kv,v
= id;

0 otherwise,

where �b is the automorphism of Q(�f ) that sends �f to �b
f .

In part I [M-I] this result was established, by a slightly different method, in case
3�d �4 and explicit formulae for �g(a, 3) and �g(a, 4) were derived. By a
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different method some of the results for d = 4 with error term Og(x/(log x log log x))

and restricted values of g are established in [CM,MC], see also Corollary 1 of [M-I].
Chinen and Murata evaluate �g(a, 4) as a fourfold sum, whereas the present author
evaluated it as a single sum.

It turns out that the numbers cg appearing in (1) have a strong tendency to equal
one. This motivates the following definition:

�(0)
g (a, d) =

∞∑
t=1

(1+ta,d)=1

∞∑
n=1

(n,d)|a

�(n)

[K[d,n]t,nt : Q] . (2)

For example, if d|a, then �1+ta is the identity element of the Galois group of Q(�dt )

over Q and then trivially �g(a, d) = �(0)
g (a, d).

Generically, the degree [K[d,n]t,nt : Q] appearing in (2) equals �([d, n]t)nt . On
substituting this value in (2) a number �(a, d) is obtained that no longer depends
on g:

�(a, d) =
∞∑
t=1

(1+ta,d)=1

∞∑
n=1

(n,d)|a

�(n)

�([d, n]t)nt
. (3)

In [M-Av] it is shown that �(a, d) is the average density of elements in a finite field
having order ≡ a(mod d). The number �(a, d) can be a regarded as a naïve heuristic
for �g(a, d). In part III it is shown that for ‘generic’ g we have �g(a, d) = �(a, d). In
Section 6 this is established for odd prime powers in a more direct way (using that in
this case the coefficients cg are easily explicitly evaluated).

Theorem 3 (GRH). Let s�1 and q be an odd prime. Then for almost all integers g
with |g|�x we have �g(a, qs) = �(a, qs).

In fact �g(a, q) can be explicitly evaluated (Theorem 4). For reasons of space this
is only worked out in the case g ∈ G, where G is the set of rational numbers g that
cannot be written as −gh

0 or gh
0 with h > 1 an integer and g0 a rational number.

Note that almost all integers g with |g|�x are in G. See Section 4.2 for a proof of
Theorem 4.

Theorem 4 (GRH). Let q � a be an odd prime and suppose that g ∈ G. Put

�g(�) =

⎧⎪⎪⎨
⎪⎪⎩

1 if 2 � D(g);
�(2)

4 if 4||D(g);

�(2)2

16 if 8|D(g),
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where D(g) denotes the discriminant of Q(
√

g). If q � D(g), then �g(a, q) equals
�0
g(a, q) which on its turn equals

q2

(q − 1)(q2 − 1)
− 1

(q − 1)2

∑
�∈Gq

�(−a)A�

⎛
⎝1 + �g(�)

∏
p|2D(g)

p(�(p) − 1)

p3 − p2 − p + �(p)

⎞
⎠ ,

where the sum is over all characters of the character group Gq of Dirichlet characters
modulo q and

A� =
∏

p:�(p) �=0

(
1 + [�(p) − 1]p

[p2 − �(p)](p − 1)

)
.

If q|D(g), then

�g(a, q) = q2

(q − 1)(q2 − 1)
− 1

(q − 1)2

∑
�∈Gq

�(−a)A�

×
⎛
⎝1 + �g(�)

{
1 + 2

∑
b

�(b)
} ∏

p|2D(g)/q

p(�(p) − 1)

p3 − p2 − p + �(p)

⎞
⎠ ,

where the second sum is over all 1�b�q − 1 for which ( 1−b
q

) = −1.

The latter result together with Theorem 5 (proven in Section 5) allows one to ex-
plicitly evaluate �g(a, qs) for any g ∈ G and s�1.

Theorem 5 (GRH). Let q be an odd prime. Then �g(a, qs) = �g(a, q)q1−s for s�1.

Since the constants A� can be evaluated with high numerical precision (Section 2.1),
the same applies to �g(a, qs).

From [M-Av] it follows that in case q is an odd prime and q � a:

qs−1�(a, qs) = q2

(q − 1)(q2 − 1)
− 1

(q − 1)2

∑
�∈Gq

�(−a)A�. (4)

This identity together with Theorem 4 results in the following corollary of Theorem 4:

Corollary 1 (GRH). Let q � a be an odd prime and suppose that g ∈ G. If D(g) has
a prime divisor p ≡ 1(mod q), then �g(a, qs) = �(a, qs).

This corollary can be used to infer Theorem 3, on using that almost all integers
g with |g|�x satisfy g ∈ G and have D(g) with at least one prime divisor p with
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p ≡ 1(mod q) (see Lemma 10). From Theorems 4 and 5 and (4) one sees that if D(g)

is large, then |�g(a, qs) − �(a, qs)| will be small.
In case a = 0 the density �g(a, d) can unconditionally be shown to exist and

be evaluated, see, e.g., [M-div,O,Wie]. It turns out to be a positive rational number.
Theorem 2 in case a = 0 gives rise, after some manipulation, to a double sum in
which the summation parameters are rather restricted (cf. Eq. (24)). It turns out that
a corresponding simple identity can be obtained (Proposition 4), which because of the
restrictedness of the involved parameters can be unconditionally evaluated. This then
gives some new insights in this (well-researched) case [M-div]. See also Section 7. In
the final section the outcome of some relevant numerical experiments is recorded.

This paper is part of a trilogy, each paper considering a larger class of moduli d.
Due to the inherent arithmetic complexity, results in later papers are less explicit than
those in the earlier ones. Thus, only part of the results in the earlier papers follows
from those of the later ones.

2. Preliminaries

2.1. Some notation

We recall some notation from our earlier papers [M-I,M-Av] on this topic. For any
Dirichlet character � of (Z/dZ)∗, we let h� denote the Dirichlet convolution of � and
�. As usual we let L(s, �) denote the Dirichlet L-series for �. For properties of h� the
reader is referred to [M-I]. From [M-I], we furthermore recall that

C�(h, r, s) =
∞∑

(r,v)=1, s|v

h�(v)(h, v)

v�(v)
and A� =

∏
p:�(p)�=0

(
1 + [�(p) − 1]p

[p2 − �(p)](p − 1)

)
.

The constants A� turn out to be the basic constants for this problem. In many cases
A� ∈ C\R, see [M-Av, Table 3]. It can be shown that

A�
∏
p|d

(
1 − 1

p(p − 1)

)
= A

L(2, �)L(3, �)

L(6, �2)

∞∏
r=1

∞∏
k=3r+1

L(k, �r )	(k,r),

where A denotes the Artin constant and the numbers 	(k, r) are non-zero integers that
can be related to Fibonacci numbers [M-Fib]. The latter expansion of A� can be used
to approximate the constant A� with high numerical accuracy (see [M-Av, Section 6]).

In [M-I, Lemma 10] it is shown that C�(h, r, s) = cA�, where c can be explicitly
written down and is in Q(�o�). Here o� is the order of the character �, i.e. the smallest

positive integer k such that �k = �0, the trivial character.
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We recall from [M-I] that, if (b, f ) = 1,

∑
t≡b(mod f )

t |v

�
(v

t

)
= 1

�(f )

∑
�∈Gf

�(b)h�(v), (5)

where the sum is over the characters in the character group Gf of (Z/f Z)∗. It is
well-known that Gf �(Z/f Z)∗.

2.2. Preliminaries on algebraic number theory

We first review some properties of the Kronecker symbol (a not so often discussed
symbol in books on number theory). To this end we first recall the definition of the
Legendre and the Jacobi symbol. By definition the Legendre symbol ( n

p
), where p�3

is a prime number and n ∈ Z, p � n, is equal to 1 if n is a quadratic residue modp,
and to −1 otherwise.

Let m > 0 be an odd integer relatively prime to n. The Jacobi symbol ( n
m

) is defined
as the product of the Legendre symbols ( n

m
) = ( n

p1
) . . . ( n

ps
), where m = p1 . . . ps and

each pi is a prime.
The Kronecker symbol ( c

d
) is defined for c ∈ Z, c ≡ 0(mod 4) or c ≡ 1(mod 4),

c not a square, and d �1 an integer; if b = p1p2 . . . ps is the decomposition of b as
a product of primes, we put ( a

−b
) = ( a

b
) = ( a

p1
)( a

p2
) . . . ( a

ps
). If p is an odd prime

( a
p
) = 0 when p divides a, while ( a

p
) is the Legendre symbol ( a

p
) when p does not

divide a and, finally, ( a
2 ) = 1 when a ≡ 1(mod 8), while ( a

2 ) = −1 when a ≡ 5(mod 8).
Then if a and b are such that both the Jacobi and Kronecker symbols are defined, then
these symbols coincide. If a is odd, then ( a

2 ) equals the Jacobi symbol ( 2
|a| ). If b > 0,

(a, b) = 1, a is odd, then ( a
b
) = ( b

|a| ), where the symbol on the right-hand side is the
Jacobi symbol. Most importantly, if b > 0, (a, b) = 1 and a = 2r ã with ã odd, then

(a

b

)
=
(

2

b

)r

(−1)
ã−1

2
b−1

2

(
b

|a|
)

,

where the symbols on the right-hand side are Jacobi symbols. The definition of the
Kronecker symbol can be compactly given as follows:

Definition 1. Let c ≡ 0(mod 4) or c ≡ 1(mod 4), c not a square. Put

( c

2

)
=
{ 0 if c ≡ 0(mod 4);

1 if c ≡ 1(mod 8);
−1 if c ≡ 1(mod 8).

If p is an odd prime, then ( c
p
) is the Legendre symbol. If n = ∏r

i=1 p
ei

i , then ( c
n
) =∏r

i=1 ( c
pi

)ei ; in particular ( c
1 ) = 1.
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Note that this definition reduces the computation of the Kronecker symbol to that of
the Legendre symbol.

Let K be an abelian number field. By the Kronecker–Weber theorem there exists an
integer f such that K ⊆ Q(�f ). The smallest such integer is called the conductor of K.
Note that K ⊆ Q(�n) iff n is divisible by the conductor. Note also that the conductor
of a cyclotomic field is never congruent to 2(mod 4). The following lemma allows one
to determine all quadratic subfields of a given cyclotomic field (for a proof see e.g.
[Wei, p. 263]).

Lemma 1. The conductor of a quadratic number field is equal to the absolute value
of its discriminant.

Consider the cyclotomic extension Q(�f ) of the rationals. There are �(f ) distinct
automorphisms each determined uniquely by �a(�f )=�a

f , with 1�a�f and (a, f )=1.
We need to know when the restriction of such an automorphism to a given quadratic
subfield of Q(�f ) is the identity. In this direction we have:

Lemma 2. Let Q(
√

d) ⊆ Q(�f ) be a quadratic field of discriminant �d and b be an

integer with (b, f ) = 1. We have �b|Q(
√

d) = id iff (
�d

b
) = 1, with ( ·

· ) the Kronecker
symbol.

Proof. Using Lemma 1 we see that we can restrict to the case where f = |�d |. Define
� by �(b) = �b(

√
d)/

√
d , 1�b� |�d |, (b, �d) = 1. Then � is the unique non-trivial

character of the character group of Q(
√

d). As is well-known (see e.g. [N, p. 437]), the
primitive character induced by this is (

�d

b
). Using Lemma 1, we see that � is a primitive

character mod |�d |. Thus �(b) = (
�d

b
). Now �b|Q(

√
d) = id iff �(b) = (

�d

b
) = 1. �

Remark 1. Another way to prove Lemma 2 is to note that �b|Q(
√

d) = id iff there exists

a prime p ≡ b(mod f ) that splits completely in Q(
√

d). It is well-known that there
exists a prime p ≡ b(mod f ) that splits completely in the field Q(

√
d) iff (

�d

p
) = 1

(see e.g. [Wei, p. 236]). Since (
�d

p
) = (

�d

b
), the result follows.

Remark 2. The action of � on
√

d can also be determined by relating
√

d to a Gauss
sum ‘living’ in Q(�f ). It is straightforward to determine the action of � on such a
Gauss sum.

2.3. Preliminaries on field degrees

In order to explicitly evaluate certain densities in this paper, the following result
will play a crucial role. Let g1 �= 0 be a rational number. By D(g1) we denote
the discriminant of the field Q(

√
g1). The notation D(g1) along with the notation

g0, h and nr introduced in the next lemma will reappear again and again in the
sequel.
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Lemma 3 (Moree [M-I]). Write g = ±gh
0 , where g0 is positive and not an exact power

of a rational. Let D(g0) denote the discriminant of the field Q(
√

g0). Put

m =
{

D(g0)/2 if 
2(h) = 0 and D(g0) ≡ 4(mod 8);
D(g0)/2 if 
2(h) = 1 and D(g0) ≡ 0(mod 8);
[2
2(h)+2, D(g0)] otherwise.

and

nr =
{

m if g < 0 and r is odd;
[2
2(hr)+1, D(g0)] otherwise.

We have

[Kkr,k : Q] = [Q(�kr , g
1/k) : Q] = �(kr)k

�(kr, k)(k, h)
,

where for g > 0 or g < 0 and r even we have

�(kr, k) =
{

2 if nr |kr;
1 if nr � kr,

and for g < 0 and r odd we have

�(kr, k) =
{

2 if nr |kr;
1
2 if 2|k and 2
2(h)+1 � k;
1 otherwise.

Remark 3. Note that nr = n2
2(r) . Note that if h is odd, then nr = [2
2(r)+1, D(g)].

From Lemma 3 many consequences can be deduced.

Lemma 4. Let v, w and z be natural numbers with v|w and with z an odd divisor of
w. Then [Kzw,v : Q] = z[Kw,v : Q].

Proof. The proof easily follows from Lemma 3 on observing that the odd part of nr

is squarefree and that �(zw) = z�(w). �

Lemma 5. The intersection Q(�f )∩Kv,v is equal to Q(�(f,v)) or a quadratic extension
thereof. More precisely,

[Q(�f ) ∩ Kv,v : Q(�(f,v))] = �([f, v], v)

�(v, v)
.
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Proof. Clearly, this intersection field is abelian and contains Q(�(f,v)). We have

[K[f,v],v : Q] = �(f )[Kv,v : Q]
[Q(�f ) ∩ Kv,v : Q] . (6)

On noting that �((f, v))�([f, v]) = �(f )�(v), it follows from Lemma 3 and (6) that

[Q(�f ) ∩ Kv,v : Q(�(f,v))] = [Q(�f ) ∩ Kv,v : Q]
�((f, v))

= �([f, v], v)

�(v, v)
. (7)

It is not difficult to infer from Lemma 3 that the latter quotient is either 1 or 2 (so
the apparent possibility 4 does never arise). We conclude that Q(�f ) ∩ Kv,v is equal
to Q(�(f,v)) or a quadratic extension thereof. �

Lemma 6. Let q be an odd prime, s�0 and suppose q � v. Put q∗ = (−1
q

)q. Consider
the following conditions:

(i) q|D(g0), s = 0 and n1
q

|v;

(ii) If g < 0 and 2|v, then 2
2(h)+1|v.

We have

Q(�qs+1) ∩ Kqsv,qsv =
{

Q(
√

q∗) if both i and ii are satisfied;
Q(�qs ) otherwise.

Proof. By Lemma 5 we have [Q(�qs+1)∩Kqsv,qsv : Q(�qs )]=�(qs+1v, qsv)/�(qsv, qsv)

and hence, by Lemma 3, Q(�qs+1)∩Kqsv,qsv is a quadratic extension of Q(�q0) = Q if
conditions (i) and (ii) are satisfied and Q(�qs+1) ∩ Kqsv,qsv = Q(�qs ) otherwise. Since
Q(

√
q∗) is the unique quadratic subfield of Q(�q), the result now follows. �

Remark 4. If g > 0 or g < 0 and v is odd, then condition (ii) is vacuously satisfied.

Lemma 7. Let n be squarefree. Put td = ∏
p|(t,d) p
p(t). The density of primes p such

that p ≡ 1 + ta(mod dt) and p splits completely in Knt,nt equals zero if (d, n) � a or
(1 + ta, d) > 1, otherwise it equals

cg(1 + ta, dt, nt)

[K[d,n]t,nt : Q] = cg(1 + ta, dtd , nt)

[K[d,n]t,nt : Q] . (8)

Proof. This follows from Chebotarev’s density theorem together with the observation
that the two systems of congruences{

x ≡ 1 + ta(mod dt)

x ≡ 1(mod nt)
and

{
x ≡ 1 + ta(mod dtd)

x ≡ 1(mod nt)

are equivalent. �
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Lemma 8. Assume that (b, f1f2) = 1, f1|f2 and

[K[f1,v],v : Q]
�(f1)

= [K[f2,v],v : Q]
�(f2)

. (9)

Then cg(b, f1, v) = cg(b, f2, v).

Proof. By (6) the assumption (9) implies that

[Q(�f1) ∩ Kv,v : Q] = [Q(�f2) ∩ Kv,v : Q].

This, together with the assumption that f1|f2 ensures that Q(�f1) ∩ Kv,v = Q(�f2) ∩
Kv,v = L, say, whence L = Q(�(f1,f2)) ∩ Kv,v . Since the map � ∈ Gal(Q(�f1)/Q) that
sends �f1 to �b

f1
and the map �′ ∈ Gal(Q(�f2)/Q) that sends �f2 to �b

f2
act in the same

way when restricted to Q(�(f1,f2)), it follows that �b|Q(�f1
)∩Kv,v

= �′
b|Q(�f2

)∩Kv,v
and

hence cg(b, f1, v) = cg(b, f2, v). �

2.4. Remaining preliminaries

The following result is due to Wirsing [Wir].

Lemma 9 (Wirsing [Wir]). Suppose f (n) is a multiplicative function such that f (n)�0,
for n�1, and such that there are constants �1 and �2, with �2 < 2, such that for every
prime p and every 
�2, f (p
)��1�



2. Assume that as x → ∞,

∑
p�x

f (p) ∼ �
x

log x
,

where � > 0 is a constant. Then, as x → ∞,

∑
n�x

f (n) ∼ e−��

�(�)

x

log x

∏
p�x

(
1 + f (p)

p
+ f (p2)

p2 + f (p3)

p3 + · · ·
)

,

where � is Euler’s constant and �(�) denotes the gamma-function.

We use it to establish the following lemma.

Lemma 10. Let d �3. The number of integers 1�g�x such that D(g) has no prime
divisor p with p ≡ 1(mod d) is Od(x log−1/�(d) x). The same assertion holds with
D(g) replaced by D(−g).

Proof. Denote the number of integers counted in the formulation of the lemma by
Td(x). We define a multiplicative function fd(n) as follows:

fd(p
) =
{

0 if 2 � 
 and p ≡ 1(mod d);
1 otherwise.
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Note that Td(x) = ∑
g �x fd(g). Using Lemma 9, it then follows that

Td(x) = Od

⎛
⎝ x

log x

∏
p�x

(
1 + fd(p)

p
+ fd(p2)

p2 + · · ·
)⎞⎠

= Od

⎛
⎜⎝ x

log x

∏
p � x

p �≡1(mod d)

(
1 + 1

p

)⎞⎟⎠ .

Since by Mertens’ theorem for arithmetic progressions (cf. [Wil]) we have

∏
p � x

p≡a(mod d)

(
1 + 1

p

)
∼ ca,d log

1
�(d) x, x → ∞,

for some ca,d > 0, the result follows. �

3. The proofs of Theorems 1 and 2

In this section we analyse the growth behaviour of the functions Ng(a, d)(x) and
Ng(a1, d1; a2, d2)(x). Throughout we restrict to those primes p with 
p(g) = 0. Let
�(d) = ∑

p|d 1 denote the number of distinct prime divisors of d.
Let

Vg(a, d; t)(x) = #{p�x : rg(p) = t, p ≡ 1 + ta(mod dt)}.

Note that Ng(a, d)(x) = ∑∞
t=1 Vg(a, d; t)(x). If (1 + ta, d) > 1 then there is at most

one prime counted by Vg(a, d; t)(x) and this prime has to divide d. It follows that
Ng(a, d)(x) = ∑∞

t=1
(1+ta,d)=1

Vg(a, d; t)(x) + O(�(d)). Let x1 = √
log x. Assume GRH.

By [M-I, Lemma 7] it follows that #{p�x : rg(p) > x1} = Og(x log−3/2 x). We thus
infer that

Ng(a, d)(x) =
∑
t � x1

(1+ta,d)=1

Vg(a, d; t)(x) + Og,d

(
x

log3/2 x

)
. (10)

For fixed t the term Vg(a, d; t) can be estimated by a variation of Hooley’s classical
argument [H]. However, we need to carry this out with a certain uniformity. This
requires one to merely keep track of the dependence on t of the various estimates. This
results in the following lemma.
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Lemma 11 (GRH). For t �x1/3 we have

Vg(a, d; t)(x) = x

log x

∞∑
n=1

(n,d)|a

�(n)cg(1 + ta, dt, nt)

[K[d,n]t,nt : Q] + Og,d

(
x log log x

�(t) log2 x
+ x

log2 x

)
.

Proof. Let M ′
g(x, y) = #{p�x : p ≡ 1+ ta(mod dt), t |rg(p), qt � rg(p), ∀q �y} and

Mg(x, y, z) = #{p�x : ∃q, y�q �z, qt |rg(p)}, where q denotes a prime number.
Note that

Vg(a, d; t)(x) = M ′
g(x, �1) + O(Mg(x, �1, �2)) + O(Mg(x, �2, �3))

+O

(
Mg

(
x, �3,

x − 1

t

))
.

We take �1 = log x/6, �2 = √
x log−2 x and �3 = √

x log x. The three error terms were
estimated in the proof of Theorem 4 of [M-I]. Taking them together it is found that

Vg(a, d; t)(x) = M ′
g(x, �1) + Og,d

(
x log log x

�(t) log2 x
+ x

log2 x

)
. (11)

By inclusion and exclusion it follows that

M ′
g(x, �1) =

∑
P(n)��1

�(n)#{p�x : p ≡ 1 + ta(mod dt), nt |rg(p)},

where P(n) denotes the greatest prime factor of n. The integers n counted in the latter
sum are all less than x1/3 (cf. (6) of [H]). The counting functions in the latter sum
can be estimated by an effective form of Chebotarev’s density theorem, cf. Theorem 3
of [M-I] and the discussion immediately following this theorem. This yields that

#{p�x : p ≡ 1 + ta(mod dt), nt |rg(p)} = cg(1 + ta, dt, nt)

[K[d,n]t,nt : Q] Li(x) + O(
√

x log x),

where the implied constant depends at most on g and d. Indeed, applying Theorem 3
of [M-I] results in an error term of O(

√
x log(dLx[L:Q])/[L : Q]), with an absolute

implied constant and L = K[d,n]t,nt . On invoking Lemma 3 and [M-I, Lemma 2] it
follows that this is Od,g(

√
x log x). Proceeding as in [H, Section 6] it is then inferred

that

M ′
g(x, �1) = x

log x

∞∑
n=1

�(n)cg(1 + ta, dt, nt)

[K[d,n]t,nt : Q] + Og,d

(
x

log2 x

)
. (12)
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If nt |rg(p), then p ≡ 1(mod nt). By the Chinese remainder theorem it now follows
that if (n, d)|a then #{p�x : p ≡ 1 + ta(mod dt), nt |rg(p)} is finite for every x and
hence cg(1 + ta, dt, nt) = 0 (an alternative way to see this is to note that in this case
�1+ta does not act like the identity on Q(�nt )). It follows that in the sum in (12) we
can restrict to those n satisfying (n, d)|a. On taking this into account and combining
(11) and (12), the result follows. �

It is now straightforward to establish Theorem 2.

Proof of Theorem 2. Recall that x1 = √
log x. Combination of (10) and Lemma 11

yields

Ng(a, d)(x) = x

log x

∑
t � x1

(1+ta,d)=1

∞∑
n=1

(n,d)|a

�(n)cg(1 + ta, dt, nt)

[K[d,n]t,nt : Q] + Og,d

(
x

log3/2 x

)
. (13)

Denote the latter double sum by D(x). By Lemma 3 and [M-I, Lemma 5] we find

D(x) = �g(a, d) + O

(∑
t>x1

h

t�(t)

)
= �g(a, d) + O

(
h√

log x

)
.

On inserting the latter estimate in (13) the proof is then completed. �

A variation of the above (but notationally rather more awkward and hence we only
sketch it) gives Theorem 1 with

�g(a1, d1; a2, d2) =
∞∑

t=1, (1+ta2,d2)=1
1+ta2≡a1(mod(d1,d2 t))

∞∑
n=1

�(n)cg(a1, d1, 1 + ta2, d2t, nt)

[Knt,nt (�d1 , �d2t ) : Q] , (14)

where for (b1, f1) = (b2, f2) = 1 and b1 ≡ b2(mod(f1, f2)), we define

cg(b1, f1, b2, f2, v) =
{

1 if �|Q(�[f1,f2])∩Kv,v
= id;

0 otherwise,

where � is the (unique) automorphism of Q(�[f1,f2]) determined by �(�f1) = �b1
f1

and

�(�f2) = �b2
f2

.

Proof of Theorem 1. This is a variation of the proof of Theorem 2. Most error terms
can be estimated as before on dropping the condition that p ≡ a1(mod d2), which
brings us to the situation of Theorem 2.



P. Moree / Journal of Number Theory 117 (2006) 330–354 343

We first generalise Lemma 11. For that we only have to replace M ′
g(x, �1) M ′′

g(x, �1)

say, where M ′′
g(x, �1) is defined as M ′

g(x, �1) with a = a2 and d = d2, but where now
furthermore the primes p are required to satisfy p ≡ a1(mod d1). The estimation of
M ′′

g(x, �1) can be carried out completely similarly to that of M ′
g(x, �1).

The analogue of (10) is easily derived to be

Ng(a1, d1; a2, d2)(x) =
∑

t � x1, (1+ta2,d2)=1
1+ta2≡a1(mod(d1,d2 t))

Vg(a1, d1; a2, d2; t)(x) + Og,d

(
x

log3/2 x

)
.

From here on the proof is completed as before. �

4. The case where d is an odd prime

Let d = q be an odd prime. In this case it turns out to be fruitful to consider
separately the primes p with p ≡ 1(mod q) and those with p /≡ 1(mod q).

4.1. The case where q|a

Trivially Ng(a, q) = Ng(0, q) and w.l.o.g. we may assume that a = 0. Note that the
primes counted by Ng(0, q)(x) must satisfy p ≡ 1(mod q). Let j = 
q(p − 1). Note
that p /∈ Ng(0, q) iff qj |rg(p). Thus, we infer that

Ng(0, q)(x) = #{p�x : p ≡ 1(mod q)}

−
∞∑

j=1

#{p�x : p ≡ 1(mod qj ), p /≡ 1(mod qj+1), qj |rg(p)}.

The density of primes p satisfying p ≡ 1(mod qj ), p /≡ 1(mod qj+1) and qj |rg(p) can
be computed by Chebotarev’s density theorem and equals

1

[Kqj ,qj : Q] − 1

[Kqj+1,qj : Q] .

A more refined analysis [Wie], cf. [O,P] (with weaker error term), shows that

Ng(0, q)(x) = �g(0, q)Li(x) + Og,q

(
x(log log x)4

log3 x

)
,
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with

�g(0, q) = 1

q − 1
−

∞∑
j=1

(
1

[Kqj ,qj : Q] − 1

[Kqj+1,qj : Q]

)
. (15)

Note that Ng(1, q; 0, q)(x) = Ng(0, q)(x) and hence �g(1, q; 0, q) = �g(0, q). The
density �g(0, q) can be explicitly evaluated using Lemma 3:

�g(1, q; 0, q) = �g(0, q) = q1−
q (h)

q2 − 1
. (16)

Let us now assume GRH. Using Theorem 2 it is inferred that

�g(0, q) = �(0)
g (0, q) =

∞∑
t=1

∞∑
n=1

�(n)

[K[q,n]t,nt : Q] = S1 + Sq,

say, where in S1 we take together those n with q � n and in Sq those with q|n. We
have

S1 =
∞∑

v=1

∑
n|v, q � n �(n)

[Kqv,v : Q] =
∞∑

j=0

1

[Kqj+1,qj : Q] ,

and similarly

Sq =
∞∑
t=1

∞∑
n=1
q|n

�(n)

[Knt,nt : Q] = −
∞∑
t=1

∞∑
n=1
q � n

�(n)

[Kqnt,qnt : Q] = −
∞∑

j=1

1

[Kqj ,qj : Q] .

On adding Sq to S1 we find (15) on noting that [Kq,1 : Q] = q − 1.

4.2. The case where q � a

In the remainder of this section we assume that q � a. Recall that q∗ = (−1
q

)q.

Proposition 1 (GRH). Let q be an odd prime and q � a. Then

�g(1, q; a, q) = 1

(q − 1)2

(
1 − q1−
q (h)

q + 1

)
.

In particular �g(1, q; a, q) ∈ Q>0 and does not depend on a.
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Proof. The density �g(1, q; a, q) equals, using (14) and Lemma 7,

∞∑
t=1, q|t

(1+ta,q)=1

∞∑
n=1
q � n

�(n)cg(1 + ta, qt, nt)

[Kqnt,nt : Q] =
∞∑
t=1
q|t

∞∑
n=1
q � n

�(n)cg(1 + ta, q1+
q (t), nt)

[Kqnt,nt : Q] .

Suppose that q � n. By Lemma 6 it follows that Q(�
q1+
q (t) )∩Knt,nt = Q(�

q
q (t) ). Since

1 + ta ≡ 1(mod q
q (t)), the automorphism �1+ta in Theorem 2 acts like the identity on
the latter field intersection and hence cg(1 + ta, q1+
q (t), nt) = 1. We thus infer that

�g(1, q; a, q) =
∞∑
t=1
q|t

∞∑
n=1
q � n

�(n)

[Kqnt,nt : Q] . (17)

In particular, it follows that �g(1, q; a, q) does not depend on a. We present two ways
to complete the proof from this point onwards.

First way. From (17) we infer that

�g(1, q; a, q) =
∞∑
t=1

∞∑
n=1, q � n

�(n)

[Kq2nt,qnt : Q]

=
∞∑

v=1

∑
n|v, q � n �(n)

[Kq2v,qv : Q] =
∞∑

j=1

1

[Kqj+1,qj : Q] .

Using Lemma 3 the latter sum is easily evaluated.
Second way. Note that

∑
0�a �q−1 �g(1, q; a, q) equals the density of primes p with

p ≡ 1(mod q) and hence

∑
0�a �q−1

�g(1, q; a, q) = 1

q − 1
. (18)

Since, provided that q � a, �g(1, q; a, q) does not depend on a, we conclude from (18)
that

�g(1, q; a, q) = 1

q − 1

(
1

q − 1
− �g(1, q; 0, q)

)
.

Now invoke (16). �

Remark 5. Using a different method in [M-I, Theorem 10] the values of �g(1, 3s; a, 3)

for s�1 were calculated.

In order to determine �g(a, q) it turns out to be convenient to determine �g(a, q) −
�g(1, q; a, q) first.
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Lemma 12 (GRH). Let q be an odd prime and q � a. Then

�g(a, q) − �g(1, q; a, q)

= 1

q − 1
−

∞∑
v=1
q � v

∑
t≡− 1

a
(mod q), t |v �( v

t
)

[Kqv,v : Q] −
∞∑

v=1, q � v√
q∗∈Kv,v

∑
( ta+1

q
)=−1, t |v �( v

t
)

[Kqv,v : Q] .

Proof. By Theorems 1, 2 and Lemma 7 we infer that

�g(a, q) − �g(1, q; a, q) =
∞∑

t=1, q � t
(1+ta,q)=1

∞∑
n=1
q � n

�(n)cg(1 + ta, q, nt)

[Kqnt,nt : Q] .

Let us restrict now to values of n and t that occur in the latter double sum. We have,
by Lemma 5,

Q(�q) ∩ Knt,nt =
{

Q(
√

q∗) if
√

q∗ ∈ Knt,nt ;
Q otherwise.

Using Lemma 2, it then follows that

cg(1 + ta, q, nt) =
{

(1 + (
q∗

1+ta
))/2 if

√
q∗ ∈ Knt,nt ;

1 otherwise.

By the properties of the Kronecker symbol we have (
q∗

1+ta
) = ( 1+ta

q
), where the symbol

(1 + ta/q) is just the Legendre symbol. We can thus write �g(a, q) − �g(1, q; a, q) =
J1 − J2, where

J1 =
∞∑

t=1, q � t
(1+ta,q)=1

∞∑
n=1
q � n

�(n)

[Kqnt,nt : Q] and J2 =
∞∑

t=1, q � t

( 1+ta
q )=−1

∞∑
n=1, q � n√
q∗∈Knt,nt

�(n)

[Kqnt,nt : Q] . (19)

On writing nt = v we obtain

J1 =
∞∑
v=1
q � v

∑
t |v �( v

t
)

[Kqv,v : Q] −
∞∑
v=1
q � v

∑
t≡− 1

a
(mod q), t |v �( v

t
)

[Kqv,v : Q]

= 1

q − 1
−

∞∑
v=1
q � v

∑
t≡− 1

a
(mod q), t |v �( v

t
)

[Kqv,v : Q] (20)
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and

J2 =
∞∑

v=1, q � v√
q∗∈Kv,v

∑
( 1+ta

q
)=−1, t |v �( v

t
)

[Kqv,v : Q] .

On combining these expressions with �g(a, q) − �g(1, q; a, q) = J1 − J2, the result
follows. �

Example. For q = 3 and 3 � a we obtain, on GRH, that

�g(2, 3; 1, 3) = 1

2
−

∞∑
v=1
3 � v

∑
t≡2(mod 3), t |v �( v

t
)

[K3v,v : Q] −
∞∑

v=1, 3 � v√−3∈Kv,v

∑
t≡1(mod 3), t |v �( v

t
)

[K3v,v : Q] .

= 1

2
−

∞∑
v=1
3 � v

∑
t |v �( v

t
)

[K3v,v : Q] +
∞∑

v=1, 3 � v√−3/∈Kv,v

∑
t≡1(mod 3), t |v �( v

t
)

[K3v,v : Q] .

=
∞∑

v=1, 3 � v√−3/∈Kv,v

∑
t≡1(mod 3), t |v �( v

t
)

[K3v,v : Q] .

More generally, we have

�g(2, 3; a, 3) =
∞∑

v=1, 3 � v√−3/∈Kv,v

∑
t≡a(mod 3), t |v �( v

t
)

[K3v,v : Q] .

Rewriting this expression in terms of h′
�s we obtain Theorem 11 of [M-I].

We now have the ingredients to establish the following result.

Theorem 6 (GRH). Let q be an odd prime and q � a. Then

�(0)
g (a, q) = 1

q − 1
+ 1

(q − 1)2

(
1 − q1−
q (h)

q + 1

)
−

∞∑
v=1
q � v

∑
t≡− 1

a
(mod q), t |v �( v

t
)

[Kqv,v : Q] (21)

and

�g(a, q) = �(0)
g (a, q) −

∞∑
v=1, q � v√

q∗∈Kv,v

∑
( ta+1

q
)=−1, t |v �( v

t
)

[Kqv,v : Q] . (22)

If q � D(g0), then �g(a, q) = �(0)
g (a, q).
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Proof. Considering the terms with q|t and q � t in the double sum for �g(a, q) sep-
arately we have, using (17) and (19) that �(0)

g (a, q) = �q(1, q; a, q) + J1. On using
Proposition 1, (20) and Lemma 12 the first two assertions are established.

If q � D(g0), then by Lemma 6 there is no integer v such that q � v and
√

q∗ ∈ Kv,v

and hence the double sum in (22) equals zero. �

Remark 6. The double sum (22) can be rewritten, using Lemma 6, as

∞∑
v=1, q � v

(
2

[Kqv,v : Q] − 2

(q − 1)[Kv,v : Q]
) ∑

( ta+1
q

)=−1, t |v
�
(v

t

)
.

Remark 7. Note that the proof of Theorem 6 makes essential use of the law of
quadratic reciprocity (this law enters in the proof of Lemma 12).

Using (5) and the following lemma, �g(a, q) and �(0)
g (a, q) can be expressed as

simple linear combinations of the constants C� introduced in Section 2.1. Each such
constant can be explicitly evaluated and is of the form cA� with c ∈ Q(�o�). This

allows one to explicitly evaluate �g(a, q) and �(0)
g (a, q). For reasons of space we only

will work this out in the case g ∈ G, where G is the set of rational numbers g that
cannot be written as −gh

0 or gh
0 with h > 1 an integer and g0 a rational number.

Lemma 13 (Moree [M-I, Lemma 11]). Let r, s be integers with s|r . Let � be a Dirich-
let character. Then, if g > 0 or g < 0 and s is even,

∑
(r,v)=1

h�(v)

[Ksv,v : Q] = 1

�(s)

(
C�(h, r, 1) + C�

(
h, r,

ns

(ns, s)

))
.

When g < 0 and s is odd, the latter sum equals

1

�(s)

(
C�(h, r, 1) − 1

2
C�(h, r, 2) + 1

2
C�(h, r, 2
2(h)+1) + C�

(
h, r,

ns

(ns, s)

))
.

Now we can formulate one of our main results.

Theorem 7 (GRH). Let q be an odd prime and q � a. We have

�g(a, q) =
∑
�∈Gq

�(−a)c�A�,

where c� ∈ Q(�o�) may depend on q and g (but not a) and can be explicitly evaluated.

Proof. We only deal with the case where g > 0 or g < 0 and h is odd (the remaining
more space consuming case being left to the reader).
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Using the identity (5) and Lemma 13 we can rewrite (21) as

�(0)
g (a, q) = 1

q − 1
+ 1

(q − 1)2

(
1 − q1−
q (h)

q + 1

)

− 1

(q − 1)2

∑
�∈Gq

�(−a)

(
C�(h, q, 1) + C�

(
h, q,

nq

(nq, q)

))
.

Similarly, using Remark 6, we rewrite (22) as

�g(a, q) = �(0)
g (a, q) − 2

(q − 1)2

∑
�∈Gq

�(−a)

×
(

C�

(
h, q,

nq

(nq, q)

)
− C�(h, q, n1)

)∑
b

�(b),

where the sum is over the integers 1�b�q − 1 for which ( 1−b
q

) = −1. Note that
n1 = nq . If q � D(g0), the latter double sum equals zero and we infer (as before) that
�g(a, q) = �(0)

g (a, q). If q|D(g0), then C�(h, q, n1) = 0 and we infer that

�g(a, q) = �(0)
g (a, q) − 2

(q − 1)2

∑
�∈Gq

�(−a)C�

(
h, q,

n1

q

)∑
b

�(b).

By [M-I, Lemma 10] we can write C�(h, r, s) as cA� with c ∈ Q(�o�), where c can
be explicitly given. Using this the proof is easily completed. �

The following result is an easy consequence of the latter proof.

Proposition 2 (GRH). If h is odd and 8|D(g), then �g(a, q) = �−g(a, q).

Proof. The assumptions imply that |n1| = |nq | = |D(±g)| and on noting that C�(h, r, s)

= C�(h, r, −s) the character sum expression for �g(a, q) given in the proof of Theo-
rem 7 is seen to equal that of �−g(a, q) in case q � a. If q|a, then by (16) we have
�±g(0, q) = q/(q2 − 1). �

Theorem 4 can be regarded as an example of Theorem 7 in the special (but important)
case where g ∈ G.

Proof of Theorem 4. By Lemma 3 we have

n1 = nq =
{ [2, D(g0)] if g > 0;

D(g0)/2 if g < 0 and D(g) ≡ 4(mod 8);
[4, D(g0)] if g < 0 and D(g) /≡ 4(mod 8).
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Now note that n1 = nq = [2, D(g)] and that q|D(g0) iff q|D(g). Working out the
formulae involving the C�’s in the proof of Theorem 7 using [M-I, Lemma 10], the
proof is then completed. �

5. The case where d is an odd prime power

The case where d = qs with q an odd prime is easily reduced to the case d = q by
the following result. Notice that Theorem 8 implies Theorem 5.

Theorem 8 (GRH). Suppose that d|d1, the quotient d1/d is odd and �(d1) = �(d).
Then �g(a, d1) = d

d1
�g(a, d).

Remark 8. From formula (3) for �(a, d) it is easily inferred that if d|d1 and �(d1) =
�(d), then

�(a, d1) = d

d1
�(a, d). (23)

Proof of Theorem 8. If d|d1 and �(d) = �(d1) and for all n and t with (1+ta, d) = 1,
(n, d)|a and n is squarefree, we have [K[d1,n]t,nt : Q]/�(d1) = [K[d,n]t,nt : Q]/�(d),
then using Lemma 8 we infer that

�g(a, d1) =
∞∑
t=1

(1+ta,d1)=1

∞∑
n=1

(n,d1)|a

�(n)cg(1 + ta, d1t, nt)

[K[d1,n]t,nt : Q]

= d

d1

∞∑
t=1

(1+ta,d)=1

∞∑
n=1

(n,d)|a

�(n)cg(1 + ta, dt, nt)

[K[d,n]t,nt : Q] = d

d1
�g(a, d),

where we invoked Lemma 4 and used that �(d1)/�(d) = d1/d. �

6. Connection between �g(a, qs) and �(a, qs)

Define �g(d) = (�g(0, d), �g(1, d), . . . , �g(d − 1, d)) (if this exists) and

�(d) = (�(0, d), �(1, d), . . . , �(d − 1, d)).

The next result implies that, under GRH, for almost all integers g we have �g(q
s) =

�(qs). Note that this result also implies the truth of Theorem 3.

Theorem 9 (GRH). Let s�1 and q be an odd prime. Then there are at most
Oq(xlog−1/(q−1) x) integers g with |g|�x such that �g(q

s) �= �(qs).
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Proof. By the results of the previous section it is enough to prove this in case s = 1.
Since there are at most O(

√
x log x) integers |g|�x that are not in G, we can restrict

ourselves to the case where g ∈ G. For such a g we then have, using (16), that
�g(0, q) = �(0, q). Now by Theorem 4 and (4) we infer that if D(g) has a prime
divisor p with p ≡ 1(mod q), then �g(q) = �(q) (since �(p) = 1 for every � ∈ Gq ).
It follows that the number of g ∈ G with |g|�x such that �g(q) �= �(q) is bounded
above by the number of g with |g|�x such that D(g) has no prime factor p satisfying
p ≡ 1(mod q). By Lemma 10 the proof is then completed. �

If it is not true that �g(q
s) = �(qs), then our final result shows that �g(q

s) will be
close to �(qs),

Proposition 3 (GRH). Suppose that g ∈ G. As |g| tends to infinity, �g(q
s) tends to

�(qs).

Proof. A simple consequence of Theorems 4 and 5 and Eq. (4). �

7. Divisibility of the order reconsidered

The case d|a has been well-researched since the late fifties of the previous century,
especially by Wiertelak (vide [M-div] for references). It is thus perhaps surprising that
Theorem 2 sheds some new light on this case.

As remarked in the introduction, under GRH �g(0, d) exists and equals �(0)
g (0, d).

The expression for the latter quantity can be simplified further:

�(0)
g (0, d) =

∞∑
t=1

∞∑
n=1

�(n)

[K[d,n]t,nt : Q] =
∑

|d

∞∑
t=1

∑
(n,d)=


�(n)

[K[d,n]t,nt : Q]

=
∑

|d

�(
)

∞∑
t=1

∑
(n,d)=1

�(n)

[K[d,
n]t,
nt : Q]

=
∑

|d

�(
)

∞∑
v=1

∑
(n,d)=1, n|v �(n)

[Kdv,
v : Q]

=
∑

|d

�(
)
∑
v|d∞

1

[Kdv,
v : Q] =
∑
v|d∞

∑

|d

�(
)

[Kdv,
v : Q] ,

where in the derivation of the third equality the substitution n → 
n was made, in the
fourth the substitution v = nt and in the fifth the observation that

∑
(n,d)=1, n|v

�(n) =
{

1 if v|d∞;
0 otherwise,
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Table 1
The constants A� for d = 5

� A�

� 0.364689626478581 . . . + i · 0.224041094424738 . . .

�2 0.129307938528080 . . .

�3 0.364689626478581 . . . − i · 0.224041094424738 . . .

�4 1

was used. We thus obtain as a special case of Theorem 2 that, under GRH,

�g(0, d) =
∑
v|d∞

∑

|d

�(
)

[Kdv,
v : Q] . (24)

This seems to be the simplest formula known expressing �g(0, d) in terms of field
degrees. It suggests the validity of the following result:

Proposition 4. We have Ng(0, d)(x) = ∑
v|d∞

∑

|d �(
)�Kdv,
v

(x), where �L(x) de-
notes the number of primes p�x that split completely in the field L.

Indeed, it is not difficult to prove the latter identity [M-div, Proposition 1]. It can
be used to infer that �g(0, d) exists unconditionally and to give the simplest explicit
formula for this quantity known so far [M-div, Theorem 2].

8. Some numerical experiments

Various numerical experiments were carried out to see if these seemed in agreement
with the theoretical claims. In case d = 3 or 4 the reader is referred to part I. So let
us restrict to d = 5. Let � be the character mod 5 determined uniquely by �(2) = i.
The group G5 consists of �, �2, �3 and �4. Note that �4 is the trivial character. From
Table 3 of [M-Av] we have Table 1.

Using Table 1 and (4) one then computes �(a, 5) for 1�a�4. Moreover, �(0, 5) =
5

24 . These values are recorded in the first row of Table 2.
If an entry is in a row labelled ≈ �g(∗, d) and in column j, then the number given

equals Ng(j, 5)(x)/�(x) rounded to six decimals with x = 2038074743 (and hence
�(x) = 108). The theoretical values are given with six digit precision, with a bar over
the last digit indicating that if the number is to be rounded off, it should be rounded
upwards.

8.1. Comments to the table

(1) The experimental results suggest that the identity �g(a, q) = �(a, q) holds more
often in case a = 0. Indeed, if g ∈ G, then �g(0, q) = �(0, q) = q/(q2 − 1) and
it follows from [M-Av] that there are at most O(

√
x) integers g with |g|�x such

that �g(0, q) �= �(0, q). On the other hand, I conjecture that for every prime q
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Table 2
Experimental and theoretical densities for d = 5

0 1 2 3 4

�(∗, 5) 0.208333 0.235421 0.177993 0.234003 0.144248
≈ �−11(∗, 5) 0.208347 0.235422 0.178007 0.233974 0.144250
�−11(∗, 5) �(0, 5) �(1, 5) �(2, 5) �(3, 5) �(4, 5)

≈ �−5(∗, 5) 0.208348 0.264146 0.194858 0.233282 0.099365
�−5(∗, 5) �(0, 5) 0.264135 0.194865 0.233294 0.099371
≈ �−2(∗, 5) 0.208333 0.240695 0.178703 0.229275 0.142993
�−2(∗, 5) �(0, 5) 0.240681 0.178691 0.229264 0.143029
≈ �2(∗, 5) 0.208333 0.240673 0.178706 0.229270 0.143017
�2(∗, 5) �(0, 5) 0.240681 0.178691 0.229264 0.143029
≈ �3(∗, 5) 0.208341 0.238177 0.169810 0.235241 0.148432
�3(∗, 5) �(0, 5) 0.238153 0.169811 0.235258 0.148443
≈ �5(∗, 5) 0.208348 0.232581 0.292840 0.054488 0.211742
�5(∗, 5) �(0, 5) 0.232585 0.292848 0.054493 0.211737
≈ �65537(∗, 5) 0.208330 0.235483 0.177954 0.234002 0.144231
�65537(∗, 5) �(0, 5) 0.235421 0.177993 0.234003 0.144248

there exists 
q > 0 such that �g(a, q) �= �(a, q) for at least � x log−
q x integers
g satisfying |g|�x.

(2) By Corollary 1 one expects that �−11(∗, 5) = �(∗, 5).
(3) By Proposition 2 one ought to have that �−2(j, 5) = �2(j, 5).
(4) One expects, a priori, �65537(j, 5) to be close to �(j, 5). It turns out that �65537(j, 5)

�= �(j, 5) for 1�j �4, but this is not visible at the precision level of the table.
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