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The main result of this paper is that for a cocommutative Hopf algebra #
over a field, the correspondence 7: G— HG* from sub-Hopf algebras of
H to left bi-ideals is a bijection. (Gt = {x € G | ¢(x) = 0}. We call I a left
bi-ideal if it is a left ideal and a two-sided coideal, ie.,, AICIQH+ HX®I
and (1) = 0.)

" 'The inverse to 7, which we will call g, is defined as follows:

Let I be a left bi-ideal in H. By [7, Theorem 1.4.8(a), p. 22], H/I is a

coalgebra. Thus by [7, Lemma 16.1.1, p. 312], if we let

G = ker(H-">H)={xcH|(IyQm dx =z R 1},

the cocommutivity of /7 implies that G is a subcoalgebra of H. It is easy to see
that, since 7 is a left ideal, that G is closed under multiplication. Thus G is a
bialgebra. In addition, we will show in Corollaries 3.4 and 3.5 that G has an
antipede, i.e., that G is a Hopf algebra. Consequently, # -ker gives a corre-
spondence from left bi~ideals to sub-Hopf algebras.

To show that g and 7 are inverse maps, we will show that, if G is 2 sub-
Hopf algebra, then #-ker(H —> H/HG*) = G, and that, if I is a left bi-ideal,
then Hj(s#-ker(H — H|I)y* = I. We establish both these equalities, first,
for irreducible Hopf algebras over perfect fields (we rely heavily on
Theorem 1.3, which is a generalization of M. Sweedler’s structure theorem for
irreducible, cocommutative Hopf algebras [8, Theorem 3, p. 521}), and then
use Kostant’s structure theorem for pointed, cocommutative Hopf algebras
[7, Theorem 8.1.5, p. 176] to obtain the result when the ground field is
algebraically closed. A simple scalar extension completes the theorem.

As a corollary of this result, we have that left bi-ideals are left Hopf ideals
if and only if they are two-sided ideals, and thus +(G) is 2 Hopf ideal if and
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only if G*H = HG*. Also we show that the main result yields another proof
that the category of commutative, cocommutative Hopf algebras is abelian,
See also [1, Corollaire 7.4, p. 355; 4, Satz 12; 9, Corollary 4.16].

In [9], Mitsuhiro Takeuchi has a parallel result for the commutative case.
He shows that for a commutative Hopf algebra H, there is a bijective corre-
spondence between sub-Hopf algebras and Hopf ideals I with the property
that if x€l, 3 2*0)S(%w) @ xx e H QL

Throughout the remainder of this paper H will be a cocommutative Hopf
algebra over a field K, with diagonalization 4, augmentation ¢, and antipode S.

Other frequently used notations will be:

(1) P(H) = primitives of H ={xc H|dx =1 Rz + x ® 1}.

(2) PIC-Hopf algebra (resp. PIC-coalgebra) means pointed, irreducible,
cocommutative Hopf algebra (resp. coalgebra).

(3) SDP stands for sequence of divided powers, i.e., a set of elements in
H:1 =%y, %, % ,..., %, such that

<
dx; = Z %5y & %; .
i=0

The definitions of the map V, coheight, and Sweedler basis can be found
in [8], p. 520, p. 520, and p. 521, respectively (the latter within the hypothesis
of Theorem 3), or in [5] p. 26, p. 26, and p. 30, respectively. To simplify
some statements, we will also use the expression “Sweedler basis” in the
char. 0 case. Here, it will mean just a basis of P(H).

1. PRELIMINARIES

Lemmva 1.1, If H is a PIC-Hopf algebra with bounded coheight over a
perfect field K of char. p > 0 and, if G is a sub-Hopf algebra of H, then there
exists of Sweedler basis of H which contains a Sweedler basis of G.

Proof. Assume V*Y(H)=1"-K, but V*(II) # 1 - K. Pick a basis of
Vr(H)YN VYG) N P(H). Extend this to a basis of V*(H) N V*YG) N P(H).
Extend this to a basis of V*(H) N V% G) N P(H). Continue until we have
a basis of V*(H) N P(H). Now extend this basis to one of

[(V*YH) N V*YG)) + V™(H)] N P(H).
And extend this to one of

[(V*={H) 0 V**(G)) + V*(H)] 0 P(H).
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Continue until we have a basis for V*Y(H) N P{I). Repeat this process until
we have a basis for all of P(H). It’s clear that this basis satisfies the statement
of the theorem.

Note. If H is a finitely generated PIC-Hopf algebra over a perfect field of
char. p > 0, then it has bounded coheight.

Proof. Each of the generators generate a finite dimensional coalgebra.
The product of these coalgebras is H. Since V' commutes with multiplication
[3, Prop. 4.1.6(c), p. 279], the statement follows.

DerinrrioN.  Let 81 = identity, 8 = J — ¢, and

o (=90U-9Q=RU—9 4

7 + 1-times

for n > 0.

Remark. By [7, Prop. 11.0.5, p. 220] if we let H, == ker 3", the H, form
the coradical filtration of H. 'Thus for n > 0, if "*Y{x) = 0 and 8°(x) 5% 0,
§"(x) € HI™, By [7, Prop. 10.0.1, p. 200], H; = K - 1 ® P(H). But by
definition, all the tensorands of 87(x) have augmentation 0, i.e.,

8n(x) & [P(H)]+1,

Thus for any x € H such that «(x) = 0, 3 such that §"(x) is a symmetric
element of the tensor algebra of P(H).

The following theorem uses this mapping to obtain a sufficient condition
for a subset of H to be a basis.

Levmia 1.2. Let H be a PIC-Hopf algebra with Sweedler basis B. Assume
the ground field X is either perfect or has char. Q. Let S be the subset of the
symmetric tensors in the tensor algebra of P(H) with the property thai each
tensorand is in B and, if char. K = p > 0 and if the coheight of the tensorand
s # < 00, then ii is vepealed in each term less than p"+' times. (If the coheight is
infinite or if the char. K = O make no vestriction on repetition.) Add the ideniity
to S. Then if T is any set of elements of H such that for each xe T In >
—198%x) € S and if this gives a bijective correspondence between T and S, then
T is a basis of H.

A basis of H satisfying these conditions for some Sweedler basis of H,
will be called a proper basis.

Proof. Similar to the second and third paragraphs of the proofs of [5,
Theorem 9, pp. 30-32].

The typical method of forming a proper basis is by taking maximal SDP’s
over each element of a Sweedler basis and then to form monomials from
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elements in these sequences, no monomial containing more than one factor
from any one sequence and no combination of factors being repeated in
more than one monomial [8, Theorem 3, p. 521]. For the char. p > 0 case,
we need a generalization of this construction,

Let G be a sub-Hopf algebra of PIC-Hopf algebra H over a perfect field of
char. p > 0.If x € G, let G-coh. ¥ = maximal coheight of x as an element of
G; and let H-coh. & = maximal coheight of & as an element of H}. By [8,
Lemma 7, p. 522], if x€ G and G-coh. x = m < c0, we can construct a
pmH — 18SDP: 1, ¥ =g, %g,..., "¢ in G and if H-coh. x = n < o0,
we can construct a p*+1 — 1 SDP: 1, & = 4, 24,..., "% in H. In general,
the second sequence will not be an extension of the first. (See Example 1,
below.) (The infinite coheight case presents some additional complications
[5, Example 1, p. 27], which, for this paper, we need not get into.) Now note
that there exists a bijective correspondence between:

{fhig|0 < i <<pmtt — 1,0 < j << p» — 1 and pmit divides j}
and {x[t1 | 0 < ¢ << p™*! — 1} using 6*H— where

20 =1, =x @ a - @2
N
t-times

Thus, instead of forming a proper basis from monomials of elements of
SDP’s, whenever the primitive is in /{ we can replace the SDP by elements
of the above form, and still have a proper basis. Further since

3a+b+c+d——1(aha bgm chB ng) = 8a+b+c+d—1(aha %B bga ng)

we can insist that our proper basis consist of monomials where all the g’s
come after the A's. We have shown:

Taeorem 1.3. Let H be a PIC Hopf algebra over a field K and let G be a
sub-Hopf algebra of H. If char. K = p > 0, assume that K is perfect and that H
has bounded coheight. Let B’ = {x,}..; be a Sweedler basis of G contained in
B = {x,},.; a Sweedler basis of H. (I C ]).

(a) Char. K =p > 0.
If x, € B, let m = G-coh. x, and let n = H-coh. x, and select SDP’s:
1: lga = Xy 2grx 3eens Z]mﬂhlga nG
and

4l - .
1,%, = %, ,2hy ., "~1h,  in H.
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If x,€ B — B’ and H-coh. x, = n select SDP, 1, ¥h, = 1, , *h, ,..., """ h, .
Order I and [ independently. Then

{blhﬁl 62h32 ot bthJ' algdl azgaz et aigai}:
where oy <oy < v <oyl By <PBg << < Biin
0 <a,<p™?,  my=G-coh.x,,;

0 <b, <p™™,  m, = H-coh.

and p™rit | b, if x5 € B', is a proper basis of H containing a proper basis of G.
(T#e latter is just those monomials with no B’s in them.)
(b) char. K =0.

For each x, e B' pick SDP: 1, Yg, = x,, %, ,... in G and for each
x,€ B — B’ pick SDP: 1, h, = x, , %k, ,... in H. Order I and ] independenily.
Then

b b Wb e, @ vee 05
{1}231 2"’82 ) %Bj lgrxl 2gc£2 lgoz,-}ﬁ

where oy <oy << <oy ly By <Po << <Biin ], and 0 L ay, b, ,
s a proper basis of H containing a proper basis of G. (The laiter is just those
monomials with no B's in them.)

Notation. We will frequently abbreviate an element in the above proper
basis ] %% - |1 % and differentiate among them by subscripts on the s and g.

CoroLLarY 1.4. With the hypothesis as in Theorem 1.3, H is a free right
G-module with basis {] %4}.

ExampLe 1. We give an example of a PIC-Hopf algebra H and sub-Hopf
algebra G, where no maximal SDP over a primitive in & can be extended to a
maximal SDP in H over that primitive.

LetK be the field of 2 elements andlet H = K[X, Y, Z, W]/(X?,Y? Z3, W?)
withdX =1QX+XR LAY =1Q YV +XRQX+YRI1,4Z =
IRZH+XRXYFYRYHXYRXLZRL,anddW=1Q W+
XRX+WEI. Let G = K[X, W]j(X? W?). Note that V(Z) =V and
V{Y)=V(W)=X. Then V¥(Z) = X, so H-coh. X = 2 and since V(W) = X,
G-coh. X = 1. Thus a maximal SDP over X in A has length 7 and a maximal
SDFP over X in G has length 3. But (V-"YX) N Gy n V(H) = 0, e, every
2nd divided power of X in G has coheight 0 in H and no maximal SDP over
X in G can be extended in H.
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CoroLLARY 1.5. G and H as in Theorem 1.3. The monomials of the form
T1% - [1% with [ % == 1 form a basis of HG.

Proof. Clearly any such monomial is in HG*. Conversely, let x € HG*,
Then x = 3, y,2, with y, € H and 2, € G*, and we can write

yzx == Z Coz,B H bhat,B H agoc,B ] and 2’,x = Z ca,y H “gu,y
B v

with no [] %, , = 1 since 2, € G* (¢, 3, €, € K). Now when we multiply
the expressions for y, and 2, , each time we multiply a T] %, ; and a J] %, ,
we can replace the product by a 3, ¢, I'] %, with ¢, € K. Since

(TT %11 %) =0, T[% 1

for any 3. Thus we can write x as a linear combination of basis elements with
nontrivial G factors.

CoroLLARY 1.6. G and H as in Theorem 1.3. The T]% form a wvector
space compliment to HG', i.e., T h form a basis of H/HG™.

CoroLLARY 1.7. G and H as in Theovem 1.3. Assume for all o such that
x,€ B, that *h, € HGt if p™ t {,m = G-coh. x, . Thenn: H—> H/HG* has a
right H{HG*+ comodule splitting p: HHHGY — H wia T]%h—1[%. (H is
a right H{HG* comodule via (1 & w)A4).

Proof. We wish to show that for [ ] ®% € H/HG,

(0 ® 1) dygyor ([1%) = (1 @m) 4 ([T%)-

Assume first that T %4 is a divided power, i.e., is of the form A, with p™+1 |
and m = G-coh. x, . Then for 0 < j < 4, either p7+! divides bothjand ¢ — j
or neither. Consequently (using the hypothesis)

(1 ® m) dthy =}, ’hy @ 7k,
summing over j such that p™+ | j. On the other hand,
Ay per Ty = (7 @ m) Ahy = Y w(hy) @ w(*h,)

again summing over j such that p+! | j. The desired equality follows.
It is straightforward to extend this equality to arbitrary J] 4.

Dzrinrrion.  If G is a sub-Hopf algebra of a Hopf algebra H, we say G is
normal it HG+ = G*H.
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Remark 1.8. G and H as in Theorem 1.3 with G normal in H. Assume
1,%,,%h, ..., 7", is an extension of 1, ig,, 28, e, 7 g, - Then the
th, could have been chosen to be in HG* whenever p7* 17, ie., we can
choose SDP’s which satisfy the hypothesis of Corollary 1.7.

Proof. By[6,1.24,p. 6}, Vi(th,) = /%', if pt | i. Thus H-coh.ig, =n—|| ],
where pitl <7 < pltt, By [8, Lemma 7, p. 522] and [6, Definition 2.6, p.10}
we can inductively construct for p7H <7 < p*Hand p™H ¢ ¢ a *h,whichis a
polynomial in the lower 7%, . Clearly we can insist that the sum of the super-
scripts on the 7k, in each term of this polynomial be equal to {. "Thus, each
term contains a %, with ™ ¢ § and, using normality, we can inductively
conclude that ‘4, € HG*,

DerintrioN.  We define the norm of
b 23 v 05 @ . von 2
M = lhﬁl _sz ]kBj lgotl Zgaz got,;

to be 3, _, by, +~ 3'5_, @, . Thus the norm is the smallest # 5 8”(M) = 0.
We write norm M = | M |.

Remark 1.9. Inthe char. p > O case, if %A, is any bth divided power of
%, € B, then in terms of the basis of Theorem 1.3: %%, = %"}, ug_ - (terms
of norm <Cb) where m = G-coh. h, (if h, € G, otherwise m = —1), # is
maximal such that ¢p™+! < b and u = b — #p™+L. This statement follows
from applying 8 to both sides and noting that the set {8*(}) | Me proper
basis, # > 0} is independent in the tensor algebra of H.

Thus in either the char. O or the char. p case, if 4 b4, is written as a tensor
product of basis elements, the sum of the norms in each term of the tensor
product will be < 8. Consequently, if M is any basis clement, and if 4M is
written in terms of the basis, then the sum of the norms in each term of the
tensor product will be < | M |.

2. 7 15 INJECTIVE

Note. Since any PIC-Hopf algebra over a field of char. 0 is the universal
enveloping algebra of the Lie algebra of its primitives [7, Theorem 13.0.1,
p. 274], the char. O case of those theorems in Sections 2 and 3 dealing with
PIC-Hopf algebra are actually well-known Lie algebra theory statements.
However, since it does not entail any additional work, I have included them
here for completeness.

Trrorem 2.1. Let H be a PIC-Hopf algebra over a field K and let G be a
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sub-Hopf algebra of H. If char. K = p > 0, assume K is perfect and H has
bounded coheight. Then any coalgebra contained in HGt @ 1 - Kis actually in G,

Proof. Pick a Sweedler basis B of H containing a Sweedler basis B’ of G,
and form a proper basis of H containing a proper basis of G as per
Theorem 1.3.

Pick x € HG* — G*. We will show that the coalgebra generated by « is not
contained in HG+* @1 - K. Write x =3, ¢, []%,]]%.,, c.€ K. Among
those terms where [T %, # 1 (there must be at least one since » ¢ G) let
T1°%; 11 %:; be one of maximal norm. Now define a functional f on H via
f(I'T%;) = 1 and fis zero on all other basis elements.

Define f+y = X¢) yo) f(¥@») where ye H and dy = 3 () yo) Qv - It
follows from Remark 1.9 that in terms of our basis:

fra =Y ¢, [] %, + (terms in G*) + (terms of lower norm),

where the first sum is over o2 | [ %, | = |T1%, |, and [] %, = [1%:.
Since the first term is not empty (it contains in particular ¢, [ | %4;) we have
by Corollary 1.5 that - x ¢ HG*. But by [7, Prop.2.1.1,p. 34] f - x isin the

coalgebra generated by .

Remark. The referee has pointed out that Corollary 1.4 yields an
alternative proof of this theorem. Since H is a free right G-module there
exists a G-module splitting of G'C H. Then the proof of [7, Theorem 16.0.3,
p- 309] gives another demonstration of the theorem.

Cororrary 2.2. If His any PIC-Hopf algebra over a field K of char. 0 or a
perfect field of char, p > 0 and if G is a sub-Hopf algebra of H, then any sub-
coalgebrain H - G+ @ 1 - K is actually in G.

Proof. The char. 0 case was shown in the theorem, so assume K is perfect
of char. p > 0. Now assume Jx € HG+ — G+ which generates a coalgebra in
HG+ @1+ K. We want a contradiction. Write x = 3 v,2, with y, € H and
2, € G*. Let H' be the Hopf algebra generated by the y,’s and the 2,’s and let
G’ = H' N G. Then since H' is finitely generated it has bounded coheight.
Thus Theorem 2.1 applies to H’ and G’ and we have the desired contra-
diction.

CoroLLarY 2.3. Let H be a PYC-Hopf algebra over a field K. Assume that
either char. K = 0 or that K is perfect. Then v the correspondence between
sub-Hopf algebras of H and left bi-ideals is injective.

Proof. We show that 7 followed by w is the identity, i.e., if G is a sub-
Hopf algebra of H then s#-ker(H — H[HG?Y) = G. It follows from the
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definition of #-ker that s#-ker(H — H/HGt)C1 - K @ HG™*. But # -ker
(H — HJ/HG") is a coalgebra, so by Corollary 2.2, 5 -ker(H — H/HG) CG.
The opposite inclusion is clear.

Coroirary 2.4. If His a cocommutative Hopf algebra over an algebraically
closed field K, then v is injective.

Proof. Again we want to show that if G is a sub-Hopf algebra of H, then
H-ker(H — H{HG) = G. By [7, Lemma 8.0.1{c), p. 158] since K is
algebraically closed, H is a pointed Hopf algebra. Therefore by {7, Theorem
8.1.5, p. 176] we can write H as H' # K$ where H' is a PIC-Hopf algebra and
$ is a group, H' # KO ~ H' @ K$ as coalgebras and if 4, ,4,€$H and
by, hye H' then (b # ay)(hy # a5) = harhoai # a,a, .

Similarly, write G as G' # KG.

Note that H'(G'yt = HG* N H'. We show this by observing that since

Gt = (G')* # K®) + (H' # (KB)*),
HG* = (H'(G')" # K9) + (H' # KH(KE)").

Thus if z € HG', we can write 2 = 3 &; # a; -+ 3. v # b; with 4, € H(G"),
a;€ K§, y;€ H and b, e KH(KG)*+. Since «(b;) = 0 each b; must be the
nontrivial linear combination of more than one grouplike. Consequently,
if we assume z € H' (i.e., assume that 2 as an element of H' # K$ has its
right hand term equal to 1) and if we take the y,’s to be linearly independent,
then each y; must be in the span of the x’s,

>y, e H{GY > 2e(H(GYH#KS)NH #1K)=H(G)
That H'(G'Y* C HG* n H' is clear.

Thus #-ker(H' ¢~ H — H[HG") = s -ker(H' — H'|H'(G')"). And by
Corollary 2.3, the latter equals &, i.e., the irreducible component of the
identity of #-ker(H — H/HG%) is G.

Finally, j a grouplike in Hisin

H-ker(H-">HHGH < (IQmdj =j 1< 1—~jecHGY
<1 —jeKHKB) = e .
Thus, & = the set of grouplikes in H#-ker(H — H/HG*), and we can

conclude ([7, Theorem 8.1.5, p. 176] and [7, Lemma 8.0.1 (¢}, p. 158]) that
H-ker(H — HHHGY) = G' # KG = G.

Cororrary 2.5. If H be a cocommutative Hopf algebra over a field K, then
T 15 injective.
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Proof. Let K = algebraic closure of K. Clearly
H-ker(H— HHGY) Q@ K = #-ker(H ® K — H ® K[HG*+ R K).

Thus Corollary 2.5 follows from Corollary 2.4.

3. 7 15 SURJECTIVE

TrroreM 3.1. Let H be a PIC-Hopf algebra over a field K and let I be a
left bi-ideal in H. If char. K = p > 0, assume that K is perfect and that H has
bounded coheight. Then G = #H-ker(H>- H|I) is a Hopf algebra and
HG+ = 1.

Proof. By the introductory remarks we know that G is a bialgebra; but
any PIC-bialgebra is a Hopf algebra. [7, Theorem 9.2.2 (3), p. 193].
Now clearly G+ C I so we have a surjection of PIC-coalgebras

¢: HIHG* — H]I.
HJHG+
a

G ——>H —°> H|I

We want to show that ¢ is an isomorphism. By [7, Lemma 11.0.1, p. 217]
we need only show that 4 is injective on primitives.

So pick 2z € P(H/HG?) 3 (2) = 0. We will show that & == 0.

If char. K = p > 0 we make an initial assumption (*} that (considering G
as a sub-Hopf algebra of H) there exists a Sweedler basis B of H containing a
Sweedler basis B’ of G, such that V6 € B’ 3 a maximal S.D.P. over b in G
which extends to a maximal S.D.P. over & in H. (If char. K > 0, this
assumption is of course always fulfilled, trivially.) Thus if we pick a proper
basis of H in the manner of Theorem 1.3, we can assume that for fixed a,

1,14, , 2k, ,... is just an extension of
]" lgal 2 cht b A

Now, by Corollary 1.5 if p: H— H/HG* is the canonical map, then
{p(I'T °h,)} form a basis of H/HG*. Thus we can select y € H3 p(y) = z and
3 y is in the vector space spanned by the {{ ] %4;}.

~ Lety =3 ¢ I, and let M == "hg "hy ‘- hy be a term of maximal
norm in the sum.
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Ifn > 2 then
b1y b oo On b
N ="thg, “hg, = g, ",

will occur in AM. Since (by Remark 1.9}, for any j every term in 4 T %%, has
total norm less than or equal to | 1] %k, | and, since NV cannot occur in the
diagonalization of any T %A, of norm | M | (other than M), we can conclude
that N occurs in Ay with nonzero coeflicient. But then Corollary 1.5 implies
that p("hg P2y <o Pn-thy ) @ p(Prhg ) occurs in A(p(y)) = 4z, This contra-
dicts € P(H/HG*). Thus n >> 2 is impossible.

If # = 1 and if char. K = p > 0, then M, a term of maximal norm, will be
of the form: ¥#™8*Np,  where m, = G-coh x,. (Remember that all the
bk, used in the proper basis have b as a multiple of p™#+1). Now if ¢ > 1, then
using the same reasoning as above p(*™* ") @ p(¢D7" 1) will appear in
4z which is again a contradiction. Thus we conclude that any term of maximal
norm is of the form ?™#"'}, with m; = G-coh. &, . But by assumption (¥},
2"8 'L extends a S.D.P. in G = p(*"#"' ;) € P(H/HG™).

If char. K = 0, repeat the above argument with p = 1. Thus, in either
case, if we delete all terms of maximal norm from 3 ¢; T] %%, the new sum
is still a primitive under p. Therefore, by induction, we can conclude that
> g T kg is of the form ¥, ¢%h, with by == 1 if char. K = 0 and by = pms+?
if char. K = p. But, since () == 0, and since p(*#h,) € P(H/HGY), we
have

(o) @D o A (T 65"hs) = T (1 @ i),

ot ¥ ¢y W8k € H-ker(p o ) = H-kerp = G, 1e., 2 = 0.

Now we complete the proof by showing that in the char. $ case we can drop
assumption (*). Let x5, B’ with max. 8. D. P. 1, g3 = =y, %5 ,... in G.
Assume G-coh. x5 = m, and H-coh. x; == 15 . Then adjoin to H the variables
2515 Zg.2 005 Lg.mg-my, - Define 4Z,, , so that it is a p™s+t divided power in
the sequence 1, g5, %, ,...; define 4Z;, as a p™a+2 divided power in this
sequence, etc. {This is possible by [8, Lemma 7, p. 522]. See [6, Definition 2.6,
p- 10] for more details.) Define multiplication so that the Z; ; have no relations
with elements in H or among themselves. Repeat this procedure for each
xs€ B’ and let [T = H[Z, ;],; and let I = HI.

Note that G = #-ker(H -5 H|I). For let P be an element of

o -ker(H — H|T)

and think of P as a polynomial in the Z; ;’s with coeficients in H. Then if we
let norm Z; ; = p™H, and extend norm to monomials by multiplication, find
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M a monomial of highest norm in P. Let /2 = coefficient of M. Then AP
contains the term % ) M which means that # & 5(J) appears in (1 Q p) 4P,
ie, (1 ®p)dP 4P ® 1 or P¢ A -ker(H— H|I) unless Pe H (in which
case, of course, M = 1). Put clearly

H " o#-ker(H — HI) = #-ker(H — H|I) = G.

Therefore P G.

Now by our construction, we have assured that for each be B’, there
exists a maximal S.D.P. in G over b extendable to a maximal S.D.P.in H over b.
(The variables have added primitives to H, but have not increased the
coheight of any primitive in G.) Thus assumption (*) is fulfilled and
H/HG+->H|I is an isomorphism. Therefore, since H/HG*— H/HG* is
injective, 2 = 0. Q.E.D.

Remark. 'The referee has pointed out that if G is normal in H one can
give an alternative demonstration of the part of Theorem 1.3 where we
assumed (*). By Remark 1.8 and Corollary 1.7, under assumption (*) there
exists a H/HG*-comodule splitting p: H/HG*— H. The proof of [7,
Lemma 16.0.2, p. 306] now applies and gives the desired result.

CoroLiary 3.2. Let H be a PIC-Hopf algebra with left bi-ideal I. If the
ground field has char. p > 0, assume it is perfect. Then G = -ker(H — H|I)
s a Hopf algebra and HGH = I,

Proof. Asin Theorem 3.1, G is a Hopf algebra since it is a PIC-bialgebra.
Since Theorem 3.1 covers the char. O case, we assume the ground field is
perfect. We again wish to show that : H/HG* — H[I is injective when
restricted to P(H/HG%). So pick ze P(H/HGV)>{(z) =0, and pick
yeH>2p(y) = 2. Since z is a primitive we can write

dy=1Qy+y®1+ Zijym ® iz
with 3, ;1 ® v;.€ HGY Q@ H + H @ HG*. Write
zi:ym & Yie = ; hgy @k + ; by’ @ hggp
with &, , &, bg, by’ € Hand g, , g; € G*. Let H' = sub-Hopf of H generated
by {%y, ks B s e’y 84 s Zo3ep and let I = I N H'. It follows from the con-

structive definition of 5#-ker that S-ker(H'-—> H'[I'y = GNH = G
Thus, if we restrict ourselves to H’, I', and G', Theorem 3.1 applies (since H’
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is finitely generated and therefore has bounded coheight). Consequently,
2 = (. Q.ED.

CoroLLARY 3.3. Let H be a cocommutative Hopf algebra over an alge-
braically closed field K and let I be a left bi~ideal of H. Then, if

G = H'-ker(H — H|[I),
G is a Hopf algebra and HG+ = I.

Proof. Since K is algebraically closed by [7, Lemma 8.0.1 (¢), p. 158] G is
pointed. Thus by [7, Theorem 9.2.5, p. 196] G is a Hopf algebra iff the group-
likes of G form a group. Since G is a bialgebra, the grouplikes form a monoid,
so we need only show the existence of inverses. As in Corollary 2.4, a grouplike
in Hisin G iff 1 —gel But, since H is a Hopf algebra, g% exists in
H= —gYl—g)=1—grel=>g'leG Thus Gis a Hopf algebra.

‘We again want to show that the surjection ¢s: H/HG* — H/I is a bijection.
By [7, Corollary 8.0.7, p. 1671, since H/HG* and H/I are pointed cocommu-
tative coalgebras, each is isomorphic to the direct sum of its respective
pointed irreducible components. Thus we need only show that s restricted to
each pointed irreducible component of H/HG* is injective.

As in Corollary 2.4, if we let G = G'# K& and H = H'# K$ then
H'(G'Yr=HG* n H'.S0 by Corollary 3.2, ¢ restricted to H'[{HG+ N H') is
injective.

Let x eirreducible component of H/HG* whose grouplike is 4. Pick
grouplike g€ H 2 p(g) = k and pick y in the irreducible component of H
containing g such that p(y) = x. (This is possible since if C and D are two
irreducible components of H, either p(C) = p(D) or p(C) N p(D) = 0.)
{(p: H— H[HG*.) So if §(x) =0, then yel = pglyel But glwe H so
since ¥ restricted to H'[(HGY N H') is injective, g~y € HG* = g(g~y) =
ye HGt = x = 0.

Thus  restricted to any irreducible component of H/HG™ is injective and
we are done.

CoroLLARY 3.4. Let H be a cocommutative Hopf algebra over an arbitrary
Jield K, and let I be a left bi-ideal of H. Then if G = 3¢-kes(H — H|I), Gis a
Hopf algebra and HG+ = I.

Proof. Let K = algebraic closure of K.

Since H#-ker(H— H[I) Q K = #-ker(H QK- HQK|/I ®K), and
since G ® K is a Hopf algebra (by Corollary 3.3), G is a Hopf algebra.

Finally, since (by Corollary 3.3) HG+* ® K = I ® K, and since HG+ C ],
HG+ =L



14 KENNETH NEWMAN
4. CONCLUSIONS

Treorem 4.1. If H is a Hopf algebra, there is a bijective corvespondence
7, (vesp. Tx) between sub-Hopf algebras of H and left (vesp. vight) bi-ideals of
H. 7 (vesp. v3) of a sub-Hopf algebra G is the left (resp. right) bi-ideal: HG*
(vesp. GTH). 77* (resp. 1%%) of a left (vesp. right) bi-ideal I is the sub-Hopf
algebra: S8 -ker(H — H(I).

Proof. Corollary 2.5 shows that 7, is injective. Corollary 3.4 shows that
7, is surjective. Symmetrical demonstrations would yield the same result
for =, .

Levma 4.2. Let H be a cocommutative Hopf algebra and let I be left
(vesp. right) bi-ideal of H. Then I is a left (resp. vight) Hopf ideal (i.e., S(I) CI)
iff I is a two-sided ideal.

Proof. If Iis a left bi-ideal then by Corollary 3.4, I = HG* with G a
sub-Hopf algebra of H. Then, since the antipode is anti-commutative [7,
Prop. 4.0.1 (1), p. 74] S(HG) = S(G*) S(H)C G*H. Thus, if I is a two-
sided ideal, it is a Hopf ideal.

Conversely, assume S(J) C I. Since H and G are cocommutative S: H — H
and S: G — G are surjective [7, Prop. 4.0.1 (6), p. 74] = S(I) = S(HG*) =
G+H. Therefore, IH = I.

The proof is symmetric if 1 is a right bi-ideal.

Turorem 4.3. If H is cocommutative Hopf algebra there is a bijective order
preserving correspondence between the left (vesp. right) Hopf ideals of H and the
normal sub-Hopf algebras of H.

Proof. 'Theorem 4.1 together with Lemma 4.2.

THEOREM 4.4. The category of commutative, cocommutative Hopf algebras
over a field K is abelian.
Proof. By [2, p. 35] a category is abelian if:
(1) It has a zero object.
(2) For every pair of objects there is a product and sum.
(3) Every map has a kernel and cokernel.

(4) (a) Every monomorphism is a kernel of a map.
(b) Every epimorphism is a cokernel of a map.



BI-IDEALS AND SUB-HOPF ALGEBRAS 15

In the given category the first three conditions are easily fulfilied as:

(1) The zero object is K.
(2) 'Tensor product is both product and sum.

(3) If 9: G— H is a Hopf algebra map, s#-ker is the categorical
kernel [7, Lemma 16.1.1, p. 312] and #-coker = H|p(G+)H is the categorical
cokernel. [7, p. 313].

To prove (4) (2) note first that if ¢: G— H is a monomorphism of Hopf
algebras, it is injective. For let I = vector space kernel. By [7, Theorem
4.3.1 (b), p. 87] I is a Hopf ideal, so by Corollary 3.2 3G’ s H{(G')}* = 1.
Then &' ¢— G5 H is the zero map which contradicts ¢ monomorphic.
Therefore I = {0}.

Now by Corollary 2.5, G ~ #-ker(H — H[Hep(G*)) so every mono-
morphism is a kernel.

For (4) (b} note that if p: G— H is an epimorphism, it is surjective; as
H[Hp(G*) ~ K = Hy(G") = HH* = (by Corollary 2.5) that o(G) = H.

Now lét I = vector space kernel of ¢. Then by Corollary 3.4,
AG 2 GGy = I, so S -coker(G' — G) = H, i.e., every epimorphism is a
cokernel. Q.ED.
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