of concern. We hope to see the mature follow-up results of CALGB 9335.

Noriyoshi Sawabata, MD
Masayoshi Inoue, MD
Hiroyuki Shiono, MD
Masahito Monami, MD
Meinoshin Okumura, MD
Division of General Thoracic Surgery
Department of Surgery (E-1)
Osaka University
Graduate School of Medicine,
2-2 Yamadaoka, Suita,
Osaka, 560-8552, Japan

References

Reply to the Editor:
Dr Sawabata and colleagues address some interesting and yet undefined issues related to resection of small lung cancer lesions. Just what is the safe limit of a resection margin for a lung cancer, and how does the technique of wedge resection affect the extent of this margin and the ability to do facile, prompt, and accurate pathologic assessment? None of the answers to these questions are yet known, and only carefully conducted studies of cohorts of resected patients with T1 size lesions will be able to answer them. We certainly will be looking at long-term follow-up on our CALGB 9335 patients to attempt to answer this.

In this study the readers are reminded that study subjects were at high cardiopulmonary risk and were compromised and that both survival and locoregional recurrence of this high-risk population might not reflect on similar patients with T1 lesions with near-normal cardiopulmonary status undergoing resection. It is possible, for example, to assume that healthier patients might encourage surgeons to perform wider resection margins, whereas sicker patients with bad lungs will lead surgeons to more conservative narrower resections.

Staple lines at resection margins certainly pose a challenge to pathologists when performing frozen sections, but overall, this is certainly less of a hassle for the surgeon who will have to deal with air leaks if staple resection is not performed. Furthermore, we do not know how tumor size will affect outcome and whether resection margins for subcentimeter lesions will necessarily lend themselves to potentially narrower resection than larger tumors. Perhaps the biology of the lung cancer, rather than its size, will have more effect on the safety of resection margins.

Finally, newer technologies are making their way into our practice and not just brachytherapy, which potentially offers less lung injury, and more concentrated therapy. Image-gated radiotherapy and radiofrequency ablation might also be entertained as potential alternative approaches either alone or as adjuncts to limited surgical resection if studies validate their efficacy.

Hani Shennib, MD
Department of Oncology
McGill University
2215 Dover Rd
Montreal, Quebec H3P 2N6, Canada
doi:10.1016/j.jtcvs.2005.06.047

Whatever the approach, cutting strut chordae would not smell as sweet
To the Editor:
With the first clinical application of Messas and colleagues’ ovine trial, Fayad and colleagues reported the case of a patient with chronic ischemic mitral regurgitation (CIMR) who was managed successfully with strut chordae severing through an exclusive aortotomy and concomitant coronary artery bypass grafting. Although encouraging midterm results were reported, the objection can be raised to the authors’ rationale of a “cut-and-go” approach in the face of such a complex pathophysiologic entity. As indicated by the authors, the factors involved in the genesis of CIMR are multiple and intricate, reflecting the complexity in preoperative analysis of CIMR mechanisms attempted at surgical planning. Similarly, it is our belief that factors involved in the postoperative regression of moderate CIMR are too complex to be ascribed to a given procedure, especially when taking into account reverse ventricular remodeling after coronary artery bypass grafting and possible improvement in intramyocardial conduction, 2 factors that are not taken into account in experimental models of CIMR.

The direct access offered by exclusive aortotomy to approach strut chordae is appealing, but that is at the loss of perioperative analysis of mitral apparatus, still of paramount importance in surgical decision-making. In our experience, the superior left atrial approach offers an adequate surgical field, even in the setting of CIMR or rheumatic disease, and for preprocedural and postprocedural functional analyses of mitral apparatus. Other advantages of a superior left atrial approach include a lesser distortion of mitral annulus and likelihood of perioperative or postoperative bleeding compared with an interatrial approach or aortotomy, respectively.

The authors’ technique is conceived according to the conclusions of an experi-